/usr/src/castle-game-engine-5.2.0/x3d/opengl/castlesceneinternalocclusion.pas is in castle-game-engine-src 5.2.0-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 | {
Copyright 2003-2014 Michalis Kamburelis.
This file is part of "Castle Game Engine".
"Castle Game Engine" is free software; see the file COPYING.txt,
included in this distribution, for details about the copyright.
"Castle Game Engine" is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
----------------------------------------------------------------------------
}
{ Rendering with occlusion query.
@exclude Internal unit for CastleScene. }
unit CastleSceneInternalOcclusion;
{$I castleconf.inc}
{$modeswitch nestedprocvars}{$H+}
interface
uses CastleSceneCore, CastleSceneInternalShape, Castle3D, CastleFrustum;
type
TShapeProcedure = procedure (Shape: TGLShape) is nested;
THierarchicalOcclusionQueryRenderer = class
private
FrameId: Cardinal;
Scene: TCastleSceneCore;
public
constructor Create(const AScene: TCastleSceneCore);
procedure Render(const RenderShape: TShapeProcedure;
const Frustum: TFrustum; const Params: TRenderParams);
function WasLastVisible(const Shape: TGLShape): boolean;
end;
var
OcclusionBoxState: boolean;
procedure OcclusionBoxStateBegin;
procedure OcclusionBoxStateEnd;
procedure SimpleOcclusionQueryRender(const Shape: TGLShape;
const RenderShape: TShapeProcedure; const Params: TRenderParams);
implementation
uses SysUtils, CastleClassUtils, CastleShapeOctree, CastleBoxes,
CastleGLUtils, CastleGL;
{$ifndef OpenGLES} // TODO-es this whole unit
{ TOcclusionQuery ------------------------------------------------------------ }
type
TOcclusionQuery = class
public
constructor Create;
destructor Destroy; override;
public
Id: TGLuint;
Node: TShapeOctreeNode;
function Available: LongBool;
function GetResult: TGLuint;
end;
constructor TOcclusionQuery.Create;
begin
inherited;
glGenQueriesARB(1, @Id);
end;
destructor TOcclusionQuery.Destroy;
begin
glDeleteQueriesARB(1, @Id);
inherited;
end;
function TOcclusionQuery.Available: LongBool;
begin
Assert(SizeOf(LongBool) = SizeOf(TGLuint));
glGetQueryObjectuivARB(Id, GL_QUERY_RESULT_AVAILABLE_ARB, @Result);
end;
function TOcclusionQuery.GetResult: TGLuint;
begin
glGetQueryObjectuivARB(Id, GL_QUERY_RESULT_ARB, @Result);
end;
{$endif}
{ THierarchicalOcclusionQueryRenderer ---------------------------------------- }
constructor THierarchicalOcclusionQueryRenderer.Create(
const AScene: TCastleSceneCore);
begin
inherited Create;
Scene := AScene;
end;
procedure THierarchicalOcclusionQueryRenderer.Render(
const RenderShape: TShapeProcedure;
const Frustum: TFrustum; const Params: TRenderParams);
{$ifndef OpenGLES}
var
{ Stack of TShapeOctreeNode.
Although queue would also work not so bad, stack is better.
The idea is that it should try to keep front-to-back order,
assuming that Node.PushChildren* keeps this order.
Stack gives more chance to process front shapes first. }
TraversalStack: TCastleObjectStack;
procedure TraverseNode(Node: TShapeOctreeNode);
var
I: Integer;
Shape: TGLShape;
begin
if Node.IsLeaf then
begin
{ Render all shapes within this leaf, taking care to render
shape only once within this frame (FrameId is useful here). }
for I := 0 to Node.ItemsIndices.Count - 1 do
begin
Shape := TGLShape(Scene.OctreeRendering.ShapesList[Node.ItemsIndices.L[I]]);
if Shape.RenderedFrameId <> FrameId then
begin
RenderShape(Shape);
Shape.RenderedFrameId := FrameId;
end;
end;
end else
begin
{ Push Node children onto TraversalStack.
We want to Pop them front-first, to (since this is a stack)
we want to push back first. }
if Scene.CameraViewKnown then
Node.PushChildrenBackToFront(TraversalStack, Scene.CameraPosition) else
Node.PushChildren(TraversalStack);
end;
end;
procedure PullUpVisibility(Node: TShapeOctreeNode);
begin
while not Node.Visible do
begin
Node.Visible := true;
Node := Node.ParentNode;
if Node = nil then Break;
end;
end;
procedure RenderLeafNodeVolume(Node: TShapeOctreeNode);
var
I: Integer;
Shape: TGLShape;
Box: TBox3D;
begin
OcclusionBoxStateBegin;
{ How to render bounding volume of leaf for occlusion query?
- Simple version is just to render Node.Box. But this may be
much greater than actual box of shapes inside, Box of our
octree node is not adjusted to be tight.
- Another version is to render boxes of all shapes within this leaf.
This is much tighter than Node.Box, and results in much less
shapes quialified as visible. (See e.g. bzwgen city view behind
building 1 when trying to walk towards the city center.)
Unfortunately, this produces really a lot of boxes, so the
overhead of drawing glDrawBox3DSimple becomes large then.
- Compromise: calculate tight bounding box here, and use it.
Works best: number of both visible shapes and cull boxes
is small.
Note that we can render here boxes of only non-rendered shapes,
that's Ok and may actually speed up. }
Box := EmptyBox3D;
for I := 0 to Node.ItemsIndices.Count - 1 do
begin
Shape := TGLShape(Scene.OctreeRendering.ShapesList[Node.ItemsIndices.L[I]]);
if Shape.RenderedFrameId <> FrameId then
Box.Add(Shape.BoundingBox);
end;
glDrawBox3DSimple(Box);
if Params.Pass = 0 then Inc(Params.Statistics.BoxesOcclusionQueriedCount);
end;
const
VisibilityThreshold = 0;
{ $define VISIBILITY_KEEP_FRAMES}
{$ifdef VISIBILITY_KEEP_FRAMES}
VisibilityKeepFrames = 10;
{$endif}
var
{ queue of TOcclusionQuery }
QueryQueue: TCastleObjectQueue;
Q: TOcclusionQuery;
Node: TShapeOctreeNode;
WasVisible, LeafOrWasInvisible: boolean;
begin
{$include norqcheckbegin.inc}
Inc(FrameId);
{$include norqcheckend.inc}
TraversalStack := TCastleObjectStack.Create;
TraversalStack.Capacity := Scene.OctreeRendering.ShapesList.Count;
QueryQueue := TCastleObjectQueue.Create;
QueryQueue.Capacity := Scene.OctreeRendering.ShapesList.Count;
try
TraversalStack.Push(Scene.OctreeRendering.TreeRoot);
repeat
if (QueryQueue.Count <> 0) and
( (TOcclusionQuery(QueryQueue.Peek).Available) or
(TraversalStack.Count = 0) ) then
begin
Q := TOcclusionQuery(QueryQueue.Pop);
if Q.GetResult > VisibilityThreshold then
begin
PullUpVisibility(Q.Node);
TraverseNode(Q.Node);
end;
FreeAndNil(Q);
end;
if TraversalStack.Count <> 0 then
begin
Node := TShapeOctreeNode(TraversalStack.Pop);
if Node.FrustumCollisionPossible(Frustum) then
begin
{$ifdef VISIBILITY_KEEP_FRAMES}
{ There was a resigned idea below (maybe useful later) to do
"or (Node.Depth >= 5)", to assume visible = true below some
octree depth. }
if (Node.Visible and (Node.LastVisitedFrameId >= FrameId - VisibilityKeepFrames)) then
begin
{ Visible somewhere during VisibilityKeepFrames.
Just assume it's still visible.
(This is the optimization described in 6.6.4
"Conservative Visibility Testing") }
TraverseNode(Node);
end else
{$endif VISIBILITY_KEEP_FRAMES}
begin
WasVisible := Node.Visible and (Node.LastVisitedFrameId = FrameId - 1);
LeafOrWasInvisible := (not WasVisible) or Node.IsLeaf;
Node.Visible := false;
Node.LastVisitedFrameId := FrameId;
{ Original logic goes like:
if LeafOrWasInvisible then
Add query with Node.Box;
if WasVisible then
TraverseNode(Node);
But this is not optimal: it would always query using bounding
boxes. Even for the case when we have a visible leaf,
then the above version would query using box of this leaf
and then render this leaf.
But in this case we can query using actual geometry.
So a modification is to do
if LeafOrWasInvisible then
begin
if Leaf and WasVisible then
Add query for Node and render the leaf else
Add query with Node.Box;
end else
if WasVisible then
TraverseNode(Node);
This exhausts all possibilities, since if
LeafOrWasInvisible and WasVisible then only leaf nodes
could satisfy this.
There's additional note about this:
rendering inside TraverseNode may render
only part of the leaf's items (or even none at all).
This is needed (although in original paper they write
about rendering single shape there, unline my many-shapes-in-leaf
approach, but still they have to safeguard against rendering
the same node many times, since visible leaf confirmed to
be visible may be passed twice to Render).
But this means that object may be classified as invisible
(because it didn't have any unrendered shapes), while in fact
it's visible. That's not a problem, since we check our
query in the next frame, and the object will be found
then visible again (or again invisible if other leafs
will render it's shapes, but then it's not a problem). }
if LeafOrWasInvisible then
begin
Q := TOcclusionQuery.Create;
Q.Node := Node;
glBeginQueryARB(GL_SAMPLES_PASSED_ARB, Q.Id);
if Node.IsLeaf and WasVisible then
TraverseNode(Node) else
if Node.IsLeaf then
{ Leaf nodes have optimized version of rendering their
bounding volume for occlusion query. }
RenderLeafNodeVolume(Node) else
begin
OcclusionBoxStateBegin;
glDrawBox3DSimple(Node.Box);
if Params.Pass = 0 then Inc(Params.Statistics.BoxesOcclusionQueriedCount);
end;
glEndQueryARB(GL_SAMPLES_PASSED_ARB);
QueryQueue.Push(Q);
end else
if WasVisible then
TraverseNode(Node);
end;
end;
end;
until (TraversalStack.Count = 0) and (QueryQueue.Count = 0);
finally
FreeAndNil(TraversalStack);
FreeAndNil(QueryQueue);
end;
{$else}
begin
{$endif}
end;
function THierarchicalOcclusionQueryRenderer.WasLastVisible(const Shape: TGLShape): boolean;
begin
Result := Shape.RenderedFrameId = FrameId
end;
{ routines ------------------------------------------------------------------- }
procedure OcclusionBoxStateBegin;
begin
if not OcclusionBoxState then
begin
{$ifndef OpenGLES}
glPushAttrib(GL_COLOR_BUFFER_BIT or GL_DEPTH_BUFFER_BIT or
GL_ENABLE_BIT or GL_LIGHTING_BIT);
glColorMask(GL_FALSE, GL_FALSE, GL_FALSE, GL_FALSE); { saved by GL_COLOR_BUFFER_BIT }
glDepthMask(GL_FALSE); { saved by GL_DEPTH_BUFFER_BIT }
{ A lot of state should be disabled. Remember that this is done
in the middle of TGLRenderer rendering, between
RenderBegin/End, and TGLRenderer doesn't need to
restore state after each shape render. So e.g. texturing
and alpha test may be enabled, which could lead to very
strange effects (box would be rendered with random texel,
possibly alpha tested and rejected...).
Also, some state should be disabled just to speed up
rendering. E.g. lighting is totally not needed here. }
glDisable(GL_LIGHTING); { saved by GL_ENABLE_BIT }
glDisable(GL_CULL_FACE); { saved by GL_ENABLE_BIT }
glDisable(GL_COLOR_MATERIAL); { saved by GL_ENABLE_BIT }
glDisable(GL_ALPHA_TEST); { saved by GL_ENABLE_BIT }
glDisable(GL_FOG); { saved by GL_ENABLE_BIT }
GLEnableTexture(etNone); { saved by GL_ENABLE_BIT }
glShadeModel(GL_FLAT); { saved by GL_LIGHTING_BIT }
glEnableClientState(GL_VERTEX_ARRAY);
{$endif}
OcclusionBoxState := true;
end;
end;
procedure OcclusionBoxStateEnd;
begin
if OcclusionBoxState then
begin
{$ifndef OpenGLES}
glDisableClientState(GL_VERTEX_ARRAY);
glPopAttrib;
{$endif}
OcclusionBoxState := false;
end;
end;
procedure SimpleOcclusionQueryRender(const Shape: TGLShape;
const RenderShape: TShapeProcedure; const Params: TRenderParams);
{$ifndef OpenGLES}
var
SampleCount: TGLuint;
begin
Assert(Shape.OcclusionQueryId <> 0);
if Shape.OcclusionQueryAsked then
glGetQueryObjectuivARB(Shape.OcclusionQueryId, GL_QUERY_RESULT_ARB,
@SampleCount) else
SampleCount := 1; { if not asked, assume it's visible }
{ Do not do occlusion query (although still use results from previous
query) if we're within stencil test (like in InShadow = false pass
of shadow volumes). This would incorrectly mark some shapes
as non-visible (just because they don't pass stencil test on any pixel),
while in fact they should be visible in the very next
(with InShadow = true) render pass. }
if Params.StencilTest = 0 then
glBeginQueryARB(GL_SAMPLES_PASSED_ARB, Shape.OcclusionQueryId);
if SampleCount > 0 then
begin
RenderShape(Shape);
end else
begin
{ Object was not visible in the last frame.
In this frame, only render it's bounding box, to test
occlusion query. This is the speedup of using occlusion query:
we render only bbox. }
OcclusionBoxStateBegin;
glDrawBox3DSimple(Shape.BoundingBox);
if Params.Pass = 0 then Inc(Params.Statistics.BoxesOcclusionQueriedCount);
end;
if Params.StencilTest = 0 then
begin
glEndQueryARB(GL_SAMPLES_PASSED_ARB);
Shape.OcclusionQueryAsked := true;
end;
{$else}
begin
{$endif}
end;
end.
|