This file is indexed.

/usr/src/castle-game-engine-5.2.0/x3d/x3d_lighting.inc is in castle-game-engine-src 5.2.0-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
{
  Copyright 2002-2014 Michalis Kamburelis.

  This file is part of "Castle Game Engine".

  "Castle Game Engine" is free software; see the file COPYING.txt,
  included in this distribution, for details about the copyright.

  "Castle Game Engine" is distributed in the hope that it will be useful,
  but WITHOUT ANY WARRANTY; without even the implied warranty of
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

  ----------------------------------------------------------------------------
}

{$ifdef read_interface}
  TGeneratedShadowMapNode = class;

  TLightScope = (
    { Light shines everywhere. VRML/X3D >= 2 calls these lights global. }
    lsGlobal,
    { Light shines only within it's VRML/X3D grouping node.
      VRML/X3D >= 2 calls these lights not global. }
    lsLocal,
    { Light shines only on the following shapes within
      it's VRML/X3D grouping node.
      This is used by VRML 1.0 (and Inventor) light sources. }
    lsLocalVRML1);

  { Base class for all VRML / X3D light nodes.

    Note that even the old VRML 1.0 light nodes inherit from this.
    Although they interpret some bits differently
    ("ambientIntensity" < 0 has special meaning).
    But most of the fields behave identically, they only have different
    default values. }
  TAbstractLightNode = class(TAbstractChildNode)
  private
    FTransform: TMatrix4Single;
    SavedDefaultShadowMap: boolean;
    SavedDefaultShadowMapUpdate: TTextureUpdate;
    SavedDefaultShadowMapSize: Integer;
    SavedDefaultShadowMapScale: Single;
    SavedDefaultShadowMapBias: Single;
    SavedDefaultShadowMapCompareMode: string;
  protected
    procedure BeforeTraverse(StateStack: TX3DGraphTraverseStateStack); override;
    procedure MiddleTraverse(StateStack: TX3DGraphTraverseStateStack); override;
  public
    procedure CreateNode; override;

    private FFdOn: TSFBool;
    public property FdOn: TSFBool read FFdOn;

    private FFdIntensity: TSFFloat;
    public property FdIntensity: TSFFloat read FFdIntensity;

    private FFdColor: TSFColor;
    public property FdColor: TSFColor read FFdColor;

    private FFdAmbientIntensity: TSFFloat;
    public property FdAmbientIntensity: TSFFloat read FFdAmbientIntensity;

    private FFdGlobal: TSFBool;
    public property FdGlobal: TSFBool read FFdGlobal;

    private FFdShadowVolumes: TSFBool;
    public property FdShadowVolumes: TSFBool read FFdShadowVolumes;

    private FFdShadowVolumesMain: TSFBool;
    public property FdShadowVolumesMain: TSFBool read FFdShadowVolumesMain;

    private FFdShowProxyGeometry: TSFBool;
    { showProxyGeometry field is an Avalon extension, see
      [http://instant-reality.com/documentation/nodetype/Light/]. }
    public property FdShowProxyGeometry: TSFBool read FFdShowProxyGeometry;

    private FFdProjectionNear: TSFFloat;
    { projectionNear / projectionFar / up are Kambi extensions, see
      [http://castle-engine.sourceforge.net/x3d_extensions.php#section_ext_light_projective] }
    public property FdProjectionNear: TSFFloat read FFdProjectionNear;

    private FFdProjectionFar: TSFFloat;
    public property FdProjectionFar: TSFFloat read FFdProjectionFar;

    private FFdUp: TSFVec3f;
    public property FdUp: TSFVec3f read FFdUp;

    private FFdDefaultShadowMap: TSFNode;
    public property FdDefaultShadowMap: TSFNode read FFdDefaultShadowMap;

    private FFdShadows: TSFBool;
    public property FdShadows: TSFBool read FFdShadows;

    private FFdEffects: TMFNode;
    public property FdEffects: TMFNode read FFdEffects;

    { Transformation of this light node.
      Normal lights can be instanced many times within the scene, with
      various transformation, so @italic(this transformation property
      cannot be used).

      However, in special cases, you know that light node occurs only once
      within the scene (see
      [http://castle-engine.sourceforge.net/x3d_extensions.php#section_ext_shadow_maps]).
      Then it's useful.

      It is gathered during traversing. Last BeforeTraverse call for this
      node sets Transform properties. By default, it represents identity
      transformation.

      @groupBegin }
    property Transform: TMatrix4Single read FTransform;
    { @groupEnd }

    { Matrices for rendering shadow map from this light.
      Identity in this class, override for subclasses able to do shadow mapping.
      @groupBegin }
    function ProjectionMatrix: TMatrix4Single; virtual;
    function ModelviewMatrix: TMatrix4Single; virtual;
    function ModelviewRotationMatrix: TMatrix4Single; virtual;
    function GetProjectorMatrix: TMatrix4Single;
    { @groupEnd }

    { Light location, direction and up vectors, for projection.
      Useful when you think of lights as cameras (for shadow maps).

      DirectionLocal must be exactly zero for a PointLight (that doesn't
      have a direction).

      @groupBegin }
    function ProjectionLocationLocal: TVector3Single; virtual;
    function ProjectionLocation: TVector3Single;
    function ProjectionDirectionLocal: TVector3Single; virtual;
    function ProjectionDirection: TVector3Single;
    procedure GetView(out Pos, Dir, Up: TVector3Single);
    { @groupEnd }

    { Calculate distances between the given Box and this light source.
      This is intended to capture the depth distances where the box
      resides, useful for calculating e.g. depth ranges to capture in
      the shadow maps.
      Depending on light source type, various distance measures may be used,
      appropriate to light sources projection.

      Always MinDistance <= MaxDistance. They may be negative when
      we measure along the light's direction.

      @raises EBox3DEmpty When used with an empty box. }
    procedure Box3DDistances(const Box: TBox3D;
      out MinDistance, MaxDistance: Single); virtual; abstract;

    { Create TLightInstance record describing this light node under given
      State. }
    function CreateLightInstance(State: TX3DGraphTraverseState): TLightInstance;

    { Update TLightInstance record when lighting State changes.
      Assumes that LightInstance.Node = Self.

      This will set LightInstance.Transform properties, and recalculate
      all LightInstance properties based on Transform. }
    procedure UpdateLightInstanceState(
      var LightInstance: TLightInstance;
      State: TX3DGraphTraverseState);

    { Update TLightInstance record when lighting location/direction (and other
      properties precalculated on TLightInstance) change.
      Assumes that LightInstance.Node = Self. }
    procedure UpdateLightInstance(
      var LightInstance: TLightInstance); virtual;

    function TransformationChange: TNodeTransformationChange; override;

    { Internal, to workaround small X3DShadowMaps problem. @exclude }
    procedure DefaultShadowMapSave(Node: TGeneratedShadowMapNode);
    { Internal, to workaround small X3DShadowMaps problem. @exclude }
    function DefaultShadowMapLoad(Node: TGeneratedShadowMapNode): boolean;

    { Light scope. Default implementation returns lsGlobal or lsLocal,
      depending on "global" field value (this follows VRML/X3D >= 2.0 rules). }
    function Scope: TLightScope; virtual;

    { Position expressed in homogeneous coordinates.
      For positional lights, the last component is always 1.
      For directional lights, the last component is always 0.

      Note that this expressed is in the local light node coordinate system. }
    function Position: TVector4Single; virtual; abstract;
  end;

  TAbstractDirectionalLightNode = class(TAbstractLightNode)
  private
    function GetDirection: TVector3Single;
    procedure SetDirection(const Value: TVector3Single);
    function GetProjectionRectangle: TVector4Single;
    procedure SetProjectionRectangle(const Value: TVector4Single);
    function GetProjectionLocation: TVector3Single;
    procedure SetProjectionLocation(const Value: TVector3Single);
  public
    procedure CreateNode; override;
    class function ClassNodeTypeName: string; override;

    private FFdDirection: TSFVec3f;
    public property FdDirection: TSFVec3f read FFdDirection;
    property Direction: TVector3Single read GetDirection write SetDirection;

    private FFdProjectionRectangle: TSFVec4f;
    public property FdProjectionRectangle: TSFVec4f read FFdProjectionRectangle;
    property ProjectionRectangle: TVector4Single read GetProjectionRectangle write SetProjectionRectangle;

    private FFdProjectionLocation: TSFVec3f;
    public property FdProjectionLocation: TSFVec3f read FFdProjectionLocation;
    property ProjectionLocation: TVector3Single read GetProjectionLocation write SetProjectionLocation;

    procedure UpdateLightInstance(var LightInstance: TLightInstance); override;

    function ProjectionMatrix: TMatrix4Single; override;
    function ModelviewMatrix: TMatrix4Single; override;
    function ModelviewRotationMatrix: TMatrix4Single; override;
    function ProjectionLocationLocal: TVector3Single; override;
    function ProjectionDirectionLocal: TVector3Single; override;
    procedure Box3DDistances(const Box: TBox3D;
      out MinDistance, MaxDistance: Single); override;
    function Position: TVector4Single; override;
  end;

  TAbstractPositionalLightNode = class(TAbstractLightNode)
  private
    function GetAttenuation: TVector3Single;
    procedure SetAttenuation(const Value: TVector3Single);
    function GetLocation: TVector3Single;
    procedure SetLocation(const Value: TVector3Single);
    function GetRadius: Single;
    procedure SetRadius(const Value: Single);
  public
    procedure CreateNode; override;

    private FFdAttenuation: TSFVec3f;
    public property FdAttenuation: TSFVec3f read FFdAttenuation;
    property Attenuation: TVector3Single read GetAttenuation write SetAttenuation;

    private FFdLocation: TSFVec3f;
    public property FdLocation: TSFVec3f read FFdLocation;
    property Location: TVector3Single read GetLocation write SetLocation;

    { Calculate light intensity drop because of the distance to the light.
      This follows the equation @code(1/max( attenuation[0] + ... ))
      from the VRML/X3D specification, it is the same as OpenGL attenuation.

      Since calculating the DistanceToLight for the @link(Attenuation)
      method may be time-consuming in some situations,
      you can check DistanceNeededForAttenuation first.
      When the DistanceNeededForAttenuation returns @false,
      then the value of DistanceToLight parameter is ignored (you can
      pass anything).

      The DistanceToLight should be a distance in the light source
      local coordinate system. TODO: although our renderers currently
      ignore this: ray-tracer uses global coord system,
      OpenGL (fixed-function and shader) renderer uses eye coord system
      (should be equal to global coord system for normal cameras).

      @groupBegin }
    function DistanceNeededForAttenuation: boolean;
    function CalculateAttenuation(const DistanceToLight: Single): Single; overload;
    function CalculateAttenuation(const DistanceToLight: Double): Double; overload;
    { @groupEnd }

    { Is attenuation relevant. When @false, you know that @link(Attenuation)
      function always returns 1, so there's no point in using it at all. }
    function HasAttenuation: boolean;

    private FFdRadius: TSFFloat;
    public property FdRadius: TSFFloat read FFdRadius;
    property Radius: Single read GetRadius write SetRadius;

    { Should the "radius" field be taken into account. }
    function HasRadius: boolean; virtual;

    procedure UpdateLightInstance(var LightInstance: TLightInstance); override;
    function Position: TVector4Single; override;
  end;

  TAbstractPointLightNode = class(TAbstractPositionalLightNode)
  public
    procedure CreateNode; override;
    class function ClassNodeTypeName: string; override;

    function ProjectionLocationLocal: TVector3Single; override;
    procedure Box3DDistances(const Box: TBox3D;
      out MinDistance, MaxDistance: Single); override;
  end;

  TDirectionalLightNode = class(TAbstractDirectionalLightNode)
  public
    procedure CreateNode; override;
    class function URNMatching(const URN: string): boolean; override;

    class function ForVRMLVersion(const Version: TX3DVersion): boolean;
      override;
  end;
  TDirectionalLightNode_2 = TDirectionalLightNode;

  TPointLightNode = class(TAbstractPointLightNode)
  public
    procedure CreateNode; override;
    class function URNMatching(const URN: string): boolean; override;

    class function ForVRMLVersion(const Version: TX3DVersion): boolean;
      override;
  end;
  TPointLightNode_2 = TPointLightNode;

  TSpotLightNode = class(TAbstractPositionalLightNode)
  public
    procedure CreateNode; override;
    class function ClassNodeTypeName: string; override;
    class function URNMatching(const URN: string): boolean; override;

    private FFdBeamWidth: TSFFloat;
    public property FdBeamWidth: TSFFloat read FFdBeamWidth;

    private FFdCutOffAngle: TSFFloat;
    public property FdCutOffAngle: TSFFloat read FFdCutOffAngle;

    private FFdDirection: TSFVec3f;
    public property FdDirection: TSFVec3f read FFdDirection;

    private FFdProjectionAngle: TSFFloat;
    public property FdProjectionAngle: TSFFloat read FFdProjectionAngle;

    class function ForVRMLVersion(const Version: TX3DVersion): boolean;
      override;

    procedure UpdateLightInstance(var LightInstance: TLightInstance); override;

    function ProjectionMatrix: TMatrix4Single; override;
    function ModelviewMatrix: TMatrix4Single; override;
    function ModelviewRotationMatrix: TMatrix4Single; override;
    function ProjectionLocationLocal: TVector3Single; override;
    function ProjectionDirectionLocal: TVector3Single; override;
    procedure Box3DDistances(const Box: TBox3D;
      out MinDistance, MaxDistance: Single); override;

    { Spot cutoff angle (based on cutOffAngle).

      Expressed in degrees, clamped to correct range
      (since user can input any value in VRML, and also conversion
      radians -> degrees could accidentally raise value slightly > 90,
      so cutOffAngle = 1.5708 is in degrees 90.0002104591,
      which would cause OpenGL fixed-function error). }
    function SpotCutoffDeg: Single;

    function SpotCosCutoff: Single;

    { Approximate spot exponent that could be used to render this spot light.
      Do not use this, unless you really don't have to.
      X3D spot light should have a linear fallback, from beamWidth to cutOffAngle,
      and there is no sensible way to approximate it by an exponent.
      Use this only if you have to render spot light with exponent,
      e.g. for OpenGL fixed-function pipeline. }
    function SpotExponentApproximate: Single;
  end;
  TSpotLightNode_2 = TSpotLightNode;

{$endif read_interface}

{$ifdef read_implementation}
const
  FallbackProjectionNear = 1;
  FallbackProjectionFar = 100;
  FallbackProjectionRectangle: TVector4Single = (-10, -10, 10, 10);

procedure TAbstractLightNode.CreateNode;
begin
  inherited;

  FFdGlobal := TSFBool.Create(Self, 'global', false);
   FdGlobal.ChangesAlways := [chEverything];
  Fields.Add(FFdGlobal);

  FFdOn := TSFBool.Create(Self, 'on', true);
   FdOn.ChangesAlways := [chVisibleNonGeometry];
  Fields.Add(FFdOn);

  FFdIntensity := TSFFloat.Create(Self, 'intensity', 1);
   FdIntensity.ChangesAlways := [chVisibleNonGeometry];
  Fields.Add(FFdIntensity);

  FFdColor := TSFColor.Create(Self, 'color', Vector3Single(1, 1, 1));
   FdColor.ChangesAlways := [chVisibleNonGeometry];
  Fields.Add(FFdColor);

  FFdAmbientIntensity := TSFFloat.Create(Self, 'ambientIntensity', 0);
   FdAmbientIntensity.ChangesAlways := [chVisibleNonGeometry];
  Fields.Add(FFdAmbientIntensity);

  FFdShadowVolumes := TSFBool.Create(Self, 'shadowVolumes', false);
   FdShadowVolumes.AddAlternativeName('kambiShadows', 0);
   FdShadowVolumes.ChangesAlways := [chLightForShadowVolumes];
  Fields.Add(FFdShadowVolumes);

  FFdShadowVolumesMain := TSFBool.Create(Self, 'shadowVolumesMain', false);
   FdShadowVolumesMain.AddAlternativeName('kambiShadowsMain', 0);
   FdShadowVolumesMain.ChangesAlways := [chLightForShadowVolumes];
  Fields.Add(FFdShadowVolumesMain);

  FFdShowProxyGeometry := TSFBool.Create(Self, 'showProxyGeometry', false);
  Fields.Add(FFdShowProxyGeometry);

  FFdProjectionNear := TSFFloat.Create(Self, 'projectionNear', 0);
   { We want to set UpdateNeeded := true for all GeneratedShadowMap using
     this light. For now, simply send chVisibleGeometry that will
     force updating all GeneratedShadowMaps. }
   FdProjectionNear.ChangesAlways := [chVisibleGeometry];
  Fields.Add(FFdProjectionNear);

  FFdProjectionFar := TSFFloat.Create(Self, 'projectionFar', 0);
   { We want to set UpdateNeeded := true for all GeneratedShadowMap using
     this light. For now, simply send chVisibleGeometry that will
     force updating all GeneratedShadowMaps. }
   FdProjectionFar.ChangesAlways := [chVisibleGeometry];
  Fields.Add(FFdProjectionFar);

  FFdUp := TSFVec3f.Create(Self, 'up', ZeroVector3Single);
   { We want to set UpdateNeeded := true for all GeneratedShadowMap using
     this light. For now, simply send chVisibleGeometry that will
     force updating all GeneratedShadowMaps. }
   FdUp.ChangesAlways := [chVisibleGeometry];
  Fields.Add(FFdUp);

  FFdDefaultShadowMap := TSFNode.Create(Self, 'defaultShadowMap', [TGeneratedShadowMapNode]);
   FdDefaultShadowMap.Exposed := false;
   FdDefaultShadowMap.ChangesAlways := [chEverything];
  Fields.Add(FFdDefaultShadowMap);

  FFdShadows := TSFBool.Create(Self, 'shadows', false);
   FdShadows.Exposed := false;
   FdShadows.ChangesAlways := [chShadowMaps];
  Fields.Add(FFdShadows);

  FFdEffects := TMFNode.Create(Self, 'effects', [TEffectNode]);
   FdEffects.Exposed := false;
   FdEffects.ChangesAlways := [chEverything];
  Fields.Add(FFdEffects);

  DefaultContainerField := 'children';

  FTransform := IdentityMatrix4Single;
end;

procedure TAbstractLightNode.BeforeTraverse(
  StateStack: TX3DGraphTraverseStateStack);
begin
  inherited;

  FTransform := StateStack.Top.Transform;
end;

function TAbstractLightNode.ProjectionMatrix: TMatrix4Single;
begin
  Result := IdentityMatrix4Single;
end;

function TAbstractLightNode.ModelviewMatrix: TMatrix4Single;
begin
  Result := IdentityMatrix4Single;
end;

function TAbstractLightNode.ModelviewRotationMatrix: TMatrix4Single;
begin
  Result := IdentityMatrix4Single;
end;

function TAbstractLightNode.GetProjectorMatrix: TMatrix4Single;
begin
  Result := ProjectionMatrix * ModelviewMatrix;
end;

function TAbstractLightNode.ProjectionLocationLocal: TVector3Single;
begin
  Result := ZeroVector3Single;
end;

function TAbstractLightNode.ProjectionLocation: TVector3Single;
begin
  Result := MatrixMultPoint(Transform, ProjectionLocationLocal);
end;

function TAbstractLightNode.ProjectionDirection: TVector3Single;
begin
  Result := MatrixMultDirection(Transform, ProjectionDirectionLocal);
end;

function TAbstractLightNode.ProjectionDirectionLocal: TVector3Single;
begin
  Result := ZeroVector3Single;
end;

procedure TAbstractLightNode.GetView(out Pos, Dir, Up: TVector3Single);
begin
  Pos := MatrixMultPoint    (Transform, ProjectionLocationLocal);
  Dir := MatrixMultDirection(Transform, ProjectionDirectionLocal);

  Up := FdUp.Value;
  { Up = zero means "calculate anything suitable".
    We could let AnyOrthogonalVector do this job, but when +Y is sensible
    (when it results in something non-parallel to Dir), let's use it.
    This makes calculated "up" more deterministic. }
  if PerfectlyZeroVector(Up) then
    Up := Vector3Single(0, 1, 0);
  Up := MatrixMultDirection(Transform, Up);
  { When the "up" vector is parallel to the dir then fix it.
    Note: when "up" is not parallel, then ModelviewMatrix will
    take care of adjusting it to be orthogonal. }
  if VectorsParallel(Up, Dir) then
    Up := AnyOrthogonalVector(Dir);
end;

function TAbstractLightNode.CreateLightInstance(
  State: TX3DGraphTraverseState): TLightInstance;
begin
  Result.Node := Self;
  Result.WorldCoordinates := false;
  UpdateLightInstanceState(Result, State);
end;

procedure TAbstractLightNode.UpdateLightInstanceState(
  var LightInstance: TLightInstance;
  State: TX3DGraphTraverseState);
begin
  LightInstance.Transform := State.Transform;
  LightInstance.TransformScale := State.TransformScale;
  UpdateLightInstance(LightInstance);
end;

procedure TAbstractLightNode.UpdateLightInstance(
  var LightInstance: TLightInstance);
begin
  { Nothing to do in this class. }
  Assert(LightInstance.Node = Self);
end;

procedure TAbstractLightNode.MiddleTraverse(StateStack: TX3DGraphTraverseStateStack);
begin
  inherited;
  if Scope = lsLocalVRML1 then
    StateStack.Top.AddLight(CreateLightInstance(StateStack.Top));
end;

function TAbstractLightNode.TransformationChange: TNodeTransformationChange;
begin
  Result := ntcLight;
end;

procedure TAbstractLightNode.DefaultShadowMapSave(Node: TGeneratedShadowMapNode);
begin
  SavedDefaultShadowMap := true;
  SavedDefaultShadowMapUpdate      := Node.FdUpdate      .Value;
  SavedDefaultShadowMapSize        := Node.FdSize        .Value;
  SavedDefaultShadowMapScale       := Node.FdScale       .Value;
  SavedDefaultShadowMapBias        := Node.FdBias        .Value;
  SavedDefaultShadowMapCompareMode := Node.FdCompareMode .Value;
end;

function TAbstractLightNode.DefaultShadowMapLoad(Node: TGeneratedShadowMapNode): boolean;
begin
  Result := SavedDefaultShadowMap;
  if Result then
  begin
    Node.FdUpdate      .Value := SavedDefaultShadowMapUpdate     ;
    Node.FdSize        .Value := SavedDefaultShadowMapSize       ;
    Node.FdScale       .Value := SavedDefaultShadowMapScale      ;
    Node.FdBias        .Value := SavedDefaultShadowMapBias       ;
    Node.FdCompareMode .Value := SavedDefaultShadowMapCompareMode;
  end;
end;

function TAbstractLightNode.Scope: TLightScope;
begin
  if FdGlobal.Value then
    Result := lsGlobal else
    Result := lsLocal;
end;

procedure TAbstractDirectionalLightNode.CreateNode;
begin
  inherited;

  FFdDirection := TSFVec3f.Create(Self, 'direction', Vector3Single(0, 0, -1));
   FdDirection.ChangesAlways := [chLightInstanceProperty, chLightLocationDirection];
  Fields.Add(FFdDirection);

  FFdProjectionRectangle := TSFVec4f.Create(Self, 'projectionRectangle', ZeroVector4Single);
   { We want to set UpdateNeeded := true for all GeneratedShadowMap using
     this light. For now, simply send chVisibleGeometry that will
     force updating all GeneratedShadowMaps. }
   FdProjectionRectangle.ChangesAlways := [chVisibleGeometry];
  Fields.Add(FFdProjectionRectangle);

  FFdProjectionLocation := TSFVec3f.Create(Self, 'projectionLocation', ZeroVector3Single);
   { We want to set UpdateNeeded := true for all GeneratedShadowMap using
     this light. For now, simply send chVisibleGeometry that will
     force updating all GeneratedShadowMaps. }
   FdProjectionLocation.ChangesAlways := [chVisibleGeometry];
  Fields.Add(FFdProjectionLocation);
end;

class function TAbstractDirectionalLightNode.ClassNodeTypeName: string;
begin
  Result := 'DirectionalLight';
end;

procedure TAbstractDirectionalLightNode.UpdateLightInstance(
  var LightInstance: TLightInstance);
begin
  inherited;
  LightInstance.Direction := Normalized(MatrixMultDirection(
    LightInstance.Transform, FdDirection.Value));
end;

function TAbstractDirectionalLightNode.ProjectionMatrix: TMatrix4Single;
var
  N, F: Single;
  R: TVector4Single;
begin
  { If author didn't provide and X3DShadowMaps unit didn't calculate
    values for some fields, then use FallbackProjection* defaults here. }

  N := FdProjectionNear.Value;
  if N = 0 then N := FallbackProjectionNear;

  F := FdProjectionFar.Value;
  if F = 0 then F := FallbackProjectionFar;

  R := FdProjectionRectangle.Value;
  if PerfectlyZeroVector(R) then R := FallbackProjectionRectangle;

  { Beware: order of projectionRectangle
    is different than typical OpenGL and our OrthoProjMatrix params. }
  Result := OrthoProjMatrix(R[0], R[2], R[1], R[3], N, F);
end;

function TAbstractDirectionalLightNode.ModelviewMatrix: TMatrix4Single;
var
  Pos, Dir, Up: TVector3Single;
begin
  GetView(Pos, Dir, Up);
  Result := LookDirMatrix(Pos, Dir, Up);
end;

function TAbstractDirectionalLightNode.ModelviewRotationMatrix: TMatrix4Single;
var
  Pos, Dir, Up: TVector3Single;
begin
  GetView(Pos, Dir, Up);
  Result := LookDirMatrix(ZeroVector3Single, Dir, Up);
end;

function TAbstractDirectionalLightNode.ProjectionLocationLocal: TVector3Single;
begin
  Result := FdProjectionLocation.Value;
end;

function TAbstractDirectionalLightNode.ProjectionDirectionLocal: TVector3Single;
begin
  Result := FdDirection.Value;
end;

procedure TAbstractDirectionalLightNode.Box3DDistances(const Box: TBox3D;
  out MinDistance, MaxDistance: Single);
begin
  Box.DirectionDistances(ProjectionLocation, ProjectionDirection, MinDistance, MaxDistance);
end;

function TAbstractDirectionalLightNode.Position: TVector4Single;
begin
  Result := Vector4Single(-FdDirection.Value, 0);
end;

function TAbstractDirectionalLightNode.GetDirection: TVector3Single;
begin
  Result := FdDirection.Value;
end;

procedure TAbstractDirectionalLightNode.SetDirection(const Value: TVector3Single);
begin
  FdDirection.Send(Value);
end;

function TAbstractDirectionalLightNode.GetProjectionRectangle: TVector4Single;
begin
  Result := FdProjectionRectangle.Value;
end;

procedure TAbstractDirectionalLightNode.SetProjectionRectangle(const Value: TVector4Single);
begin
  FdProjectionRectangle.Send(Value);
end;

function TAbstractDirectionalLightNode.GetProjectionLocation: TVector3Single;
begin
  Result := FdProjectionLocation.Value;
end;

procedure TAbstractDirectionalLightNode.SetProjectionLocation(const Value: TVector3Single);
begin
  FdProjectionLocation.Send(Value);
end;

procedure TAbstractPositionalLightNode.CreateNode;
begin
  inherited;

  FFdLocation := TSFVec3f.Create(Self, 'location', Vector3Single(0, 0, 0));
   FdLocation.ChangesAlways := [chLightInstanceProperty, chLightLocationDirection];
  Fields.Add(FFdLocation);
  { X3D specification comment: (-Inf,Inf) }

  FFdAttenuation := TSFVec3f.Create(Self, 'attenuation', Vector3Single(1, 0, 0));
   FdAttenuation.ChangesAlways := [chVisibleNonGeometry];
  Fields.Add(FFdAttenuation);
  { X3D specification comment: [0,Inf) }

  FFdRadius := TSFFloat.Create(Self, 'radius', 100);
   FdRadius.ChangesAlways := [chLightInstanceProperty];
  Fields.Add(FFdRadius);
  { X3D specification comment: [0,Inf) }
end;

function TAbstractPositionalLightNode.DistanceNeededForAttenuation: boolean;
begin
  Result := (FdAttenuation.Value[1] <> 0) or
            (FdAttenuation.Value[2] <> 0);
end;

function TAbstractPositionalLightNode.HasAttenuation: boolean;
begin
  Result := ((FdAttenuation.Value[0] <> 1) and
             (FdAttenuation.Value[0] <> 0)) or
            (FdAttenuation.Value[1] <> 0) or
            (FdAttenuation.Value[2] <> 0);
end;

function TAbstractPositionalLightNode.HasRadius: boolean;
begin
  Result := true;
end;

procedure TAbstractPositionalLightNode.UpdateLightInstance(
  var LightInstance: TLightInstance);
begin
  inherited;

  LightInstance.Location := MatrixMultPoint(LightInstance.Transform,
    FdLocation.Value);

  { TODO: For non-uniform scale, this will simply use average scale.
    This is not fully correct, VRML spec doesn't clarify this
    but I guess that the intention was that the non-uniform scale will
    make radius non-uniform, i.e. light volume will not be a regular sphere
    but some 3d ellipsoid. Unfortunately this would require quite more
    work, AddGlobalLights (in TCastleSceneCore) would then have to check for collision
    between
      sphere transformed by matrix Transform
    and
      bounding box
    which I don't know how to do *easily*... }
  LightInstance.Radius := FdRadius.Value * LightInstance.TransformScale;
end;

{$define ATTENUATION_IMPLEMENTATION:=
begin
 (* moglibysmy tu nie badac czy DistanceNeededForAttenuation i zawsze
    robic wersje pelna (bo przeciez
      FdAttenuation.Value[1] * DistanceToLight +
      FdAttenuation.Value[2] * Sqr(DistanceToLight)
    i tak bedzie = 0 gdy FdAttenuation.Value[1] = FdAttenuation.Value[2] = 0.
    Ale wydaje mi sie ze tak jest szybciej - testowanie kosztuje nas
    troszke czasu ale mozemy sobie w ten sposob ocalic 2 x mnozenie i dodawanie. *)

 (* we check whether attenuation = (0, 0, 0). VRML 97 spec says that specifying
    (0, 0, 0) should be equal to specifying (1, 0, 0). (well, we avoid
    division by zero possibility this way so it's quite sensible, even
    if it wastes some time) *)
 if (FdAttenuation.Value[0] = 0) and
    (FdAttenuation.Value[1] = 0) and
    (FdAttenuation.Value[2] = 0) then result := 1;

 if DistanceNeededForAttenuation then
  result := 1/ CastleUtils.max(FdAttenuation.Value[0] +
                   FdAttenuation.Value[1] * DistanceToLight +
                   FdAttenuation.Value[2] * Sqr(DistanceToLight), Single(1.0)) else
  result := 1/ CastleUtils.max(FdAttenuation.Value[0], Single(1.0));
end;}

function TAbstractPositionalLightNode.CalculateAttenuation(const DistanceToLight: Single): Single;
ATTENUATION_IMPLEMENTATION

function TAbstractPositionalLightNode.CalculateAttenuation(const DistanceToLight: Double): Double;
ATTENUATION_IMPLEMENTATION

function TAbstractPositionalLightNode.Position: TVector4Single;
begin
  Result := Vector4Single(FdLocation.Value, 1);
end;

function TAbstractPositionalLightNode.GetAttenuation: TVector3Single;
begin
  Result := FdAttenuation.Value;
end;

procedure TAbstractPositionalLightNode.SetAttenuation(const Value: TVector3Single);
begin
  FdAttenuation.Send(Value);
end;

function TAbstractPositionalLightNode.GetLocation: TVector3Single;
begin
  Result := FdLocation.Value;
end;

procedure TAbstractPositionalLightNode.SetLocation(const Value: TVector3Single);
begin
  FdLocation.Send(Value);
end;

function TAbstractPositionalLightNode.GetRadius: Single;
begin
  Result := FdRadius.Value;
end;

procedure TAbstractPositionalLightNode.SetRadius(const Value: Single);
begin
  FdRadius.Send(Value);
end;

procedure TAbstractPointLightNode.CreateNode;
begin
  inherited;
  { no new fields - this is just TAbstractPositionalLightNode }
end;

class function TAbstractPointLightNode.ClassNodeTypeName: string;
begin
  Result := 'PointLight';
end;

function TAbstractPointLightNode.ProjectionLocationLocal: TVector3Single;
begin
  Result := FdLocation.Value;
end;

procedure TAbstractPointLightNode.Box3DDistances(const Box: TBox3D;
  out MinDistance, MaxDistance: Single);
begin
  Box.PointDistances(ProjectionLocation, MinDistance, MaxDistance);
end;

procedure TDirectionalLightNode.CreateNode;
begin
  inherited;

  FdGlobal.Value := false;

  DefaultContainerField := 'children';
end;

class function TDirectionalLightNode.URNMatching(const URN: string): boolean;
begin
  Result := (inherited URNMatching(URN)) or
    (URN = URNVRML97Nodes + ClassNodeTypeName) or
    (URN = URNX3DNodes + ClassNodeTypeName);
end;

class function TDirectionalLightNode.ForVRMLVersion(const Version: TX3DVersion): boolean;
begin
  Result := Version.Major >= 2;
end;

procedure TPointLightNode.CreateNode;
begin
  inherited;

  FdGlobal.Value := true;

  DefaultContainerField := 'children';
end;

class function TPointLightNode.URNMatching(const URN: string): boolean;
begin
  Result := (inherited URNMatching(URN)) or
    (URN = URNVRML97Nodes + ClassNodeTypeName) or
    (URN = URNX3DNodes + ClassNodeTypeName);
end;

class function TPointLightNode.ForVRMLVersion(const Version: TX3DVersion): boolean;
begin
  Result := Version.Major >= 2;
end;

procedure TSpotLightNode.CreateNode;
begin
  inherited;

  FFdBeamWidth := TSFFloat.Create(Self, 'beamWidth', Pi / 2);
   FdBeamWidth.ChangesAlways := [chVisibleNonGeometry];
  Fields.Add(FFdBeamWidth);
  { X3D specification comment: (0,Pi/2] }

  FFdCutOffAngle := TSFFloat.Create(Self, 'cutOffAngle', Pi / 4);
   FdCutOffAngle.ChangesAlways := [chVisibleNonGeometry];
  Fields.Add(FFdCutOffAngle);
  { X3D specification comment: (0,Pi/2] }

  FFdDirection := TSFVec3f.Create(Self, 'direction', Vector3Single(0, 0, -1));
   FdDirection.ChangesAlways := [chLightInstanceProperty, chLightLocationDirection];
  Fields.Add(FFdDirection);
  { X3D specification comment: (-Inf,Inf) }

  FdGlobal.Value := true;

  FFdProjectionAngle := TSFFloat.Create(Self, 'projectionAngle', 0);
   { We want to set UpdateNeeded := true for all GeneratedShadowMap using
     this light. For now, simply send chVisibleGeometry that will
     force updating all GeneratedShadowMaps. }
   FdProjectionAngle.ChangesAlways := [chVisibleGeometry];
  Fields.Add(FFdProjectionAngle);

  DefaultContainerField := 'children';
end;

class function TSpotLightNode.ClassNodeTypeName: string;
begin
  Result := 'SpotLight';
end;

class function TSpotLightNode.URNMatching(const URN: string): boolean;
begin
  Result := (inherited URNMatching(URN)) or
    (URN = URNVRML97Nodes + ClassNodeTypeName) or
    (URN = URNX3DNodes + ClassNodeTypeName);
end;

class function TSpotLightNode.ForVRMLVersion(const Version: TX3DVersion): boolean;
begin
  Result := Version.Major >= 2;
end;

procedure TSpotLightNode.UpdateLightInstance(
  var LightInstance: TLightInstance);
begin
  inherited;
  LightInstance.Direction := Normalized(MatrixMultDirection(
    LightInstance.Transform, FdDirection.Value));
end;

function TSpotLightNode.ProjectionMatrix: TMatrix4Single;
var
  Angle, N, F: Single;
begin
  { If author didn't provide and X3DShadowMaps unit didn't calculate
    values for some fields, then use FallbackProjection* defaults here. }

  if FdprojectionAngle.Value <= 0 then
    Angle := 2 * FdCutOffAngle.Value else
    Angle := FdProjectionAngle.Value;

  N := FdProjectionNear.Value;
  if N = 0 then N := FallbackProjectionNear;

  F := FdProjectionFar.Value;
  if F = 0 then F := FallbackProjectionFar;

  Result := PerspectiveProjMatrixRad(Angle, 1, N, F);
end;

function TSpotLightNode.ModelviewMatrix: TMatrix4Single;
var
  Pos, Dir, Up: TVector3Single;
begin
  GetView(Pos, Dir, Up);
  Result := LookDirMatrix(Pos, Dir, Up);
end;

function TSpotLightNode.ModelviewRotationMatrix: TMatrix4Single;
var
  Pos, Dir, Up: TVector3Single;
begin
  GetView(Pos, Dir, Up);
  Result := LookDirMatrix(ZeroVector3Single, Dir, Up);
end;

function TSpotLightNode.ProjectionLocationLocal: TVector3Single;
begin
  Result := FdLocation.Value;
end;

function TSpotLightNode.ProjectionDirectionLocal: TVector3Single;
begin
  Result := FdDirection.Value;
end;

procedure TSpotLightNode.Box3DDistances(const Box: TBox3D;
  out MinDistance, MaxDistance: Single);
begin
  { TODO: MaxDistance should be a little larger, as spot light rays
    are not parallel. }
  Box.DirectionDistances(ProjectionLocation, ProjectionDirection, MinDistance, MaxDistance);
end;

function TSpotLightNode.SpotCutoffDeg: Single;
begin
  Result := Min(90, RadToDeg(FdCutOffAngle.Value));
end;

function TSpotLightNode.SpotCosCutoff: Single;
begin
  Result := Cos(FdCutOffAngle.Value);
end;

function TSpotLightNode.SpotExponentApproximate: Single;
begin
  { There is no way to exactly translate beamWidth to OpenGL GL_SPOT_EXPONENT.
    GL_SPOT_EXPONENT is an exponent for cosinus.
    beamWidth says to use constant intensity within beamWidth angle,
    and linear drop off to cutOffAngle.
    See [http://castle-engine.sourceforge.net/vrml_engine_doc/output/xsl/html/chapter.opengl_rendering.html#section.vrml_lights]
    for more discussion. }

  if FdBeamWidth.Value >= FdCutOffAngle.Value then
    Result := 0 else
    Result := Clamped(0.5 / Max(FdBeamWidth.Value, 0.0001), 0.0, 128.0);
end;

procedure RegisterLightingNodes;
begin
  NodesManager.RegisterNodeClasses([
    TDirectionalLightNode,
    TPointLightNode,
    TSpotLightNode
  ]);
end;

{$endif read_implementation}