/usr/src/castle-game-engine-5.2.0/x3d/opengl/castlescene.pas is in castle-game-engine-src 5.2.0-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 | {
Copyright 2003-2014 Michalis Kamburelis.
This file is part of "Castle Game Engine".
"Castle Game Engine" is free software; see the file COPYING.txt,
included in this distribution, for details about the copyright.
"Castle Game Engine" is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
----------------------------------------------------------------------------
}
{ VRML/X3D complete scene handling and OpenGL rendering (TCastleScene). }
unit CastleScene;
{$I castleconf.inc}
{$modeswitch nestedprocvars}{$H+}
interface
uses SysUtils, Classes, CastleVectors, CastleBoxes, X3DNodes, CastleClassUtils,
CastleUtils, CastleSceneCore, CastleRenderer, CastleGL, CastleBackground,
CastleGLUtils, CastleShapeOctree, CastleGLShadowVolumes, X3DFields, CastleTriangles,
CastleShapes, CastleFrustum, Castle3D, CastleGLShaders, FGL,
CastleGenericLists, CastleRectangles,
CastleSceneInternalShape, CastleSceneInternalOcclusion, CastleSceneInternalBlending;
{$define read_interface}
type
TSceneRenderingAttributes = class;
TCastleSceneList = class;
{ Values for TSceneRenderingAttributes.WireframeEffect.
Generally, two other attributes may affect the way wireframe is rendered:
TSceneRenderingAttributes.WireframeColor and
TSceneRenderingAttributes.LineWidth, quite self-explanatory. }
TWireframeEffect = (
{ Default setting, model polygons are simply passed to OpenGL.
Whether this results in filled or wireframe look, depends on OpenGL
glPolygonMode setting, filled by default. }
weNormal,
{ The model is rendered in wireframe mode.
LineWidth is used as wireframe line width (regardless of
TSceneRenderingAttributes.Mode).
Depending on TSceneRenderingAttributes.Mode value:
@unorderedList(
@item(If <> rmFull then WireframeColor is used as wireframe
line color.)
@item(If rmFull, then lines are colored
and potentially lighted and textured just like their corresponding
triangles would be colored. So you can control lighting using
Lighting, UseSceneLights etc. attributes, and you
can control texturing by EnableTextures attribute.)
) }
weWireframeOnly,
{ The model is rendered as normal, with it's wireframe version visible
on top. This is most often called "solid wireframe", since the intention
is too see wireframe version of the model but still render shapes
solid (e.g. filled polygons with depth test).
WireframeColor and LineWidth are used as wireframe
line color/width (regardless of current scene
@link(TRenderingAttributes.Mode Attributes.Mode) value).
This usually gives best results when
@link(TRenderingAttributes.Mode Attributes.Mode) = rmPureGeometry.
Then current glColor sets the color of the solid model
(and, like said before, WireframeColor sets wireframe color). }
weSolidWireframe,
{ The model is rendered as normal, with silhouette outlined around it.
This works quite like weSolidWireframe, except that weSolidWireframe
makes the wireframe mesh slightly in front the model, while weSilhouette
makes the wireframe mesh slightly at the back of the model. This way
only the silhouette is visible from the wireframe rendering.
WireframeColor and LineWidth are used as silhouette
line color/width (regardless of current scene
@link(TRenderingAttributes.Mode Attributes.Mode) value).
This is sometimes sensible to use with
@link(TRenderingAttributes.Mode Attributes.Mode) = rmPureGeometry.
Then current glColor sets the color of the solid model
(and, like said before, WireframeColor sets wireframe color). }
weSilhouette);
TBeforeShapeRenderProc = procedure (Shape: TShape) of object;
TRenderingAttributesEvent = procedure (Attributes: TSceneRenderingAttributes) of object;
TBlendingSort = (bsNone, bs2D, bs3D);
TSceneRenderingAttributes = class(TRenderingAttributes)
private
{ Scenes that use Renderer with this TSceneRenderingAttributes instance. }
FScenes: TCastleSceneList;
FBlending: boolean;
FBlendingSourceFactor: TGLenum;
FBlendingDestinationFactor: TGLenum;
FBlendingSort: TBlendingSort;
FControlBlending: boolean;
FWireframeColor: TVector3Single;
FWireframeEffect: TWireframeEffect;
FUseOcclusionQuery: boolean;
FUseHierarchicalOcclusionQuery: boolean;
FDebugHierOcclusionQueryResults: boolean;
FSolidWireframeScale: Single;
FSolidWireframeBias: Single;
FSilhouetteScale: Single;
FSilhouetteBias: Single;
protected
procedure ReleaseCachedResources; override;
procedure SetBlending(const Value: boolean); virtual;
procedure SetBlendingSourceFactor(const Value: TGLenum); virtual;
procedure SetBlendingDestinationFactor(const Value: TGLenum); virtual;
procedure SetBlendingSort(const Value: TBlendingSort); virtual;
procedure SetControlBlending(const Value: boolean); virtual;
procedure SetUseOcclusionQuery(const Value: boolean); virtual;
procedure SetShaders(const Value: TShadersRendering); override;
public
const
{ }
DefaultBlendingSourceFactor = GL_SRC_ALPHA;
{ Default value of Attributes.BlendingDestinationFactor.
See TSceneRenderingAttributes.BlendingDestinationFactor.
Using ONE_MINUS_SRC_ALPHA is the standard value for 3D graphic stuff,
often producing best results. However, it causes troubles when
multiple transparent shapes are visible on the same screen pixel.
For closed convex 3D objects, using backface culling
(solid = TRUE for geometry) helps. For multiple transparent shapes,
sorting the transparent shapes helps,
see TSceneRenderingAttributes.BlendingSort.
Sometimes, no solution works for all camera angles.
Another disadvantage of ONE_MINUS_SRC_ALPHA may be that
the color of opaque shapes disappears too quickly from
resulting image (since GL_ONE_MINUS_SRC_ALPHA scales it down).
So the image may be darker than you like.
You can instead consider using GL_ONE, that doesn't require sorting
and never has problems with multiple transparent shapes.
On the other hand, it only adds to the color,
often making too bright results. }
DefaultBlendingDestinationFactor = GL_ONE_MINUS_SRC_ALPHA;
{ }
DefaultBlendingSort = bsNone;
DefaultWireframeColor: TVector3Single = (0, 0, 0);
DefaultSolidWireframeScale = 1;
DefaultSolidWireframeBias = 1;
DefaultSilhouetteScale = 5;
DefaultSilhouetteBias = 5;
var
{ Adjust attributes of all loaded resources. }
OnCreate: TRenderingAttributesEvent; static;
constructor Create; override;
destructor Destroy; override;
procedure Assign(Source: TPersistent); override;
{ Render partially transparent objects.
More precisely: if this is @true, all shapes with
transparent materials or textures with non-trivial (not only yes/no)
alpha channel will be rendered using OpenGL blending
(with depth test off, like they should for OpenGL).
If this attribute is @false, everything will be rendered as opaque. }
property Blending: boolean
read FBlending write SetBlending default true;
{ Blending function parameters, used when @link(Blending).
See OpenGL documentation of glBlendFunc for possible values here.
See also DefaultBlendingDestinationFactor for comments about
GL_ONE and GL_ONE_MINUS_SRC_ALPHA.
Note that this is only a default, VRML/X3D model can override this
for specific shapes by using our extension BlendMode node.
See [http://castle-engine.sourceforge.net/x3d_extensions.php#section_ext_blending].
Note that BlendingSort may be overridden is a specific 3D models
by using NavigationInfo node with blendingSort field,
see TNavigationInfoNode.BlendingSort.
@groupBegin }
property BlendingSourceFactor: TGLenum
read FBlendingSourceFactor write SetBlendingSourceFactor
default DefaultBlendingSourceFactor;
property BlendingDestinationFactor: TGLenum
read FBlendingDestinationFactor write SetBlendingDestinationFactor
default DefaultBlendingDestinationFactor;
property BlendingSort: TBlendingSort
read FBlendingSort write SetBlendingSort
default DefaultBlendingSort;
{ @groupEnd }
{ Setting this to @false disables any modification of OpenGL
blending (and depth mask) state by TCastleScene.
This makes every other @link(Blending) setting ignored,
and is useful only if you set your own OpenGL blending parameters
when rendering this scene. }
property ControlBlending: boolean
read FControlBlending write SetControlBlending default true;
{ You can use this to turn on some effects related to rendering model
in special modes.
When this is weNormal (default), nothing special is
done, which means that model polygons are simply passed to OpenGL.
Whether this results in filled or wireframe, depends on OpenGL
glPolygonMode setting, filled by default.
How the wireframe effects work when Mode = rmDepth is undefined now.
Just don't use Mode = rmDepth if you're unsure.
See description of TWireframeEffect for what other modes do. }
property WireframeEffect: TWireframeEffect
read FWireframeEffect write FWireframeEffect default weNormal;
property SolidWireframeScale: Single read FSolidWireframeScale write FSolidWireframeScale default DefaultSolidWireframeScale;
property SolidWireframeBias: Single read FSolidWireframeBias write FSolidWireframeBias default DefaultSolidWireframeBias;
property SilhouetteScale: Single read FSilhouetteScale write FSilhouetteScale default DefaultSilhouetteScale;
property SilhouetteBias: Single read FSilhouetteBias write FSilhouetteBias default DefaultSilhouetteBias;
{ Wireframe color, used with some WireframeEffect values.
Default value is DefaultWireframeColor. }
property WireframeColor: TVector3Single
read FWireframeColor write FWireframeColor;
{ Should we use ARB_occlusion_query (if available) to avoid rendering
shapes that didn't pass occlusion test in previous frame.
Ignored if GPU doesn't support ARB_occlusion_query.
@true may give you a large speedup in some scenes.
OTOH, a lag of one frame may happen between an object should
be rendered and it actually appears.
When you render more than once the same instance of TCastleScene scene,
you should not activate it (as the occlusion query doesn't make sense
if each following render of the scene takes place at totally different
translation). Also, when rendering something more than just
one TCastleScene scene (maybe many times the same TCastleScene instance,
maybe many different TCastleScene instances, maybe some other
3D objects) you should try to sort rendering order
from the most to the least possible occluder (otherwise occlusion
query will not be as efficient at culling).
This is ignored if UseHierarchicalOcclusionQuery. }
property UseOcclusionQuery: boolean
read FUseOcclusionQuery write SetUseOcclusionQuery default false;
{ Should we use ARB_occlusion_query (if available) with
a hierarchical algorithm to avoid rendering
shapes that didn't pass occlusion test in previous frame.
Ignored if GPU doesn't support ARB_occlusion_query.
@true may give you a large speedup in some scenes.
This method doesn't impose any lag of one frame (like UseOcclusionQuery).
This requires the usage of TCastleSceneCore.OctreeRendering.
Also, it always does frustum culling (like fcBox for now),
regardless of TCastleScene.OctreeFrustumCulling setting.
The algorithm used underneath is "Coherent Hierarchical Culling",
described in detail in "GPU Gems 2",
Chapter 6: "Hardware Occlusion Queries Made Useful",
by Michael Wimmer and Jiri Bittner. Online on
[http://http.developer.nvidia.com/GPUGems2/gpugems2_chapter06.html]. }
property UseHierarchicalOcclusionQuery: boolean
read FUseHierarchicalOcclusionQuery
write FUseHierarchicalOcclusionQuery default false;
{ View only the shapes that were detected as visible by occlusion query
in last Render.
Use this only after render with UseHierarchicalOcclusionQuery.
TODO: for UseOcclusionQuery I would also like to make it work,
for now not done as frustum information is gone.
This will disable actual occlusion query,
instead reusing results from last occlusion
query done when this debug flag was @false.
Useful to quickly visualize the benefits of occlusion query. }
property DebugHierOcclusionQueryResults: boolean
read FDebugHierOcclusionQueryResults
write FDebugHierOcclusionQueryResults default false;
{ Checks UseOcclusionQuery, existence of GL_ARB_occlusion_query,
and GLQueryCounterBits > 0. If @false, ARB_occlusion_query just cannot
be used.
Also, returns @false when UseHierarchicalOcclusionQuery is @true
--- because then UseHierarchicalOcclusionQuery should take precedence.
@exclude Internal. }
function ReallyUseOcclusionQuery: boolean;
{ Checks UseHierarchicalOcclusionQuery, existence of GL_ARB_occlusion_query,
and GLQueryCounterBits > 0. If @false, ARB_occlusion_query just cannot
be used.
@exclude Internal. }
function ReallyUseHierarchicalOcclusionQuery: boolean;
end;
type
TPrepareResourcesOption = Castle3D.TPrepareResourcesOption;
TPrepareResourcesOptions = Castle3D.TPrepareResourcesOptions;
const
prRender = Castle3D.prRender;
prBackground = Castle3D.prBackground;
prBoundingBox = Castle3D.prBoundingBox;
prTrianglesListShadowCasters = Castle3D.prTrianglesListShadowCasters;
prManifoldAndBorderEdges = Castle3D.prManifoldAndBorderEdges;
type
{ Possible checks done while frustum culling.
This is used for TCastleScene.FrustumCulling (what checks
should be done when shapes octree is not available) and
TCastleScene.OctreeFrustumCulling (what checks
should be done when shapes octree is available).
In the second case, checks done by TFrustumCulling are applied
after octree traverse. That is, octree already eliminated some shapes,
and fully included some other shapes while traversing.
TFrustumCulling are used in this
case only as a "last resort", to check only the shapes in octree leaves
that are in "possibly-colliding" state with frustum.
Generally, more checks mean that more shapes may be eliminated but
also that we waste more time on checks themselves. What is optimal
depends on given 3D model, and how you expect the player to view it
(e.g. if player usually sees the whole model, then TFrustumCulling
checks may be useless waste of time; OTOH, if player stands inside
the model composed from many shapes then TFrustumCulling may help). }
TFrustumCulling = (
{ No checks.
Setting this as TCastleScene.FrustumCulling
turns off frustum culling entirely, which is usually not a wise thing
to do. Setting this as TCastleScene.OctreeFrustumCulling
means that frustum culling is only done during octree traversal
(we only visit octree nodes possibly colliding with frustum),
this is also not optimal. }
fcNone,
{ Check shape's bounding sphere for collision with frustum. }
fcSphere,
{ Check shape's bounding box for collision with frustum. }
fcBox,
{ Check shape's bounding sphere, and then box, for collision with frustum.
This is the most rigoristic check, but usually this is a waste of time:
in most cases, when bounding sphere collides, then bounding box
collides too. }
fcBoth
);
{ Basic non-abstact implementation of render params for calling T3D.Render.
@exclude
@bold(This is a hack, exposed here only to support some really weird
OpenGL tricks in engine example programs. Do not use this in your own code.)
To be used when you have to call T3D.Render, but you don't use scene manager.
Usually this should not be needed, and this class may be removed at some
point! You should always try to use TCastleSceneManager to manage and render
3D stuff in new programs, and then TCastleSceneManager will take care of creating
proper render params instance for you. }
TBasicRenderParams = class(TRenderParams)
public
FBaseLights: TLightInstancesList;
constructor Create;
destructor Destroy; override;
function BaseLights(Scene: T3D): TLightInstancesList; override;
end;
{ Complete handling and rendering of a 3D VRML/X3D scene.
This is a descendant of TCastleSceneCore that adds efficient rendering
using OpenGL.
This uses internal @link(TGLRenderer) instance,
adding some features and comfortable methods on top of it (like blending).
See @link(Render) method for some details.
This class also provides comfortable management for
@link(Background) instance to render the VRML/X3D background of this scene.
Calling methods PrepareResources, Render or Background connects this
class with current OpenGL context. Which means that all the following
calls should be done with the same OpenGL context set as current.
Calling GLContextClose or the destructor removes this connection. }
TCastleScene = class(TCastleSceneCore)
private
Renderer: TGLRenderer;
FReceiveShadowVolumes: boolean;
{ Cache used by this scene. Always initialized to non-nil by constructor. }
Cache: TGLRendererContextCache;
{ used by RenderScene }
FilteredShapes: TShapeList;
{ Render everything.
Calls Renderer.RenderBegin.
Then on all potentially visible Shapes[] calls RenderShape.
"Potentially visible" is decided by TestShapeVisibility
(shape is visible if TestShapeVisibility is @nil or returns
@true for this shape) and Params.Transparent value must include
given shape. At the end calls Renderer.RenderEnd.
Additionally this implements blending, looking at Attributes.Blending*,
setting appropriate OpenGL state and rendering partially transparent
shape before all opaque objects.
Updates Params.Statistics. }
procedure RenderScene(TestShapeVisibility: TTestShapeVisibility;
const Frustum: TFrustum; const Params: TRenderParams);
{ Destroy any associations of Renderer with OpenGL context.
This also destroys associations with OpenGL context in this class
@italic(that were made using Renderer). This doesn't destroy other
associations, like Background.
This is useful to call when we change something in Attributes,
since changing most Attributes (besides color modulators ?)
requires that we disconnect Renderer from OpenGL context.
Other things, like Background, don't have to be destroyed in this case. }
procedure CloseGLRenderer;
private
FOwnsRenderer: boolean;
{ Fog for this shape. @nil if none. }
function ShapeFog(Shape: TShape): IAbstractFogObject;
function EffectiveBlendingSort: TBlendingSort;
private
{ Used by UpdateGeneratedTextures, to prevent rendering the shape
for which reflection texture is generated. (This wouldn't cause
recursive loop in our engine, but still it's bad --- rendering
from the inside of the object usually obscures the world around...). }
AvoidShapeRendering: TGLShape;
{ Used by UpdateGeneratedTextures, to prevent rendering non-shadow casters
for shadow maps. }
AvoidNonShadowCasterRendering: boolean;
PreparedShapesResources, PreparedRender: boolean;
VarianceShadowMapsProgram: array [boolean] of TGLSLProgram;
FDistanceCulling: Single;
{ Private things for RenderFrustum --------------------------------------- }
function FrustumCulling_None(Shape: TShape): boolean;
function FrustumCulling_Sphere(Shape: TShape): boolean;
function FrustumCulling_Box(Shape: TShape): boolean;
function FrustumCulling_Both(Shape: TShape): boolean;
function DistanceCullingCheck(Shape: TShape): boolean;
private
FFrustumCulling: TFrustumCulling;
FOctreeFrustumCulling: TFrustumCulling;
procedure SetFrustumCulling(const Value: TFrustumCulling);
procedure SetOctreeFrustumCulling(const Value: TFrustumCulling);
private
FrustumCullingFunc: TTestShapeVisibility;
OctreeFrustumCullingFunc: TTestShapeVisibility;
RenderFrustum_Frustum: PFrustum;
function RenderFrustumOctree_TestShape(Shape: TShape): boolean;
procedure RenderFrustumOctree_EnumerateShapes(
ShapeIndex: Integer; CollidesForSure: boolean);
{ Turn off lights that are not supposed to light in the shadow.
This simply turns LightOn to @false if the light has
shadowVolumes = TRUE (see
[http://castle-engine.sourceforge.net/x3d_extensions.php#section_ext_shadows]).
It's useful to pass this as LightRenderEvent to @link(Render)
when you use shadow algorithm that requires
you to make a first pass rendering the scene all shadowed. }
class procedure LightRenderInShadow(const Light: TLightInstance;
var LightOn: boolean);
{ shadow things ---------------------------------------------------------- }
{ Rendering shadow volumes with silhouette optimization.
This renders shadow quads of silhouette edge. Edges from ManifoldEdges
list are used to find silhouette edge. Additionally edges from
BorderEdges always produce shadow quads, i.e. we treat them
like they would always be silhouette edges.
The very idea of this optimization is that most edges are in
ManifoldEdges and so only real silhouette edges produce shadow quads.
In other words, BorderEdges list should not contain too many items.
When BorderEdges contains all edges (ManifoldEdges is empty), then
this method degenerates to a naive rendering without silhouette
optimization. So you should try to make your models as much as
possible resembling nice 2-manifolds. Ideally, if your mesh
is a number of perfectly closed manifolds, and vertex ordering
is consistent, then BorderEdges is empty, and this works perfect.
Usually, most models are mostly 2-manifold (only the real border
edges are, well, in BorderEdges), and this works great.
See "VRML engine documentation" on
[http://castle-engine.sourceforge.net/engine_doc.php],
chapter "Shadows", for description and pictures of possible artifacts
when trying to use this on models that are not 2-manifold.)
LightCap and DarkCap say whether you want to cap your shadow volume.
LightCap is the cap at the caster position, DarkCap is the cap in infinity.
This is needed by z-fail method, you should set them both to @true.
To be more optimal, you can request LightCap only if z-fail @italic(and
the caster is inside camera frustum). For directional lights, DarkCap is
ignored, since the volume is always closed by a single point in infinity.
}
procedure RenderSilhouetteShadowVolume(
const LightPos: TVector4Single;
const TransformIsIdentity: boolean;
const Transform: TMatrix4Single;
const LightCap, DarkCap: boolean);
private
HierarchicalOcclusionQueryRenderer: THierarchicalOcclusionQueryRenderer;
BlendingRenderer: TBlendingRenderer;
protected
function CreateShape(AGeometry: TAbstractGeometryNode;
AState: TX3DGraphTraverseState; ParentInfo: PTraversingInfo): TShape; override;
procedure InvalidateBackground; override;
public
constructor Create(AOwner: TComponent); override;
constructor CreateCustomCache(AOwner: TComponent; ACache: TGLRendererContextCache);
{ A very special constructor, that forces this class to use
provided ACustomRenderer. ACustomRenderer must be <> @nil.
Note that this renderer must be created with AttributesClass
= TSceneRenderingAttributes.
@italic(Don't use this unless you really know what you're doing!)
In all normal circumstances you should use normal @link(Create)
constructor, that will internally create and use internal renderer object.
If you use this constructor you will have to understand how internally
this class synchronizes itself with underlying Renderer object.
Once again, if you're not sure, then simply don't use this
constructor. It's for internal use --- namely it's internally used
by TCastlePrecalculatedAnimation, this way all scenes of the animation share
the same renderer which means that they also share the same
information about textures and images loaded into OpenGL.
And this is crucial for TCastlePrecalculatedAnimation, otherwise animation with
100 scenes would load the same texture to OpenGL 100 times. }
constructor CreateCustomRenderer(AOwner: TComponent;
ACustomRenderer: TGLRenderer);
destructor Destroy; override;
{ Destroy any associations of this object with current OpenGL context.
For example, release any allocated texture names.
Generally speaking, destroys everything that is allocated by
PrepareResources call. It's harmless to call this
method when there are already no associations with current OpenGL context.
This is called automatically from the destructor. }
procedure GLContextClose; override;
procedure PrepareResources(Options: TPrepareResourcesOptions;
ProgressStep: boolean; BaseLights: TAbstractLightInstancesList); override;
{ Render for OpenGL. The rendering parameters are configurable
by @link(Attributes), see TSceneRenderingAttributes and
TRenderingAttributes.
For more details about rendering, see @link(CastleRenderer) unit comments.
This method internally uses TGLRenderer instance, additionally
handling the blending:
@unorderedList(
@item(
OpenGL state of glDepthMask, glEnable/Disable(GL_BLEND), glBlendFunc
is controlled by this function. This function will unconditionally
change (and restore later to original value) this state,
to perform correct blending (transparency rendering).
To make a correct rendering, we always
render transparent shapes at the end (after all opaque),
and with depth-buffer in read-only mode.)
@item(Only a subset of shapes indicated by Params.Transparent is rendered.
This is necessary if you want to mix in one 3D world many scenes
(like TCastleScene instances), and each of them may have some opaque
and some transparent
parts. In such case, you want to render everything opaque
(from every scene) first, and only then render everything transparent.
For shadow volumes, this is even more complicated.)
@item(Note that when Attributes.Blending is @false then everything
is always opaque, so tgOpaque renders everything and tgTransparent
renders nothing.)
)
@param(TestShapeVisibility Filters which shapes are visible.
You can use this to optimize rendering. For example
you can reject shapes because their bounding volume
(bounding boxes or bounding spheres) doesn't intersect with frustum
or such. This is called frustum culling, and in fact is done
automatically by other overloaded Render methods in this class,
see FrustumCulling and OctreeFrustumCulling.
TestShapeVisibility callback may be used to implement frustum
culling, or some other visibility algorithm.) }
procedure Render(TestShapeVisibility: TTestShapeVisibility;
const Frustum: TFrustum;
const Params: TRenderParams);
procedure Render(const Frustum: TFrustum; const Params: TRenderParams); override;
procedure BeforeNodesFree(const InternalChangedAll: boolean = false); override;
{ Render shadow volume (sides and caps) of this scene, for shadow volume
algorithm. Checks ShadowVolumeRenderer.InitScene to know if the shadow
needs to be rendered at all.
It will calculate current bounding box (looking at ParentTransform,
ParentTransformIsIdentity and BoundingBox method).
It always uses silhouette optimization. This is the usual,
fast method of rendering shadow volumes.
Will not do anything (treat scene like not casting shadows,
like CastShadowVolumes = false) if the model is not perfect 2-manifold,
i.e. has some BorderEdges (although we could handle some BorderEdges
for some points of view, this could leading to rendering artifacts).
All shadow quads are generated from scene triangles transformed
by ParentTransform. We must be able to correctly detect front and
back facing triangles with respect to light position,
so ShadowVolumeRenderer.LightPosition and
"this scene transformed by ParentTransform" must be in the same coordinate system.
If ParentTransformIsIdentity then ParentTransform value is ignored and
everything works like ParentTransform = identity matrix (and is a little
faster in this special case).
Uses TrianglesListShadowCasters and ManifoldEdges and BorderEdges
(so you may prefer to prepare it before, e.g. by calling PrepareResources
with prShadowVolume included).
We look at some Attributes, like Attributes.Blending, because transparent
triangles have to be handled a little differently, and when
Attributes.Blending = false then all triangles are forced to be opaque.
In other words, this takes Attributes into account, to cooperate with
our Render method.
ShadowVolumeRenderer.LightPosition is the light position.
ShadowVolumeRenderer.LightPosition[3] must be 1
(to indicate positional light) or 0 (a directional light).
It's expected that ShadowVolumeRenderer is already initialized by
ShadowVolumeRenderer.InitFrustumAndLight.
Faces (both shadow quads and caps) are rendered such that
CCW <=> you're looking at it from outside
(i.e. it's considered front face of this shadow volume). }
procedure RenderShadowVolume(
ShadowVolumeRenderer: TBaseShadowVolumeRenderer;
const ParentTransformIsIdentity: boolean;
const ParentTransform: TMatrix4Single); override;
{ Render silhouette edges.
Silhouette is determined from the ObserverPos.
Useful to debug (visualize) ManifoldEdges of the scene.
Whole scene is transformed by Transform (before checking which
edges are silhouette and before rendering). In other words,
Transform must transform the scene to the same coord space where
given ObserverPos is. When they are in the same space, just use
IdentityMatrix4Single. }
procedure RenderSilhouetteEdges(
const ObserverPos: TVector4Single;
const Transform: TMatrix4Single);
{ Render all border edges (the edges without neighbor).
Useful to debug (visualize) BorderEdges of the scene. }
procedure RenderBorderEdges(
const Transform: TMatrix4Single);
private
FBackgroundSkySphereRadius: Single;
{ Node for which FBackground is currently prepared. }
FBackgroundNode: TAbstractBindableNode;
{ Cached Background value }
FBackground: TBackground;
{ Is FBackground valid ? We can't use "nil" FBackground value to flag this
(bacause nil is valid value for Background function).
If not FBackgroundValid then FBackground must always be nil.
Never set FBackgroundValid to false directly - use InvalidateBackground,
this will automatically call FreeAndNil(FBackground) before setting
FBackgroundValid to false. }
FBackgroundValid: boolean;
procedure SetBackgroundSkySphereRadius(const Value: Single);
procedure PrepareBackground;
public
procedure FreeResources(Resources: TSceneFreeResources); override;
property BackgroundSkySphereRadius: Single
read FBackgroundSkySphereRadius write SetBackgroundSkySphereRadius
default 1;
{ TBackground instance to render current background. Current background
is the top node on the BackgroundStack of this scene, following VRML/X3D
specifications, and can be dynamic.
The scene manager should use this to render background.
We use the current value of BackgroundSkySphereRadius.
Returns @nil if there is no currently bound background node
in this scene, or if the bound background is not supported for now
(the latter case right now happens with TextureBakckground).
This instance is managed (automatically created/freed
and so on) by this TCastleScene instance. It is cached
(so that it's recreated only when relevant things change,
like VRML/X3D nodes affecting this background,
or changes to BackgroundSkySphereRadius, or OpenGL context is closed). }
function Background: TBackground;
{ Rendering attributes.
You are free to change them all at any time.
Although note that changing some attributes (the ones defined
in base TRenderingAttributes class) may be a costly operation
(next PrepareResources with prRender, or Render call, may need
to recalculate some things). }
function Attributes: TSceneRenderingAttributes;
procedure UpdateGeneratedTextures(
const RenderFunc: TRenderFromViewFunction;
const ProjectionNear, ProjectionFar: Single;
const OriginalViewport: TRectangle); override;
procedure ViewChangedSuddenly; override;
procedure VisibleChangeNotification(const Changes: TVisibleChanges); override;
{ Screen effects information, used by TCastleAbstractViewport.ScreenEffects.
ScreenEffectsCount may actually prepare screen effects.
@groupBegin }
function ScreenEffects(Index: Integer): TGLSLProgram;
function ScreenEffectsCount: Integer;
function ScreenEffectsNeedDepth: boolean;
{ @groupEnd }
published
{ Fine-tune performance of @link(Render) when
OctreeRendering is @italic(not) available.
@link(Render) tests each Shape for collision with given Frustum
before rendering this Shape. It can use Shape.BoundingBox
or Shape.BoundingSphere or both.
See TFrustumCulling.
Shape.BoundingBox is (in a current implementation) always
a better approximation of shape geometry than Shape.BoundingSphere.
So advantage of using Shape.BoundingBox is that more Shapes
may be eliminated. Advantage of using Shape.BoundingSphere
is that checking for collision Frustum<->Sphere is faster,
so you don't waste so much time on testing for collisions between
frustum and Shape. }
property FrustumCulling: TFrustumCulling
read FFrustumCulling write SetFrustumCulling default fcBox;
{ Fine-tune performance of @link(Render) when
OctreeRendering @italic(is available).
See TFrustumCulling. }
property OctreeFrustumCulling: TFrustumCulling
read FOctreeFrustumCulling write SetOctreeFrustumCulling default fcBox;
property ReceiveShadowVolumes: boolean
read FReceiveShadowVolumes write FReceiveShadowVolumes default true;
{ Cull things farther than this distance. Ignored if <= 0. }
property DistanceCulling: Single
read FDistanceCulling write FDistanceCulling default 0;
end;
TCastleSceneList = class(specialize TFPGObjectList<TCastleScene>)
private
{ Just call InvalidateBackground or CloseGLRenderer on all items.
These methods are private, because corresponding methods in
TCastleScene are also private and we don't want to expose
them here. }
procedure InvalidateBackground;
procedure CloseGLRenderer;
public
{ Just call GLContextClose on all items. }
procedure GLContextClose;
{ Just call ViewChangedSuddenly on all items. }
procedure ViewChangedSuddenly;
end;
const
{ Options to pass to TCastleScene.PrepareResources to make
sure that rendering with shadow volumes is as fast as possible.
For now this actually could be equal to prManifoldEdges
(prTrianglesListShadowCasters has to be prepared while preparing
ManifoldEdges edges anyway). But for the future shadow volumes
optimizations, it's best to use this constant. }
prShadowVolume = [prTrianglesListShadowCasters, prManifoldAndBorderEdges];
type
TTriangle4SingleList = specialize TGenericStructList<TTriangle4Single>;
procedure Register;
var
{ Global OpenGL context cache.
This caches common things, like textures, shapes, and much more.
Our OpenGL resources are currently shared across all OpenGL contexts,
and they all automatically share this cache. }
GLContextCache: TGLRendererContextCache;
implementation
uses CastleGLVersion, CastleImages, CastleLog, CastleWarnings,
CastleStringUtils, CastleRenderingCamera;
var
TemporaryAttributeChange: Cardinal = 0;
procedure Register;
begin
RegisterComponents('Castle', [TCastleScene]);
end;
{ TGLSceneShape -------------------------------------------------------------- }
type
{ TGLShape that can access internal data of TCastleScene. }
TGLSceneShape = class(TGLShape)
public
function Renderer: TGLRenderer; override;
procedure SchedulePrepareResources; override;
end;
function TGLSceneShape.Renderer: TGLRenderer;
begin
Result := TCastleScene(ParentScene).Renderer;
end;
procedure TGLSceneShape.SchedulePrepareResources;
begin
TCastleScene(ParentScene).PreparedShapesResources := false;
end;
{ TBasicRenderParams --------------------------------------------------------- }
constructor TBasicRenderParams.Create;
begin
inherited;
FBaseLights := TLightInstancesList.Create;
InShadow := false;
{ Transparent and ShadowVolumesReceivers do not have good default values.
User of TBasicRenderParams should call Render method with
all 4 combinations of them, to really render everything correctly.
We just set them here to capture most 3D objects
(as using TBasicRenderParams for anything is a discouraged hack anyway). }
ShadowVolumesReceivers := true;
Transparent := false;
end;
destructor TBasicRenderParams.Destroy;
begin
FreeAndNil(FBaseLights);
inherited;
end;
function TBasicRenderParams.BaseLights(Scene: T3D): TLightInstancesList;
begin
Result := FBaseLights;
end;
{ TCastleScene ------------------------------------------------------------ }
constructor TCastleScene.Create(AOwner: TComponent);
begin
{ inherited Create *may* call some virtual things overriden here
(although right now it doesn't): it may bind new viewpoint which
may call ViewChangedSuddenly which is overridden here and uses Attributes.
That's why I have to initialize them *before* "inherited Create" }
{ Cache may be already assigned, when we came here from
CreateCustomRenderer or CreateCustomCache. }
if Cache = nil then
Cache := GLContextCache;
{ Renderer may be already assigned, when we came here from
CreateCustomRenderer. }
if Renderer = nil then
begin
FOwnsRenderer := true;
Renderer := TGLRenderer.Create(TSceneRenderingAttributes, Cache);
end;
Assert(Renderer.Attributes is TSceneRenderingAttributes);
{ Note that this calls Renderer.Attributes, so use this after
initializing Renderer. }
Attributes.FScenes.Add(Self);
inherited Create(AOwner);
FBackgroundSkySphereRadius := 1.0;
FBackgroundValid := false;
FBackgroundNode := nil;
FBackground := nil;
FFrustumCulling := fcBoth;
FrustumCulling := fcBox; { set through property setter }
FOctreeFrustumCulling := fcBoth;
OctreeFrustumCulling := fcBox; { set through property setter }
FReceiveShadowVolumes := true;
FilteredShapes := TShapeList.Create;
HierarchicalOcclusionQueryRenderer := THierarchicalOcclusionQueryRenderer.Create(Self);
BlendingRenderer := TBlendingRenderer.Create(Self);
end;
constructor TCastleScene.CreateCustomCache(
AOwner: TComponent; ACache: TGLRendererContextCache);
begin
Assert(ACache <> nil);
Cache := ACache;
Create(AOwner);
end;
constructor TCastleScene.CreateCustomRenderer(
AOwner: TComponent; ACustomRenderer: TGLRenderer);
begin
FOwnsRenderer := false;
Renderer := ACustomRenderer;
CreateCustomCache(AOwner, ACustomRenderer.Cache);
end;
destructor TCastleScene.Destroy;
begin
FreeAndNil(HierarchicalOcclusionQueryRenderer);
FreeAndNil(BlendingRenderer);
FreeAndNil(FilteredShapes);
GLContextClose;
{ Note that this calls Renderer.Attributes, so use this before
deinitializing Renderer. }
if Renderer <> nil then
Attributes.FScenes.Remove(Self);
if FOwnsRenderer then
begin
{ We must release all connections between RootNode and Renderer first.
Reason: when freeing RootNode, image references (from texture nodes)
are decremented. So cache used when loading these images must be
available.
If we used custom renderer, then this is not
our problem: if OwnsRootNode then RootNode will be freed soon
by "inherited", if not OwnsRootNode then it's the using programmer
responsibility to free both RootNode and CustomRenderer
in exactly this order.
If we used our own renderer (actually, this is needed only if we used
own own cache, so caller didn't provide a renderer and didn't provide
a cache (ACache = nil for constructor), but we don't store this information
for now) : we must make sure that freeing RootNode is safe.
If OwnsRootNode then we know that inherited will free RootNode
and so the simpler solution, to just FreeAndNil(Renderer) after
inherited, would be possible. But it's not possible, since
OwnsRootNode may be false and then programmer may want to free
RootNode at undefined later time.
So we have to guarantee, *now*, that freeing RootNode is safe ---
no dangling references to Renderer.Cache. }
FreeResources([frTextureDataInNodes, frBackgroundImageInNodes]);
FreeAndNil(Renderer);
end else
Renderer := nil;
Cache := nil; // just for safety
inherited;
end;
function TCastleScene.CreateShape(AGeometry: TAbstractGeometryNode;
AState: TX3DGraphTraverseState; ParentInfo: PTraversingInfo): TShape;
begin
Result := TGLSceneShape.Create(Self, AGeometry, AState, ParentInfo);
end;
procedure TCastleScene.CloseGLRenderer;
{ This must be coded carefully, because
- it's called by ChangedAll, and so may be called when our constructor
didn't do it's work yet.
- moreover it's called from destructor, so may be called if our
constructor terminated with exception.
This explains that we have to check Renderer <> nil, Shapes <> nil. }
procedure CloseGLScreenEffect(Node: TScreenEffectNode);
begin
{ The TGLSLProgram instance here will be released by Rendered.UnprepareAll,
that eventually calls GLSLRenderers.UnprepareAll,
that eventually calls Cache.GLSLProgram_DecReference on this shader,
that eventuallly destroys TGLSLProgram instance.
So below only set it to nil. }
Node.Shader := nil;
Node.ShaderLoaded := false;
end;
var
SI: TShapeTreeIterator;
S: TGLShape;
I: Integer;
Pass: TRenderingPass;
begin
PreparedRender := false;
PreparedShapesResources := false;
{ Free Arrays and Vbo of all shapes. }
if (Renderer <> nil) and (Shapes <> nil) then
begin
{ Iterate even over non-visible shapes, for safety:
since this CloseGLRenderer may happen after some
"visibility" changed, that is you changed proxy
or such by event. }
SI := TShapeTreeIterator.Create(Shapes, false, false);
try
while SI.GetNext do
begin
S := TGLShape(SI.Current);
if S.Cache <> nil then
Renderer.Cache.Shape_DecReference(S.Cache);
for Pass := Low(Pass) to High(Pass) do
if S.ProgramCache[Pass] <> nil then
Renderer.Cache.Program_DecReference(S.ProgramCache[Pass]);
end;
finally FreeAndNil(SI) end;
end;
if ScreenEffectNodes <> nil then
for I := 0 to ScreenEffectNodes.Count - 1 do
CloseGLScreenEffect(TScreenEffectNode(ScreenEffectNodes[I]));
{ TODO: if FOwnsRenderer then we should do something more detailed
then just Renderer.UnprepareAll. It's not needed for TCastlePrecalculatedAnimation
right now, so it's not implemented. }
if Renderer <> nil then Renderer.UnprepareAll;
if Shapes <> nil then
begin
SI := TShapeTreeIterator.Create(Shapes, false, true);
try
while SI.GetNext do
TGLShape(SI.Current).GLContextClose;
finally FreeAndNil(SI) end;
end;
if VarianceShadowMapsProgram[false] <> nil then
FreeAndNil(VarianceShadowMapsProgram[false]);
if VarianceShadowMapsProgram[true] <> nil then
FreeAndNil(VarianceShadowMapsProgram[true]);
end;
procedure TCastleScene.GLContextClose;
begin
inherited;
CloseGLRenderer;
InvalidateBackground;
end;
function TCastleScene.ShapeFog(Shape: TShape): IAbstractFogObject;
begin
Result := Shape.State.LocalFog;
if Result = nil then
Result := FogStack.Top;
end;
function TCastleScene.EffectiveBlendingSort: TBlendingSort;
begin
if (NavigationInfoStack.Top <> nil) and
(NavigationInfoStack.Top.BlendingSort <> obsDefault) then
begin
case NavigationInfoStack.Top.BlendingSort of
obsNone: Result := bsNone;
obs2D : Result := bs2D;
obs3D : Result := bs3D;
else raise EInternalError.Create('TCastleScene.EffectiveBlendingSort:NavigationInfoStack.Top.BlendingSort?');
end;
end else
Result := Attributes.BlendingSort;
end;
procedure TCastleScene.RenderScene(
TestShapeVisibility: TTestShapeVisibility;
const Frustum: TFrustum; const Params: TRenderParams);
var
ModelView: TMatrix4Single;
{ Renders Shape, by calling Renderer.RenderShape. }
procedure RenderShape_NoTests(Shape: TGLShape);
begin
OcclusionBoxStateEnd;
if Params.Pass = 0 then Inc(Params.Statistics.ShapesRendered);
{ Optionally free Shape arrays data now, if they need to be regenerated. }
if (Assigned(Attributes.OnVertexColor) or
Assigned(Attributes.OnRadianceTransfer)) and
(Shape.Cache <> nil) then
Shape.Cache.FreeArrays([vtAttribute]);
Shape.ModelView := ModelView;
Renderer.RenderShape(Shape, ShapeFog(Shape));
end;
{ Call RenderShape if some tests succeed.
It assumes that test with TestShapeVisibility is already done. }
procedure RenderShape_SomeTests(Shape: TGLShape);
begin
if (Shape <> AvoidShapeRendering) and
( (not AvoidNonShadowCasterRendering) or Shape.ShadowCaster) then
begin
{ We do not make occlusion query when rendering to something else
than screen (like shadow map or cube map environment for mirror).
Such views are drastically different from normal camera view,
so the whole idea that "what is visible in this frame is similar
to what was visible in previous frame" breaks down there.
TODO: In the future, this could be solved nicer, by having separate
occlusion query states for different views. But this isn't easy
to implement, as occlusion query state is part of TShape and
octree nodes (for hierarchical occ query), so all these things
should have a map "target->oq state" for various rendering targets. }
if Attributes.ReallyUseOcclusionQuery and
(RenderingCamera.Target = rtScreen) then
begin
SimpleOcclusionQueryRender(Shape, @RenderShape_NoTests, Params);
end else
if Attributes.DebugHierOcclusionQueryResults and
Attributes.UseHierarchicalOcclusionQuery then
begin
if HierarchicalOcclusionQueryRenderer.WasLastVisible(Shape) then
RenderShape_NoTests(Shape);
end else
{ No occlusion query-related stuff. Just render the shape. }
RenderShape_NoTests(Shape);
end;
end;
{ Call RenderShape if many tests, including TestShapeVisibility,
succeed. }
procedure RenderShape_AllTests(Shape: TShape);
begin
if ( (not Assigned(TestShapeVisibility)) or
TestShapeVisibility(TGLShape(Shape))) then
RenderShape_SomeTests(TGLShape(Shape));
end;
procedure RenderShape_AllTests_Opaque(Shape: TShape);
begin
if not TGLShape(Shape).UseBlending then
RenderShape_AllTests(Shape);
end;
procedure RenderShape_AllTests_Transparent(Shape: TShape);
begin
if TGLShape(Shape).UseBlending then
begin
BlendingRenderer.BeforeRenderShape(Shape);
RenderShape_AllTests(Shape);
end;
end;
procedure RenderAllAsOpaque;
begin
if not Params.Transparent then
Shapes.Traverse(@RenderShape_AllTests, true, true);
end;
procedure UpdateVisibilitySensors;
var
I, J: Integer;
Instances: TVisibilitySensorInstanceList;
NewActive: boolean;
begin
{ optimize for common case: exit early if nothing to do }
if VisibilitySensors.Count = 0 then Exit;
if ProcessEvents then
begin
BeginChangesSchedule;
try
for I := 0 to VisibilitySensors.Count - 1 do
if VisibilitySensors.Keys[I].FdEnabled.Value then
begin
{ increment timestamp for each VisibilitySensor,
otherwise sensors_environmental/visibility_sensor.x3dv
has a problem at initialization, when multiple sensors
send isActive = TRUE, and X3D mechanism to avoid loops
kicks in. }
IncreaseTimeTick;
{ calculate NewActive }
NewActive := false;
Instances := VisibilitySensors.Data[I];
for J := 0 to Instances.Count - 1 do
if Frustum.Box3DCollisionPossibleSimple(Instances[J].Box) then
begin
NewActive := true;
Break;
end;
VisibilitySensors.Keys[I].SetIsActive(NewActive, Time);
end;
finally EndChangesSchedule; end;
end;
end;
var
I: Integer;
LightRenderEvent: TLightRenderEvent;
begin
{ We update ShapesVisible only for one value of Params.Transparent.
Otherwise, we would increase it twice.
This method is always called first with Params.Transparent = false,
then Params.Transparent = true during a single frame. }
if (not Params.Transparent) and (Params.Pass = 0) then
begin
Params.Statistics.ShapesVisible += ShapesActiveVisibleCount;
{ also do this only once per frame }
UpdateVisibilitySensors;
end;
OcclusionBoxState := false;
if Params.InShadow then
LightRenderEvent := @LightRenderInShadow else
LightRenderEvent := nil;
ModelView := Params.ModelViewTransform;
{$ifndef OpenGLES}
if not Params.RenderTransformIdentity then
begin
glPushMatrix;
glMultMatrix(Params.RenderTransform);
end;
{ TODO: this should be replaced with just
glLoadMatrix(Params.ModelViewTransform);
to just load full matrix, and be consistent with what happens on OpenGLES. }
{$endif}
Renderer.RenderBegin(Params.BaseLights(Self) as TLightInstancesList,
LightRenderEvent, Params.Pass);
try
if Attributes.Mode <> rmFull then
begin
{ When not rmFull, we don't want to do anything with glDepthMask
or GL_BLEND enable state. Just render everything. }
RenderAllAsOpaque;
{ Each RenderShape_SomeTests inside could set OcclusionBoxState }
OcclusionBoxStateEnd;
end else
if Attributes.ReallyUseHierarchicalOcclusionQuery and
(not Attributes.DebugHierOcclusionQueryResults) and
(RenderingCamera.Target = rtScreen) and
(OctreeRendering <> nil) then
begin
HierarchicalOcclusionQueryRenderer.Render(@RenderShape_SomeTests,
Frustum, Params);
{ Inside we could set OcclusionBoxState }
OcclusionBoxStateEnd;
end else
begin
if Attributes.Blending then
begin
if not Params.Transparent then
begin
{ draw fully opaque objects }
if CameraViewKnown and Attributes.ReallyUseOcclusionQuery then
begin
ShapesFilterBlending(Shapes, true, true, false,
TestShapeVisibility, FilteredShapes, false);
{ ShapesSplitBlending already filtered shapes through
TestShapeVisibility callback, so later we can render them
with RenderShape_SomeTests to skip checking TestShapeVisibility
twice. This is a good thing: it means that sorting below has
much less shapes to consider. }
FilteredShapes.SortFrontToBack(CameraPosition);
for I := 0 to FilteredShapes.Count - 1 do
RenderShape_SomeTests(TGLShape(FilteredShapes[I]));
end else
Shapes.Traverse(@RenderShape_AllTests_Opaque, true, true, false);
end else
{ this means Params.Transparent = true }
begin
{ draw partially transparent objects }
glDepthMask(GL_FALSE);
glEnable(GL_BLEND);
BlendingRenderer.RenderBegin;
{ sort for blending, if BlendingSort not bsNone.
Note that bs2D does not require knowledge of the camera,
CameraPosition is unused in this case by FilteredShapes.SortBackToFront }
if ((EffectiveBlendingSort = bs3D) and CameraViewKnown) or
(EffectiveBlendingSort = bs2D) then
begin
ShapesFilterBlending(Shapes, true, true, false,
TestShapeVisibility, FilteredShapes, true);
FilteredShapes.SortBackToFront(CameraPosition, EffectiveBlendingSort = bs3D);
for I := 0 to FilteredShapes.Count - 1 do
begin
BlendingRenderer.BeforeRenderShape(FilteredShapes[I]);
RenderShape_SomeTests(TGLShape(FilteredShapes[I]));
end;
end else
Shapes.Traverse(@RenderShape_AllTests_Transparent, true, true, false);
{ restore glDepthMask and blending state to default values }
glDepthMask(GL_TRUE);
glDisable(GL_BLEND);
end;
end else
RenderAllAsOpaque;
{ Each RenderShape_SomeTests inside could set OcclusionBoxState.
TODO: in case of blending, glPopAttrib inside could restore now
glDepthMask(GL_TRUE) and glDisable(GL_BLEND).
This problem will disappear when we'll get rid of push/pop inside
OcclusionBoxStateXxx. }
OcclusionBoxStateEnd;
end;
finally Renderer.RenderEnd end;
{$ifndef OpenGLES}
if not Params.RenderTransformIdentity then
glPopMatrix;
{$endif}
end;
procedure TCastleScene.PrepareResources(
Options: TPrepareResourcesOptions; ProgressStep: boolean;
BaseLights: TAbstractLightInstancesList);
procedure PrepareShapesResources;
var
SI: TShapeTreeIterator;
begin
SI := TShapeTreeIterator.Create(Shapes, false, false);
try
while SI.GetNext do
TGLShape(SI.Current).PrepareResources;
finally FreeAndNil(SI) end;
end;
procedure PrepareRenderShapes;
var
SI: TShapeTreeIterator;
Shape: TGLShape;
begin
if Log and LogRenderer then
WritelnLog('Renderer', 'Preparing rendering of all shapes');
{ Note: we prepare also not visible shapes, in case they become visible. }
SI := TShapeTreeIterator.Create(Shapes, false, false);
try
Inc(Renderer.PrepareRenderShape);
try
Renderer.RenderBegin(BaseLights as TLightInstancesList, nil, 0);
while SI.GetNext do
begin
Shape := TGLShape(SI.Current);
Renderer.RenderShape(Shape, ShapeFog(Shape));
end;
Renderer.RenderEnd;
finally Dec(Renderer.PrepareRenderShape) end;
finally FreeAndNil(SI) end;
end;
var
I: Integer;
begin
inherited;
if Dirty <> 0 then Exit;
if GLVersion = nil then
begin
WritelnLog('PrepareResources', 'OpenGL context not available, skipping preparing TCastleScene OpenGL resources');
Exit;
end;
{ When preparing resources, files (like textures) may get loaded,
causing progress bar (for example from CastleDownload).
Right now we're not ready to display the (partially loaded) scene
during this time, so we use Dirty to prevent it.
Test http://svn.code.sf.net/p/castle-engine/code/trunk/demo_models/navigation/transition_multiple_viewpoints.x3dv
Most probably problems are caused because shapes are initially
without a texture, so their arrays (including VBOs) are generated
without texture coordinates, and we do not mark them to be prepared
correctly later. Correct fix is unsure:
- Marking relevant shapes to be prepared again seems easiest,
but this means that potentially everything is prepared 2 times
--- once before resources (like textures) are ready, 2nd time with.
- It would be best to pas texture coordinates even when no texture is loaded?
Ideally, the renderer operations should be the same regardless if texture
is loaded or not.
It remains to carefully see whether it's possible in all cases.
}
Inc(Dirty);
try
if not PreparedShapesResources then
begin
{ Use PreparedShapesResources to avoid expensive (for large scenes)
iteration over all shapes in every TCastleScene.PrepareResources call. }
PreparedShapesResources := true;
PrepareShapesResources;
end;
if (prRender in Options) and not PreparedRender then
begin
{ We use PreparedRender to avoid potentially expensive iteration
over shapes and expensive Renderer.RenderBegin/End. }
PreparedRender := true;
{ Do not prepare when OnVertexColor or OnRadianceTransfer used,
as we can only call these callbacks during render (otherwise they
may be unprepared, like no texture for dynamic_ambient_occlusion.lpr). }
if not
(Assigned(Attributes.OnVertexColor) or
Assigned(Attributes.OnRadianceTransfer)) then
PrepareRenderShapes;
end;
if prBackground in Options then
PrepareBackground;
if prScreenEffects in Options then
begin
for I := 0 to ScreenEffectNodes.Count - 1 do
Renderer.PrepareScreenEffect(ScreenEffectNodes[I] as TScreenEffectNode);
end;
finally Dec(Dirty) end;
end;
procedure TCastleScene.Render(
TestShapeVisibility: TTestShapeVisibility;
const Frustum: TFrustum; const Params: TRenderParams);
procedure RenderNormal;
begin
RenderScene(TestShapeVisibility, Frustum, Params);
end;
{$ifndef OpenGLES} //TODO-es
procedure RenderWireframe(UseWireframeColor: boolean);
var
SavedMode: TRenderingMode;
begin
glPushAttrib(GL_POLYGON_BIT or GL_CURRENT_BIT or GL_ENABLE_BIT);
glPolygonMode(GL_FRONT_AND_BACK, GL_LINE); { saved by GL_POLYGON_BIT }
if UseWireframeColor then
begin
glColorv(Attributes.WireframeColor); { saved by GL_CURRENT_BIT }
glDisable(GL_TEXTURE_2D); { saved by GL_CURRENT_BIT }
glDisable(GL_LIGHTING); { saved by GL_CURRENT_BIT }
SavedMode := Attributes.Mode;
Attributes.Mode := rmPureGeometry;
end;
RenderNormal;
if UseWireframeColor then
Attributes.Mode := SavedMode;
glPopAttrib;
end;
{$endif}
{ Render taking Attributes.WireframeEffect into account. }
procedure RenderWithWireframeEffect;
{$ifndef OpenGLES}
begin
case Attributes.WireframeEffect of
weNormal: RenderNormal;
weWireframeOnly: RenderWireframe(Attributes.Mode = rmPureGeometry);
weSolidWireframe:
begin
glPushAttrib(GL_POLYGON_BIT);
{ enable polygon offset for everything (whole scene) }
glEnable(GL_POLYGON_OFFSET_FILL); { saved by GL_POLYGON_BIT }
glEnable(GL_POLYGON_OFFSET_LINE); { saved by GL_POLYGON_BIT }
glEnable(GL_POLYGON_OFFSET_POINT); { saved by GL_POLYGON_BIT }
glPolygonOffset(Attributes.SolidWireframeScale, Attributes.SolidWireframeBias); { saved by GL_POLYGON_BIT }
RenderNormal;
glPopAttrib;
RenderWireframe(true);
end;
weSilhouette:
begin
RenderNormal;
glPushAttrib(GL_POLYGON_BIT);
glEnable(GL_POLYGON_OFFSET_LINE); { saved by GL_POLYGON_BIT }
glPolygonOffset(Attributes.SilhouetteScale, Attributes.SilhouetteBias); { saved by GL_POLYGON_BIT }
{ rmPureGeometry still does backface culling.
This is very good in this case. When rmPureGeometry and weSilhouette,
and objects are solid (so backface culling is used) we can
significantly improve the effect by reverting glFrontFace,
this way we will cull *front* faces. This will not be noticed
in case of rmPureGeometry will single solid color, and it will
improve the silhouette look, since front-face edges will not be
rendered at all (no need to even hide them by glPolygonOffset,
which is somewhat sloppy). }
if Attributes.Mode = rmPureGeometry then
glFrontFace(GL_CW); { saved by GL_POLYGON_BIT }
RenderWireframe(true);
glPopAttrib;
end;
else raise EInternalError.Create('Render: Attributes.WireframeEffect ?');
end;
{$else}
begin
RenderNormal;
{$endif}
end;
{ Render, doing some special tricks when rendering to shadow maps. }
procedure RenderWithShadowMaps;
var
SavedMode: TRenderingMode;
SavedCustomShader, SavedCustomShaderAlphaTest: TGLSLProgram;
begin
{ For shadow maps, speed up rendering by using only features that affect
depth output. This also disables user shaders (for both classic
and VSM shadow maps, consistently). }
if RenderingCamera.Target in [rtVarianceShadowMap, rtShadowMap] then
begin
SavedMode := Attributes.Mode;
Attributes.Mode := rmDepth;
end;
{ When rendering to Variance Shadow Map, we need special shader. }
if RenderingCamera.Target = rtVarianceShadowMap then
begin
{ create VarianceShadowMapsProgram if needed }
if VarianceShadowMapsProgram[false] = nil then
begin
VarianceShadowMapsProgram[false] := TGLSLProgram.Create;
VarianceShadowMapsProgram[false].AttachFragmentShader({$I variance_shadow_map_generate.fs.inc});
VarianceShadowMapsProgram[false].Link(true);
end;
if VarianceShadowMapsProgram[true] = nil then
begin
VarianceShadowMapsProgram[true] := TGLSLProgram.Create;
VarianceShadowMapsProgram[true].AttachFragmentShader(
'#define ALPHA_TEST' + NL + {$I variance_shadow_map_generate.fs.inc});
VarianceShadowMapsProgram[true].Link(true);
end;
SavedCustomShader := Attributes.CustomShader;
SavedCustomShaderAlphaTest := Attributes.CustomShaderAlphaTest;
Attributes.CustomShader := VarianceShadowMapsProgram[false];
Attributes.CustomShaderAlphaTest := VarianceShadowMapsProgram[true];
end;
RenderWithWireframeEffect;
if RenderingCamera.Target in [rtVarianceShadowMap, rtShadowMap] then
Attributes.Mode := SavedMode;
if RenderingCamera.Target = rtVarianceShadowMap then
begin
Attributes.CustomShader := SavedCustomShader;
Attributes.CustomShaderAlphaTest := SavedCustomShaderAlphaTest;
end;
end;
begin
{ This is usually called by Render(Frustum, Params) that probably
already did tests below. But it may also be called directly,
so do the checks below anyway. (The checks are trivial, so no speed harm.) }
if GetExists and (Dirty = 0) and
(ReceiveShadowVolumes = Params.ShadowVolumesReceivers) then
begin
{ I used to make here more complex "prepare" mechanism, that was trying
to prepare for particular shapes only right before they are rendered
(so instead of calling PrepareResources below, I was calling PrepareShape
at the beginning of each RenderShape and such).
After a while, it turns out this was a useless complication of code
logic. There are many things that *have* to be prepared before whole
rendering, for example
- UseBlending must be calculated for all shapes.
- Occlusion query id must be generated (as we may start occlusion query
before actually rendering the shape).
It's much simpler to just call PrepareResources at the beginning. }
PrepareResources([prRender], false, Params.BaseLights(Self));
RenderWithShadowMaps;
end;
end;
class procedure TCastleScene.LightRenderInShadow(const Light: TLightInstance;
var LightOn: boolean);
begin
if Light.Node.FdShadowVolumes.Value then
LightOn := false;
end;
procedure TCastleScene.BeforeNodesFree(const InternalChangedAll: boolean);
begin
{ Release all associations with OpenGL context before freeing the nodes.
This means vrml nodes are still valid during GLRenderer unprepare
calls.
Although we don't really want to lose our connection with OpenGL
context, in fact that's the only sensible thing to do now: since
everything possibly changed, we have to unprepare all now.
This is done before inherited, as inherited may clear Shapes tree
(clearing per-shape information about referenced vbos etc.). }
GLContextClose;
inherited;
end;
{ shadow quads --------------------------------------------------------------- }
{ Return vertex Original extruded into infinity, as seen from light
at position LightPos.
This is designed to work only with LightPos[3] = 1. In the future, when
need arises, this may be improved to work with any LightPos[3] <> 0.
For LightPos[3] = 0, i.e. directional light,
don't use this, and there's no need to do it,
since then the extruded point is just LightPos (for any vertex).
RenderXxxShadowVolume want to treat it specially anyway (to optimize
drawing, since then quads degenerate to triangles).
Note: this cannot be moved to a local function inside
TCastleScene.RenderSilhouetteShadowVolume, as FPC 2.6.4 and 2.6.2 on Win32 (but not on Linux
i386) generates then bad code, the loop to ManifoldEdgesNow.Count doesn't finish OK,
the index goes beyond ManifoldEdgesNow.Count-1. }
function ExtrudeVertex(
const Original: TVector3Single;
const LightPos: TVector4Single): TVector4Single;
var
LightPos3: TVector3Single absolute LightPos;
begin
{ Below is the moment when we require that
if LightPos[3] <> 0 then LightPos[3] = 1 (not any other non-zero value).
Otherwise we would have to divide here LightPos3 by LightPos[3].
Maybe in the future this requirement will be removed and we'll work
for any LightPos in homogeneous coordinates, for now it's not really
needed. }
Result[0] := Original[0] - LightPos3[0];
Result[1] := Original[1] - LightPos3[1];
Result[2] := Original[2] - LightPos3[2];
Result[3] := 0;
end;
procedure TCastleScene.RenderSilhouetteShadowVolume(
const LightPos: TVector4Single;
const TransformIsIdentity: boolean;
const Transform: TMatrix4Single;
const LightCap, DarkCap: boolean);
{$ifndef OpenGLES} //TODO-es
{ Is it worth preparing ManifoldEdges list: yes.
At the beginning we used here the simple algorithm from
[http://www.gamedev.net/reference/articles/article1873.asp].
For each triangle with dot > 0, add it to the Edges list
--- unless it's already there, in which case remove it.
This way, at the end Edges contain all edges that have on one
side triangle with dot > 0 and on the other side triangle with dot <= 0.
In other words, all sihouette edges.
(This is all assuming that model is 2-manifold,
so each edge has exactly 2 neighbor triangles).
But this algorithm proved to be unacceptably slow for many cases.
While it generated much less shadow quads than naive
RenderAllShadowVolume, the time spent in detecting the silhouette edges
made the total time even worse than RenderAllShadowVolume.
Obviously, that's because we started from the list of triangles,
without any explicit information about the edges.
The time of this algorithm was n*m, if n is the number of triangles
and m the number of edges, and on 2-manifold n*3/2 = m so
the time is n^2. Terrible, if you take complicated shadow caster.
To make this faster, we have to know the connections inside the model:
that's what ManifoldEdges list is all about. It allows us to
implement this in time proportional to the number of edges.
}
var
Triangles: TTrianglesShadowCastersList;
procedure RenderShadowQuad(EdgePtr: PManifoldEdge;
const P0Index, P1Index: Cardinal); overload;
var
V0, V1: TVector3Single;
EdgeV0, EdgeV1: PVector3Single;
TrianglePtr: PTriangle3Single;
begin
TrianglePtr := Addr(Triangles.L[EdgePtr^.Triangles[0]]);
EdgeV0 := @TrianglePtr^[(EdgePtr^.VertexIndex + P0Index) mod 3];
EdgeV1 := @TrianglePtr^[(EdgePtr^.VertexIndex + P1Index) mod 3];
if TransformIsIdentity then
begin
V0 := EdgeV0^;
V1 := EdgeV1^;
end else
begin
V0 := MatrixMultPoint(Transform, EdgeV0^);
V1 := MatrixMultPoint(Transform, EdgeV1^);
end;
glVertexv(V0);
glVertexv(V1);
if LightPos[3] <> 0 then
begin
glVertexv(ExtrudeVertex(V1, LightPos));
glVertexv(ExtrudeVertex(V0, LightPos));
end else
glVertexv(LightPos);
end;
procedure RenderShadowQuad(EdgePtr: PBorderEdge;
const P0Index, P1Index: Cardinal); overload;
var
V0, V1: TVector3Single;
EdgeV0, EdgeV1: PVector3Single;
TrianglePtr: PTriangle3Single;
begin
TrianglePtr := Addr(Triangles.L[EdgePtr^.TriangleIndex]);
EdgeV0 := @TrianglePtr^[(EdgePtr^.VertexIndex + P0Index) mod 3];
EdgeV1 := @TrianglePtr^[(EdgePtr^.VertexIndex + P1Index) mod 3];
if TransformIsIdentity then
begin
V0 := EdgeV0^;
V1 := EdgeV1^;
end else
begin
V0 := MatrixMultPoint(Transform, EdgeV0^);
V1 := MatrixMultPoint(Transform, EdgeV1^);
end;
glVertexv(V0);
glVertexv(V1);
if LightPos[3] <> 0 then
begin
glVertexv(ExtrudeVertex(V1, LightPos));
glVertexv(ExtrudeVertex(V0, LightPos));
end else
glVertexv(LightPos);
end;
{ We initialize TrianglesPlaneSide and render caps in one step,
this way we have to iterate over Triangles only once, and in case
of PlaneSide_NotIdentity and rendering caps --- we have to transform
each triangle only once. }
procedure InitializeTrianglesPlaneSideAndRenderCaps(
TrianglesPlaneSide: TBooleanList;
LightCap, DarkCap: boolean);
procedure RenderCaps(const T: TTriangle3Single);
begin
if LightCap then
begin
glVertexv(T[0]);
glVertexv(T[1]);
glVertexv(T[2]);
end;
if DarkCap then
begin
glVertexv(ExtrudeVertex(T[2], LightPos));
glVertexv(ExtrudeVertex(T[1], LightPos));
glVertexv(ExtrudeVertex(T[0], LightPos));
end;
end;
function PlaneSide_Identity(const T: TTriangle3Single): boolean;
var
Plane: TVector4Single;
begin
Plane := TrianglePlane(T);
Result := (Plane[0] * LightPos[0] +
Plane[1] * LightPos[1] +
Plane[2] * LightPos[2] +
Plane[3] * LightPos[3]) > 0;
if Result then RenderCaps(T);
end;
function PlaneSide_NotIdentity(const T: TTriangle3Single): boolean;
var
Plane: TVector4Single;
TriangleTransformed: TTriangle3Single;
begin
TriangleTransformed[0] := MatrixMultPoint(Transform, T[0]);
TriangleTransformed[1] := MatrixMultPoint(Transform, T[1]);
TriangleTransformed[2] := MatrixMultPoint(Transform, T[2]);
Plane := TrianglePlane(TriangleTransformed);
Result := (Plane[0] * LightPos[0] +
Plane[1] * LightPos[1] +
Plane[2] * LightPos[2] +
Plane[3] * LightPos[3]) > 0;
if Result then RenderCaps(TriangleTransformed);
end;
{ Comments for Opaque/TransparentTrianglesBegin/End:
It's crucial to set glDepthFunc(GL_NEVER) for LightCap.
This way we get proper self-shadowing. Otherwise, LightCap would
collide in z buffer with the object itself.
Setting glDepthFunc(GL_NEVER) for DarkCap also is harmless and OK.
Proof: if there's anything on this pixel, then indeed the depth test
would fail. If the pixel is empty (nothing was rasterized there),
then the depth test wouldn't fail... but also, in this case value in
stencil buffer will not matter, it doesn't matter if this pixel
is in shadow or not because there's simply nothing there.
And it allows us to render both LightCap and DarkCap in one
GL_TRIANGLES pass, in one iteration over Triangles list, which is
good for speed.
Some papers propose other solution:
glEnable(GL_POLYGON_OFFSET_FILL);
glPolygonOffset(1, 1);
but this is no good for use, because it cannot be applied
to DarkCap (otherwise DarkCap in infinity (as done by ExtrudeVertex)
would go outside of depth range (even for infinite projection,
as glPolygonOffset works already after the vertex is transformed
by projection), and this would make DarkCap not rendered
(outside of depth range)).
If you consider that some shadow casters and receivers may
be partially transparent (that is, rendered without writing
to depth buffer) then the above reasoning is not so simple:
- There's no way to handle transparent
objects (that are not recorded in depth buffer) as shadow receivers.
Rendering them twice with blending would result in wrong blending
modes applied anyway. So TGLShadowVolumeRenderer.Render renders them
at the end, as last pass.
This means that "glDepthFunc(GL_NEVER) for DarkCap" is still
Ok: if on some pixel there was only transparent object visible,
then stencil value of this pixel is wrong, but transparent object
will never be rendered in shadowed state --- so it will not
look at stencil value.
For LightCap, situation is worse. Even if the transparent
object is only shadow caster (not receiver), still problems
may arise due to glDepthFunc(GL_NEVER): imagine you have
a transparent object casting shadow on non-transparent object
(see e.g. demo_models/shadow_volumes/ghost_shadow.wrl).
This means that you can look through the shadow casting
(transp) object and see shadow receiving (opaque) object,
that may or may not be in shadow on speciic pixel.
Which means that glDepthFunc(GL_NEVER) is wrong for LightCap:
the transparent object doesn't hide the shadow on the screen,
and the depth test shouldn't fail. Which means that for transparent
objects, we cannot do glDepthFunc(GL_NEVER).
- What to do?
The trick
glEnable(GL_POLYGON_OFFSET_FILL);
glPolygonOffset(1, 1);
makes light cap rendering working for both transparent and opaque
objects, but it's not applicable to dark cap. Moreover,
using glPolygonOffset always feels dirty.
Solution: we decide to handle transparent objects separately.
We note that for transparent shadow casters
actually no tweaks to caps rendering should be done.
No glPolygonOffset, no glDepthFunc(GL_NEVER) needed: light cap
should be tested as usual. (Since transparent object is not written
to depth buffer, it will not collide in depth buffer with it's
light cap).
This means that is we'll just split triangles list into
transparent and opaque ones, then the only complication needed
is to switch glDepthFunc(GL_NEVER) trick *off* for transparent
triangles. And all works fast.
- There's actually one more note: for transparent objects,
caps are always needed (even with zpass).
Note that this means that whole 2-manifold part must have
caps.
This also means that joining one 2-manifold path from some transparent
and some opaque triangles will not work. (as then some parts
may have caps (like transparent ones) and some note
(like opaque ones with zpass)).
TODO: implement above. We'll need triangles sorted by transparency,
with some marker TrianglesOpaqueCount.
}
procedure OpaqueTrianglesBegin;
begin
if LightCap or DarkCap then
begin
glPushAttrib(GL_DEPTH_BUFFER_BIT); { to save glDepthFunc call below }
glDepthFunc(GL_NEVER);
glBegin(GL_TRIANGLES);
end;
end;
procedure OpaqueTrianglesEnd;
begin
if LightCap or DarkCap then
begin
glEnd;
glPopAttrib;
end;
end;
procedure TransparentTrianglesBegin;
begin
{ Caps are always needed, doesn't depend on zpass/zfail.
Well, for dark cap we can avoid them if the light is directional. }
LightCap := true;
DarkCap := LightPos[3] <> 0;
glBegin(GL_TRIANGLES);
end;
procedure TransparentTrianglesEnd;
begin
glEnd;
end;
var
TrianglePtr: PTriangle3Single;
I: Integer;
OpaqueCount: Cardinal;
begin
TrianglesPlaneSide.Count := Triangles.Count;
TrianglePtr := PTriangle3Single(Triangles.List);
{ If light is directional, no need to render dark cap }
DarkCap := DarkCap and (LightPos[3] <> 0);
if Attributes.Blending and
(Attributes.Mode = rmFull) then
OpaqueCount := Triangles.OpaqueCount else
OpaqueCount := Triangles.Count; { everything is opaque in this case }
if TransformIsIdentity then
begin
OpaqueTrianglesBegin;
for I := 0 to Integer(OpaqueCount) - 1 do
begin
TrianglesPlaneSide.L[I] := PlaneSide_Identity(TrianglePtr^);
Inc(TrianglePtr);
end;
OpaqueTrianglesEnd;
TransparentTrianglesBegin;
for I := OpaqueCount to Triangles.Count - 1 do
begin
TrianglesPlaneSide.L[I] := PlaneSide_Identity(TrianglePtr^);
Inc(TrianglePtr);
end;
TransparentTrianglesEnd;
end else
begin
OpaqueTrianglesBegin;
for I := 0 to Integer(OpaqueCount) - 1 do
begin
TrianglesPlaneSide.L[I] := PlaneSide_NotIdentity(TrianglePtr^);
Inc(TrianglePtr);
end;
OpaqueTrianglesEnd;
TransparentTrianglesBegin;
for I := OpaqueCount to Triangles.Count - 1 do
begin
TrianglesPlaneSide.L[I] := PlaneSide_NotIdentity(TrianglePtr^);
Inc(TrianglePtr);
end;
TransparentTrianglesEnd;
end;
end;
var
I: Integer;
PlaneSide0, PlaneSide1: boolean;
TrianglesPlaneSide: TBooleanList;
ManifoldEdgesNow: TManifoldEdgeList;
ManifoldEdgePtr: PManifoldEdge;
BorderEdgesNow: TBorderEdgeList;
BorderEdgePtr: PBorderEdge;
begin
Assert(ManifoldEdges <> nil);
{ if the model is not perfect 2-manifold, do not render it's shadow volumes.
We still have here some code to handle BorderEdges, but in practice:
this just has no chance to work 100% reliably with BorderEdges.
See demo_models/shadow_volumes/not_manifold/README.txt }
if BorderEdges.Count <> 0 then Exit;
Triangles := TrianglesListShadowCasters;
TrianglesPlaneSide := TBooleanList.Create;
try
InitializeTrianglesPlaneSideAndRenderCaps(TrianglesPlaneSide,
LightCap, DarkCap);
if LightPos[3] <> 0 then
glBegin(GL_QUADS) else
glBegin(GL_TRIANGLES);
{ for each 2-manifold edge, possibly render it's shadow quad }
ManifoldEdgesNow := ManifoldEdges;
ManifoldEdgePtr := PManifoldEdge(ManifoldEdgesNow.List);
for I := 0 to ManifoldEdgesNow.Count - 1 do
begin
PlaneSide0 := TrianglesPlaneSide.L[ManifoldEdgePtr^.Triangles[0]];
PlaneSide1 := TrianglesPlaneSide.L[ManifoldEdgePtr^.Triangles[1]];
{ Only if PlaneSide0 <> PlaneSide1 it's a silhouette edge,
so only then render it's shadow quad.
We want to have consistent CCW orientation of shadow quads faces,
so that face is oriented CCW <=> you're looking at it from outside
(i.e. it's considered front face of this shadow quad).
This is needed, since user of this method may want to do culling
to eliminate back or front faces.
TriangleDir(T) indicates direction that goes from CCW triangle side
(that's guaranteed by the way TriangleDir calculates plane dir).
So PlaneSideX is @true if LightPos is on CCW side of appropriate
triangle. So if PlaneSide0 the shadow quad is extended
in reversed Triangles[0] order, i.e. like 1, 0, Extruded0, Extruded1.
Otherwise, in normal Triangles[0], i.e. 0, 1, Extruded1, Extruded0.
Just draw it, the triangle corners numbered with 0,1,2 in CCW and
imagine that you want the shadow quad to be also CCW on the outside,
it will make sense then :) }
if PlaneSide0 and not PlaneSide1 then
RenderShadowQuad(ManifoldEdgePtr, 1, 0) else
if PlaneSide1 and not PlaneSide0 then
RenderShadowQuad(ManifoldEdgePtr, 0, 1);
Inc(ManifoldEdgePtr);
end;
{ For each border edge, always render it's shadow quad.
THIS CODE IS NEVER USED NOW (at the beginning of this method,
we exit if BorderEdges.Count <> 0). That's because rendering
the shadow quads from border edges doesn't solve the problem fully:
artifacts are still possible.
See http://http.developer.nvidia.com/GPUGems3/gpugems3_ch11.html
for more involved approach. Rendering shadow quads from border edges,
like below, is only part of the solution. }
BorderEdgesNow := BorderEdges;
BorderEdgePtr := PBorderEdge(BorderEdgesNow.List);
for I := 0 to BorderEdgesNow.Count - 1 do
begin
PlaneSide0 := TrianglesPlaneSide.L[BorderEdgePtr^.TriangleIndex];
{ We want to have consistent CCW orientation of shadow quads faces,
so that face is oriented CCW <=> you're looking at it from outside
(i.e. it's considered front face of this shadow quad).
This is needed, since user of this method may want to do culling
to eliminate back or front faces.
TriangleDir(T) indicates direction that goes from CCW triangle side
(that's guaranteed by the way TriangleDir calculates plane dir).
So PlaneSide0 is true if LightPos is on CCW side of appropriate
triangle. So if PlaneSide0, the shadow quad is extended
in the direction of TriangleIndex, like 1, 0, Extruded0, Extruded1. }
if PlaneSide0 then
RenderShadowQuad(BorderEdgePtr, 1, 0) else
RenderShadowQuad(BorderEdgePtr, 0, 1);
Inc(BorderEdgePtr);
end;
glEnd;
finally FreeAndNil(TrianglesPlaneSide) end;
{$else}
begin
{$endif}
end;
procedure TCastleScene.RenderShadowVolume(
ShadowVolumeRenderer: TBaseShadowVolumeRenderer;
const ParentTransformIsIdentity: boolean;
const ParentTransform: TMatrix4Single);
var
Box: TBox3D;
SVRenderer: TGLShadowVolumeRenderer;
begin
if GetExists and CastShadowVolumes then
begin
{ calculate Box }
Box := BoundingBox;
if not ParentTransformIsIdentity then
Box := Box.Transform(ParentTransform);
SVRenderer := ShadowVolumeRenderer as TGLShadowVolumeRenderer;
SVRenderer.InitScene(Box);
if SVRenderer.SceneShadowPossiblyVisible then
RenderSilhouetteShadowVolume(
SVRenderer.LightPosition, ParentTransformIsIdentity, ParentTransform,
SVRenderer.ZFailAndLightCap,
SVRenderer.ZFail);
end;
end;
procedure TCastleScene.RenderSilhouetteEdges(
const ObserverPos: TVector4Single;
const Transform: TMatrix4Single);
{$ifndef OpenGLES} //TODO-es
{ This is actually a modified implementation of
TCastleScene.RenderSilhouetteShadowQuads: instead of rendering
shadow quad for each silhouette edge, the edge is simply rendered
as OpenGL line. }
var
Triangles: TTriangle3SingleList;
EdgePtr: PManifoldEdge;
procedure RenderEdge(
const P0Index, P1Index: Cardinal);
var
V0, V1: TVector3Single;
EdgeV0, EdgeV1: PVector3Single;
TrianglePtr: PTriangle3Single;
begin
TrianglePtr := Addr(Triangles.L[EdgePtr^.Triangles[0]]);
EdgeV0 := @TrianglePtr^[(EdgePtr^.VertexIndex + P0Index) mod 3];
EdgeV1 := @TrianglePtr^[(EdgePtr^.VertexIndex + P1Index) mod 3];
V0 := MatrixMultPoint(Transform, EdgeV0^);
V1 := MatrixMultPoint(Transform, EdgeV1^);
glVertexv(V0);
glVertexv(V1);
end;
function PlaneSide(const T: TTriangle3Single): boolean;
var
Plane: TVector4Single;
begin
Plane := TrianglePlane(
MatrixMultPoint(Transform, T[0]),
MatrixMultPoint(Transform, T[1]),
MatrixMultPoint(Transform, T[2]));
Result := (Plane[0] * ObserverPos[0] +
Plane[1] * ObserverPos[1] +
Plane[2] * ObserverPos[2] +
Plane[3] * ObserverPos[3]) > 0;
end;
var
I: Integer;
TrianglePtr: PTriangle3Single;
PlaneSide0, PlaneSide1: boolean;
TrianglesPlaneSide: TBooleanList;
Edges: TManifoldEdgeList;
begin
glBegin(GL_LINES);
Triangles := TrianglesListShadowCasters;
Edges := ManifoldEdges;
TrianglesPlaneSide := TBooleanList.Create;
try
{ calculate TrianglesPlaneSide array }
TrianglesPlaneSide.Count := Triangles.Count;
TrianglePtr := PTriangle3Single(Triangles.List);
for I := 0 to Triangles.Count - 1 do
begin
TrianglesPlaneSide.L[I] := PlaneSide(TrianglePtr^);
Inc(TrianglePtr);
end;
{ for each edge, possibly render it's shadow quad }
EdgePtr := PManifoldEdge(Edges.List);
for I := 0 to Edges.Count - 1 do
begin
PlaneSide0 := TrianglesPlaneSide.L[EdgePtr^.Triangles[0]];
PlaneSide1 := TrianglesPlaneSide.L[EdgePtr^.Triangles[1]];
if PlaneSide0 <> PlaneSide1 then
RenderEdge(0, 1);
Inc(EdgePtr);
end;
finally FreeAndNil(TrianglesPlaneSide) end;
glEnd;
{$else}
begin
{$endif}
end;
procedure TCastleScene.RenderBorderEdges(
const Transform: TMatrix4Single);
{$ifndef OpenGLES} //TODO-es
var
Triangles: TTriangle3SingleList;
EdgePtr: PBorderEdge;
procedure RenderEdge;
var
V0, V1: TVector3Single;
EdgeV0, EdgeV1: PVector3Single;
TrianglePtr: PTriangle3Single;
begin
TrianglePtr := Addr(Triangles.L[EdgePtr^.TriangleIndex]);
EdgeV0 := @TrianglePtr^[(EdgePtr^.VertexIndex + 0) mod 3];
EdgeV1 := @TrianglePtr^[(EdgePtr^.VertexIndex + 1) mod 3];
V0 := MatrixMultPoint(Transform, EdgeV0^);
V1 := MatrixMultPoint(Transform, EdgeV1^);
glVertexv(V0);
glVertexv(V1);
end;
var
I: Integer;
Edges: TBorderEdgeList;
begin
glBegin(GL_LINES);
Triangles := TrianglesListShadowCasters;
Edges := BorderEdges;
{ for each edge, render it }
EdgePtr := PBorderEdge(Edges.List);
for I := 0 to Edges.Count - 1 do
begin
RenderEdge;
Inc(EdgePtr);
end;
glEnd;
{$else}
begin
{$endif}
end;
{ Frustum culling ------------------------------------------------------------ }
function TCastleScene.FrustumCulling_None(Shape: TShape): boolean;
begin
Result := DistanceCullingCheck(Shape);
end;
function TCastleScene.FrustumCulling_Sphere(Shape: TShape): boolean;
begin
Result := DistanceCullingCheck(Shape) and
Shape.FrustumBoundingSphereCollisionPossibleSimple(RenderFrustum_Frustum^);
end;
function TCastleScene.FrustumCulling_Box(Shape: TShape): boolean;
begin
Result := DistanceCullingCheck(Shape) and
RenderFrustum_Frustum^.Box3DCollisionPossibleSimple(Shape.BoundingBox);
end;
function TCastleScene.FrustumCulling_Both(Shape: TShape): boolean;
begin
Result := DistanceCullingCheck(Shape) and
Shape.FrustumBoundingSphereCollisionPossibleSimple(
RenderFrustum_Frustum^) and
RenderFrustum_Frustum^.Box3DCollisionPossibleSimple(
Shape.BoundingBox);
end;
function TCastleScene.DistanceCullingCheck(Shape: TShape): boolean;
begin
Result :=
(DistanceCulling <= 0) or
(not CameraViewKnown) or
(PointsDistanceSqr(Shape.BoundingSphereCenter, CameraPosition) <=
Sqr(DistanceCulling + Shape.BoundingSphereRadius))
end;
procedure TCastleScene.SetFrustumCulling(const Value: TFrustumCulling);
begin
if Value <> FFrustumCulling then
begin
FFrustumCulling := Value;
case Value of
{ FrustumCullingFunc may be @nil (unlike OctreeFrustumCullingFunc). }
fcNone : FrustumCullingFunc := nil;
fcSphere: FrustumCullingFunc := @FrustumCulling_Sphere;
fcBox : FrustumCullingFunc := @FrustumCulling_Box;
fcBoth : FrustumCullingFunc := @FrustumCulling_Both;
else raise EInternalError.Create('SetFrustumCulling?');
end;
end;
end;
procedure TCastleScene.SetOctreeFrustumCulling(const Value: TFrustumCulling);
begin
if Value <> FOctreeFrustumCulling then
begin
FOctreeFrustumCulling := Value;
case Value of
fcNone : OctreeFrustumCullingFunc := @FrustumCulling_None;
fcSphere: OctreeFrustumCullingFunc := @FrustumCulling_Sphere;
fcBox : OctreeFrustumCullingFunc := @FrustumCulling_Box;
fcBoth : OctreeFrustumCullingFunc := @FrustumCulling_Both;
else raise EInternalError.Create('SetOctreeFrustumCulling?');
end;
end;
end;
{ Render --------------------------------------------------------------------- }
function TCastleScene.RenderFrustumOctree_TestShape(
Shape: TShape): boolean;
begin
{ We know that all shapes passed here are TGLShape, so we can cast }
Result := TGLShape(Shape).RenderFrustumOctree_Visible and DistanceCullingCheck(Shape);
end;
procedure TCastleScene.RenderFrustumOctree_EnumerateShapes(
ShapeIndex: Integer; CollidesForSure: boolean);
var
Shape: TGLShape;
begin
Shape := TGLShape(OctreeRendering.ShapesList[ShapeIndex]);
if (not Shape.RenderFrustumOctree_Visible) and
( CollidesForSure or
OctreeFrustumCullingFunc(Shape) ) then
Shape.RenderFrustumOctree_Visible := true;
end;
procedure TCastleScene.Render(const Frustum: TFrustum; const Params: TRenderParams);
{ Call Render with explicit TTestShapeVisibility function.
That is, choose test function suitable for our Frustum,
octrees and some settings.
If OctreeRendering is initialized (so be sure to include
ssRendering in @link(Spatial)), this octree will be used to quickly
find visible Shape. Otherwise, we will just enumerate all
Shapes (which may be slower if you really have a lot of Shapes). }
procedure RenderFrustumOctree(Octree: TShapeOctree);
procedure ResetShapeVisible(Shape: TShape);
begin
TGLShape(Shape).RenderFrustumOctree_Visible := false;
end;
begin
Shapes.Traverse(@ResetShapeVisible, false, true);
Octree.EnumerateCollidingOctreeItems(Frustum,
@RenderFrustumOctree_EnumerateShapes);
Render(@RenderFrustumOctree_TestShape, Frustum, Params);
end;
begin
if GetExists and (Dirty = 0) and
(ReceiveShadowVolumes = Params.ShadowVolumesReceivers) then
begin
RenderFrustum_Frustum := @Frustum;
if OctreeRendering <> nil then
RenderFrustumOctree(OctreeRendering) else
Render(FrustumCullingFunc, Frustum, Params);
end;
end;
{ Background-related things -------------------------------------------------- }
procedure TCastleScene.InvalidateBackground;
begin
FreeAndNil(FBackground);
FBackgroundNode := nil;
FBackgroundValid := false;
end;
procedure TCastleScene.SetBackgroundSkySphereRadius(const Value: Single);
begin
if Value <> FBackgroundSkySphereRadius then
begin
InvalidateBackground;
FBackgroundSkySphereRadius := Value;
end;
end;
procedure TCastleScene.PrepareBackground;
{ Always after PrepareBackground => FBackgroundValid = true }
begin
if FBackgroundValid and (BackgroundStack.Top = FBackgroundNode) then
Exit;
{ Background is created, but not suitable for current
BackgroundStack.Top. So destroy it. }
if FBackgroundValid then
InvalidateBackground;
if BackgroundStack.Top <> nil then
begin
if Log then
WritelnLog('Background', Format('OpenGL background recreated, with radius %f',
[BackgroundSkySphereRadius]));
{ In the future we could use FBackground.Update without recreating
the instance. }
FBackground := TBackground.Create;
FBackground.Update(BackgroundStack.Top, BackgroundSkySphereRadius);
end else
FBackground := nil;
FBackgroundNode := BackgroundStack.Top;
FBackgroundValid := true;
end;
function TCastleScene.Background: TBackground;
var
BackgroundNode: TAbstractBackgroundNode;
begin
PrepareBackground;
Result := FBackground;
{ If background transform changed, we have to update the FBackground
scene. Note that we check Result <> nil always, since not every
TAbstractBackgroundNode may be supported. }
BackgroundNode := BackgroundStack.Top;
if (BackgroundNode <> nil) and (Result <> nil) then
Result.UpdateTransform(BackgroundNode.TransformRotation);
end;
function TCastleScene.Attributes: TSceneRenderingAttributes;
begin
Result := Renderer.Attributes as TSceneRenderingAttributes;
end;
procedure TCastleScene.UpdateGeneratedTextures(
const RenderFunc: TRenderFromViewFunction;
const ProjectionNear, ProjectionFar: Single;
const OriginalViewport: TRectangle);
var
I: Integer;
NeedsRestoreViewport: boolean;
Shape: TGLShape;
TextureNode: TAbstractTextureNode;
begin
NeedsRestoreViewport := false;
for I := 0 to GeneratedTextures.Count - 1 do
begin
Shape := TGLShape(GeneratedTextures.L[I].Shape);
TextureNode := GeneratedTextures.L[I].TextureNode;
if TextureNode is TGeneratedCubeMapTextureNode then
AvoidShapeRendering := Shape else
if TextureNode is TGeneratedShadowMapNode then
AvoidNonShadowCasterRendering := true;
Renderer.UpdateGeneratedTextures(Shape, TextureNode,
RenderFunc, ProjectionNear, ProjectionFar, NeedsRestoreViewport,
ViewpointStack.Top,
CameraViewKnown, CameraPosition, CameraDirection, CameraUp);
AvoidShapeRendering := nil;
AvoidNonShadowCasterRendering := false;
end;
if NeedsRestoreViewport then
glViewport(OriginalViewport);
end;
procedure TCastleScene.ViewChangedSuddenly;
var
SI: TShapeTreeIterator;
begin
inherited;
if Attributes.ReallyUseOcclusionQuery then
begin
if Log then
WritelnLog('Occlusion query', 'View changed suddenly');
{ Set OcclusionQueryAsked := false for all shapes. }
SI := TShapeTreeIterator.Create(Shapes, false, false, false);
try
while SI.GetNext do
TGLShape(SI.Current).OcclusionQueryAsked := false;
finally FreeAndNil(SI) end;
end;
end;
procedure TCastleScene.VisibleChangeNotification(const Changes: TVisibleChanges);
var
I: Integer;
begin
inherited;
{ set UpdateNeeded := true before calling inherited (with VisibleChange
and OnVisibleChange callback), because inside OnVisibleChange callback
we'll actually initialize regenerating the textures. }
if Changes <> [] then
begin
for I := 0 to GeneratedTextures.Count - 1 do
begin
if GeneratedTextures.L[I].TextureNode is TGeneratedCubeMapTextureNode then
begin
if [vcVisibleGeometry, vcVisibleNonGeometry] * Changes <> [] then
GeneratedTextures.L[I].Handler.UpdateNeeded := true;
end else
if GeneratedTextures.L[I].TextureNode is TGeneratedShadowMapNode then
begin
if vcVisibleGeometry in Changes then
GeneratedTextures.L[I].Handler.UpdateNeeded := true;
end else
{ Even mere vcCamera causes regenerate of RenderedTexture,
as RenderedTexture with viewpoint = NULL uses current camera.
So any Changes <> [] causes regeneration of RenderedTexture.
Also, for other than RenderedTexture nodes, default is to regenerate
(safer). }
GeneratedTextures.L[I].Handler.UpdateNeeded := true;
end;
end;
end;
function TCastleScene.ScreenEffectsCount: Integer;
var
I: Integer;
SE: TScreenEffectNode;
begin
Result := 0;
if Attributes.Shaders <> srDisable then
for I := 0 to ScreenEffectNodes.Count - 1 do
begin
SE := TScreenEffectNode(ScreenEffectNodes[I]);
Renderer.PrepareScreenEffect(SE);
if SE.Shader <> nil then
Inc(Result);
end;
end;
function TCastleScene.ScreenEffects(Index: Integer): TGLSLProgram;
var
I: Integer;
SE: TScreenEffectNode;
begin
{ No need for PrepareScreenEffect here, ScreenEffectsCount (that does
PrepareScreenEffect) is always called first, otherwise the caller
would not know that this Index is valid. }
for I := 0 to ScreenEffectNodes.Count - 1 do
begin
SE := TScreenEffectNode(ScreenEffectNodes[I]);
if SE.Shader <> nil then
if Index = 0 then
Exit(TGLSLProgram(SE.Shader)) else
Dec(Index);
end;
raise EInternalError.Create('TCastleScene.ScreenEffects: Invalid index');
end;
function TCastleScene.ScreenEffectsNeedDepth: boolean;
var
I: Integer;
begin
{ For now: No need for PrepareScreenEffect here, ScreenEffectsCount
is always called first. But actually for some scenarios we should do
here PrepareScreenEffect? }
for I := 0 to ScreenEffectNodes.Count - 1 do
if (TScreenEffectNode(ScreenEffectNodes[I]).Shader <> nil) and
TScreenEffectNode(ScreenEffectNodes[I]).FdNeedsDepth.Value then
Exit(true);
Exit(false);
end;
procedure TCastleScene.FreeResources(Resources: TSceneFreeResources);
begin
inherited;
if (frBackgroundImageInNodes in Resources) and
(FBackground <> nil) then
FBackground.FreeResources;
end;
{ TSceneRenderingAttributes ---------------------------------------------- }
constructor TSceneRenderingAttributes.Create;
begin
inherited;
FBlending := true;
FBlendingSourceFactor := DefaultBlendingSourceFactor;
FBlendingDestinationFactor := DefaultBlendingDestinationFactor;
FBlendingSort := DefaultBlendingSort;
FControlBlending := true;
FSolidWireframeScale := DefaultSolidWireframeScale;
FSolidWireframeBias := DefaultSolidWireframeBias;
FSilhouetteScale := DefaultSilhouetteScale;
FSilhouetteBias := DefaultSilhouetteBias;
FWireframeEffect := weNormal;
FWireframeColor := DefaultWireframeColor;
FScenes := TCastleSceneList.Create(false);
if Assigned(OnCreate) then
OnCreate(Self);
end;
destructor TSceneRenderingAttributes.Destroy;
begin
FreeAndNil(FScenes);
inherited;
end;
procedure TSceneRenderingAttributes.Assign(Source: TPersistent);
var
S: TSceneRenderingAttributes;
begin
if Source is TSceneRenderingAttributes then
begin
S := TSceneRenderingAttributes(Source);
Blending := S.Blending;
BlendingSourceFactor := S.BlendingSourceFactor;
BlendingDestinationFactor := S.BlendingDestinationFactor;
BlendingSort := S.BlendingSort;
ControlBlending := S.ControlBlending;
UseOcclusionQuery := S.UseOcclusionQuery;
UseHierarchicalOcclusionQuery := S.UseHierarchicalOcclusionQuery;
inherited;
end else
inherited;
end;
procedure TSceneRenderingAttributes.ReleaseCachedResources;
begin
inherited;
{ We have to do at least Renderer.UnprepareAll.
Actually, we have to do more: TCastleScene must also be disconnected
from OpenGL, to release screen effects (referencing renderer shaders)
and such. So full CloseGLRenderer is needed. }
if TemporaryAttributeChange = 0 then
FScenes.CloseGLRenderer;
end;
procedure TSceneRenderingAttributes.SetBlending(const Value: boolean);
begin
FBlending := Value;
end;
procedure TSceneRenderingAttributes.SetBlendingSourceFactor(
const Value: TGLenum);
begin
FBlendingSourceFactor := Value;
end;
procedure TSceneRenderingAttributes.SetBlendingDestinationFactor(
const Value: TGLenum);
begin
FBlendingDestinationFactor := Value;
end;
procedure TSceneRenderingAttributes.SetBlendingSort(const Value: TBlendingSort);
begin
FBlendingSort := Value;
end;
procedure TSceneRenderingAttributes.SetControlBlending(const Value: boolean);
begin
FControlBlending := Value;
end;
procedure TSceneRenderingAttributes.SetUseOcclusionQuery(const Value: boolean);
var
I: Integer;
begin
if UseOcclusionQuery <> Value then
begin
FUseOcclusionQuery := Value;
if UseOcclusionQuery then
begin
{ If you switch UseOcclusionQuery on, then off, then move around the scene
a lot, then switch UseOcclusionQuery back on --- you don't want to use
results from previous query that was done many frames ago. }
FScenes.ViewChangedSuddenly;
{ Make PrepareShapesResources again, to cause TGLShape.PrepareResources
that initializes OcclusionQueryId for each shape }
if TemporaryAttributeChange = 0 then
for I := 0 to FScenes.Count - 1 do
if FScenes[I] <> nil then
FScenes[I].PreparedShapesResources := false;
end;
end;
end;
function TSceneRenderingAttributes.ReallyUseOcclusionQuery: boolean;
begin
Result := UseOcclusionQuery and (not UseHierarchicalOcclusionQuery) and
GLFeatures.ARB_occlusion_query and (GLFeatures.QueryCounterBits > 0);
end;
function TSceneRenderingAttributes.
ReallyUseHierarchicalOcclusionQuery: boolean;
begin
Result := UseHierarchicalOcclusionQuery and GLFeatures.ARB_occlusion_query and
(GLFeatures.QueryCounterBits > 0);
end;
procedure TSceneRenderingAttributes.SetShaders(const Value: TShadersRendering);
var
I: Integer;
begin
if Shaders <> Value then
begin
inherited;
{ When switching to a higher TShadersRendering value
(that uses more shaders), we want to force generating necessary
shaders at the next PrepareResources call. Otherwise shaders would
be prepared only when shapes come into view, which means that navigating
awfully stutters for some time after changing this property. }
if TemporaryAttributeChange = 0 then
for I := 0 to FScenes.Count - 1 do
if FScenes[I] <> nil then
FScenes[I].PreparedRender := false;
end;
end;
{ TCastleSceneList ------------------------------------------------------ }
procedure TCastleSceneList.GLContextClose;
{ This may be called from various destructors,
so we are extra careful here and check Items[I] <> nil. }
var
I: Integer;
begin
for I := 0 to Count - 1 do
if Items[I] <> nil then
Items[I].GLContextClose;
end;
procedure TCastleSceneList.InvalidateBackground;
{ This may be called from various destructors,
so we are extra careful here and check Items[I] <> nil. }
var
I: Integer;
begin
for I := 0 to Count - 1 do
if Items[I] <> nil then
Items[I].InvalidateBackground;
end;
procedure TCastleSceneList.CloseGLRenderer;
{ This may be called from various destructors,
so we are extra careful here and check Items[I] <> nil. }
var
I: Integer;
begin
for I := 0 to Count - 1 do
if Items[I] <> nil then
Items[I].CloseGLRenderer;
end;
procedure TCastleSceneList.ViewChangedSuddenly;
var
I: Integer;
begin
for I := 0 to Count - 1 do
if Items[I] <> nil then
Items[I].ViewChangedSuddenly;
end;
initialization
GLContextCache := TGLRendererContextCache.Create;
finalization
FreeAndNil(GLContextCache);
end.
|