This file is indexed.

/usr/src/castle-game-engine-5.2.0/x3d/opengl/castlebackground.pas is in castle-game-engine-src 5.2.0-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
{
  Copyright 2002-2014 Michalis Kamburelis.

  This file is part of "Castle Game Engine".

  "Castle Game Engine" is free software; see the file COPYING.txt,
  included in this distribution, for details about the copyright.

  "Castle Game Engine" is distributed in the hope that it will be useful,
  but WITHOUT ANY WARRANTY; without even the implied warranty of
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

  ----------------------------------------------------------------------------
}

{ Background for 3D world (TBackground). }
unit CastleBackground;

interface

uses CastleVectors, SysUtils, CastleUtils, CastleImages, X3DNodes,
  CastleFrustum, CastleColors, CastleGLUtils;

type
  { Background for 3D world.
    Background defined here has the same features as VRML/X3D Background:

    @unorderedList(
      @itemSpacing Compact
      @item(skybox - a cube with each face potentially textured
        (textures may have alpha channel))
      @item a ground sphere around this, with color rings for ground colors
      @item a sky sphere around this, with color rings for sky colors
    )

    Engine users should not use this class directly. Instead TCastleSceneManager
    automatically uses this to render the background defined by
    TCastleSceneManager.MainScene. }
  TBackground = class
  private
    { TCastleScene to render the background in most cases.
      Cannot be declared as TCastleScene as it would create a circular dependency
      with CastleScene unit. }
    SceneObj: TObject;
    ParamsObj: TObject;
    ClearColor: TCastleColor;
    MatrixTransform: TMatrixTransformNode;
  public
    { Calculate (or just confirm that Proposed value is still OK)
      the sky sphere radius that fits nicely in your projection near/far.

      Background spheres (for sky and ground) are rendered at given radius.
      And inside these spheres, we have a cube (to apply background textures).
      Both spheres and cube must fit nicely within your projection near/far
      to avoid any artifacts.

      We first check is Proposed a good result value (it satisfies
      the conditions, with some safety margin). If yes, then we return
      exactly the Proposed value. Otherwise, we calculate new value
      as an average in our range.
      This way, if you already had sky sphere radius calculated
      (and prepared some OpenGL resources for it),
      and projection near/far changes very slightly
      (e.g. because bounding box slightly changed), then you don't have
      to recreate background --- if the old sky sphere radius is still OK,
      then the old background resources are still OK.

      Just pass Proposed = 0 (or anything else that is always outside
      the range) if you don't need this feature. }
    class function NearFarToSkySphereRadius(const zNear, zFar: Single;
      const Proposed: Single = 0): Single;

    constructor Create;
    destructor Destroy; override;
    procedure Update(const Node: TAbstractBackgroundNode;
      const SkySphereRadius: Single);
    procedure Render(const Wireframe: boolean; const Frustum: TFrustum);
    procedure UpdateTransform(const Transform: TMatrix4Single);
    procedure FreeResources;
  end;

implementation

uses CastleWarnings, CastleScene, X3DFields, Math, CastleSceneCore;

const
  { Relation of a cube size and a radius of it's bounding sphere.

    Sphere surrounds the cube, such that 6 cube corners touch the sphere.
    So cube diameter = 2 * sphere radius.
    Cube diameter = sqrt(sqr(cube size) + sqr(cube face diameter)),
    and cube face diameter = sqrt(2) * cube size.
    This gives constants below. }
  SphereRadiusToCubeSize = 2 / Sqrt(3);
  CubeSizeToSphereRadius = Sqrt(3) / 2;

{ TBackground ------------------------------------------------------------ }

class function TBackground.NearFarToSkySphereRadius(const zNear, zFar: Single;
  const Proposed: Single): Single;

{ Conditions are ZNear < CubeSize/2, ZFar > SphereRadius.
  So conditions for radius are

    ZNear * 2 * CubeSizeToSphereRadius < SphereRadius < ZFar

  Note that 2 * CubeSizeToSphereRadius is Sqrt(3) =~ 1.7,
  so it's possible to choose
  ZNear <= ZFar that still yield no possible radius.

  It would be possible to avoid whole need for this method
  by setting projection matrix in our own render. But then,
  you'd have to pass fovy and such parameters to the background renderer.
}

var
  Min, Max, SafeMin, SafeMax: Single;
begin
  Min := zNear * 2 * CubeSizeToSphereRadius;
  Max := zFar;

  { The new sphere radius should be in [Min...Max].
    For maximum safety (from floating point troubles), we require
    that it's within slightly smaller "safe" range. }

  SafeMin := Lerp(0.1, Min, Max);
  SafeMax := Lerp(0.9, Min, Max);

  if (Proposed >= SafeMin) and
     (Proposed <= SafeMax) then
    Result := Proposed else
    Result := (Min + Max) / 2;
end;

{$define Scene := TCastleScene(SceneObj)}
{$define Params := TBasicRenderParams(ParamsObj)}

constructor TBackground.Create;
begin
  inherited;
  Scene := TCastleScene.Create(nil);
  { We don't need depth test (we put our shapes in proper order),
    we even don't want it (because we don't clear depth buffer
    before drawing, so it may contain the depths on 3D world rendered
    in previous frame). }
  Scene.Attributes.DepthTest := false;
  Params := TBasicRenderParams.Create;
end;

destructor TBackground.Destroy;
begin
  FreeAndNil(Scene);
  FreeAndNil(Params);
  inherited;
end;

procedure TBackground.Update(const Node: TAbstractBackgroundNode;
  const SkySphereRadius: Single);
var
  RootNode: TX3DRootNode;

  procedure RenderCubeSides;
  var
    CubeSize, CubeSize2: Single;

    procedure RenderTextureSide(const Side: TBackgroundSide);
    const
      Coords: array [TBackgroundSide, 0..3] of TVector3Single =
      ( (( 1, -1,  1), (-1, -1,  1), (-1,  1,  1), ( 1,  1,  1)), {back}
        ((-1, -1,  1), ( 1, -1,  1), ( 1, -1, -1), (-1, -1, -1)), {bottom}
        ((-1, -1, -1), ( 1, -1, -1), ( 1,  1, -1), (-1,  1, -1)), {front}
        ((-1, -1,  1), (-1, -1, -1), (-1,  1, -1), (-1,  1,  1)), {left}
        (( 1, -1, -1), ( 1, -1,  1), ( 1,  1,  1), ( 1,  1, -1)), {right}
        ((-1,  1, -1), ( 1,  1, -1), ( 1,  1,  1), (-1,  1,  1))  {top}
      );
      TexCoords: array [0..3] of TVector2Single = ((0, 0), (1, 0), (1, 1), (0, 1));
    var
      Shape: TShapeNode;
      Appearance: TAppearanceNode;
      QuadSet: TQuadSetNode;
      Coord: TCoordinateNode;
      TexCoord: TTextureCoordinateNode;
      Texture: TAbstractTextureNode;
      V: TVector3Single;
    begin
      Texture := Node.Texture(Side);
      if Texture = nil then Exit;

      Coord := TCoordinateNode.Create('', Node.BaseUrl);
      for V in Coords[Side] do
        Coord.FdPoint.Items.Add(V * CubeSize2);

      TexCoord := TTextureCoordinateNode.Create('', Node.BaseUrl);
      TexCoord.FdPoint.Send(TexCoords);

      QuadSet := TQuadSetNode.Create('', Node.BaseUrl);
      QuadSet.FdCoord.Value := Coord;
      QuadSet.FdTexCoord.Value := TexCoord;

      Appearance := TAppearanceNode.Create('', Node.BaseUrl);
      Appearance.FdShaders.AssignValue(Node.FdShaders);
      Appearance.FdEffects.AssignValue(Node.FdEffects);
      Appearance.Texture := Texture;
      if Texture is TAbstractTexture2DNode then
      begin
        { We have to change repeat mode of this texture, even if it came from
          TTextureBackgroundNode. The only reasonable way to render background
          is to use clamp mode. More correct alternative would be creating
          a copy of node in case of TTextureBackgroundNode,
          but this would often be wasteful --- the background texture is
          probably not DEF/USEd in other places (that need repeat mode),
          and it's probably repeat=true by accident (since this is the default value). }
        TAbstractTexture2DNode(Texture).RepeatS := false;
        TAbstractTexture2DNode(Texture).RepeatT := false;
      end;

      Shape := TShapeNode.Create('', Node.BaseUrl);
      Shape.FdGeometry.Value := QuadSet;
      Shape.Appearance := Appearance;

      MatrixTransform.FdChildren.Add(Shape);
    end;

  var
    BS: TBackgroundSide;
  begin
    CubeSize := SkySphereRadius * SphereRadiusToCubeSize;
    CubeSize2 := CubeSize / 2;
    for BS := Low(BS) to High(BS) do RenderTextureSide(BS);
  end;

var
  SphereCreated: boolean;
  SphereCoord: TMFVec3f;
  SphereCoordIndex: TMFInt32;
  SphereColor: TMFColor;

  procedure NeedsSphere;
  var
    Coord: TCoordinateNode;
    Color: TColorNode;
    Geometry: TIndexedFaceSetNode;
    Shape: TShapeNode;
  begin
    { add a mesh for sphere, if not present already }
    if not SphereCreated then
    begin
      SphereCreated := true;

      Coord := TCoordinateNode.Create('', Node.BaseUrl);
      SphereCoord := Coord.FdPoint;

      Color := TColorNode.Create('', Node.BaseUrl);
      SphereColor := Color.FdColor;

      Geometry := TIndexedFaceSetNode.Create('', Node.BaseUrl);
      Geometry.FdCoord.Value := Coord;
      Geometry.FdColor.Value := Color;
      Geometry.FdSolid.Value := false;
      SphereCoordIndex := Geometry.FdCoordIndex;

      Shape := TShapeNode.Create('', Node.BaseUrl);
      Shape.FdGeometry.Value := Geometry;

      MatrixTransform.FdChildren.Add(Shape);
    end;
  end;

const
  { slices of rings rendered in Render*Stack }
  Slices = 24;

  { For given Angle (meaning: 0 = zenith, Pi = nadir), calculate the height
    and radius of given circle of sky sphere. }
  procedure StackCircleCalc(const Angle: Single; out Y, Radius: Single);
  var
    S, C: Extended;
  begin
    SinCos(Angle, S, C);
    Radius := S * SkySphereRadius;
    Y := C * SkySphereRadius;
  end;

  function StackTipCalc(const Angle: Single): TVector3Single;
  begin
    // Result := Vector3Single(0, Cos(Angle) * SkySphereRadius, 0);
    { simpler and more accurate version, since StackTipCalc is only called with
      Angle = 0 or Pi }
    if Angle = 0 then
      Result := Vector3Single(0,  SkySphereRadius, 0) else
    begin
      Assert(Angle = Single(Pi));
      Result := Vector3Single(0, -SkySphereRadius, 0);
    end;
  end;

  function CirclePoint(const Y, Radius: Single; const SliceIndex: Integer): TVector3Single;
  var
    S, C: Extended;
  begin
    SinCos(SliceIndex * 2 * Pi / Slices, S, C);
    Result := Vector3Single(S * Radius, Y, C * Radius);
  end;

  { Render*Stack: render one stack of sky/ground sphere.
    Angles are given in the sky connvention : 0 is zenith, Pi is nadir. }

  procedure RenderFirstStack(
    const TipColor   : TVector3Single; const TipAngle   : Single;
    const CircleColor: TVector3Single; const CircleAngle: Single);
  var
    CircleY, CircleRadius: Single;
    I, Start, Next, StartIndex, NextIndex: Integer;
  begin
    Start := SphereCoord.Count;
    Next := Start;
    Assert(Start = SphereColor.Count);
    SphereCoord.Count := Start + Slices + 1;
    SphereColor.Count := Start + Slices + 1;

    StartIndex := SphereCoordIndex.Count;
    NextIndex := StartIndex;
    SphereCoordIndex.Count := SphereCoordIndex.Count + Slices * 4;

    StackCircleCalc(CircleAngle, CircleY, CircleRadius);

    SphereCoord.Items.L[Start] := StackTipCalc(TipAngle);
    SphereColor.Items.L[Start] := TipColor;
    Inc(Next);

    for I := 0 to Slices - 1 do
    begin
      SphereCoord.Items.L[Next] := CirclePoint(CircleY, CircleRadius, I);
      SphereColor.Items.L[Next] := CircleColor;
      Inc(Next);

      SphereCoordIndex.Items.L[NextIndex    ] := Start;
      SphereCoordIndex.Items.L[NextIndex + 1] := Start + 1 + I;
      if I <> Slices - 1 then
        SphereCoordIndex.Items.L[NextIndex + 2] := Start + 2 + I else
        SphereCoordIndex.Items.L[NextIndex + 2] := Start + 1;
      SphereCoordIndex.Items.L[NextIndex + 3] := -1;
      NextIndex += 4;
    end;
  end;

  procedure RenderNextStack(
    const CircleColor: TVector3Single; const CircleAngle: Single);
  var
    CircleY, CircleRadius: Single;
    I, Start, Next, StartIndex, NextIndex: Integer;
  begin
    Start := SphereCoord.Count;
    Next := Start;
    Assert(Start = SphereColor.Count);
    SphereCoord.Count := Start + Slices;
    SphereColor.Count := Start + Slices;

    StartIndex := SphereCoordIndex.Count;
    NextIndex := StartIndex;
    SphereCoordIndex.Count := SphereCoordIndex.Count + Slices * 5;

    StackCircleCalc(CircleAngle, CircleY, CircleRadius);

    for I := 0 to Slices - 1 do
    begin
      SphereCoord.Items.L[Next] := CirclePoint(CircleY, CircleRadius, I);
      SphereColor.Items.L[Next] := CircleColor;
      Inc(Next);

      SphereCoordIndex.Items.L[NextIndex    ] := Start + I;
      if I <> Slices - 1 then
      begin
        SphereCoordIndex.Items.L[NextIndex + 1] := Start + 1 + I;
        SphereCoordIndex.Items.L[NextIndex + 2] := Start + 1 + I - Slices;
      end else
      begin
        SphereCoordIndex.Items.L[NextIndex + 1] := Start;
        SphereCoordIndex.Items.L[NextIndex + 2] := Start - Slices;
      end;
      SphereCoordIndex.Items.L[NextIndex + 3] := Start + I - Slices;
      SphereCoordIndex.Items.L[NextIndex + 4] := -1;
      NextIndex += 5;
    end;
  end;

  procedure RenderLastStack(
    const TipColor: TVector3Single; const TipAngle: Single);
  var
    I, Start, StartIndex, NextIndex: Integer;
  begin
    Start := SphereCoord.Count;
    Assert(Start = SphereColor.Count);
    SphereCoord.Count := Start + 1;
    SphereColor.Count := Start + 1;

    StartIndex := SphereCoordIndex.Count;
    NextIndex := StartIndex;
    SphereCoordIndex.Count := SphereCoordIndex.Count + Slices * 4;

    SphereCoord.Items.L[Start] := StackTipCalc(TipAngle);
    SphereColor.Items.L[Start] := TipColor;

    for I := 0 to Slices - 1 do
    begin
      SphereCoordIndex.Items.L[NextIndex    ] := Start;
      if I <> Slices - 1 then
        SphereCoordIndex.Items.L[NextIndex + 1] := Start - Slices + I + 1 else
        SphereCoordIndex.Items.L[NextIndex + 1] := Start - Slices;
      SphereCoordIndex.Items.L[NextIndex + 2] := Start - Slices + I;
      SphereCoordIndex.Items.L[NextIndex + 3] := -1;
      NextIndex += 4;
    end;
  end;

  procedure RenderSky;
  var
    I, ColorCount, AngleCount: Integer;
    Angle: PSingle;
    Color: PVector3Single;
    GroundHighestAngle: Single;
  begin
    { calculate GroundHighestAngle, will be usable to optimize rendering sky.
      GroundHighestAngle is measured in sky convention (0 = zenith, Pi = nadir).
      If there is no sky I simply set GroundHighestAngle to sthg > Pi. }
    if Node.FdGroundAngle.Count <> 0 then
      GroundHighestAngle := Pi - Node.FdGroundAngle.Items.Last else
      GroundHighestAngle := Pi + 1;

    ColorCount := Node.FdSkyColor.Count;
    AngleCount := Node.FdSkyAngle.Count;
    Color := Node.FdSkyColor.Items.L;
    Angle := Node.FdSkyAngle.Items.L;

    if ColorCount <= 0 then
    begin
      OnWarning(wtMajor, 'VRML/X3D', 'Background node incorrect: Sky must have at least one color');
      Exit;
    end else
    if AngleCount + 1 <> ColorCount then
    begin
      OnWarning(wtMajor, 'VRML/X3D', 'Background node incorrect: Sky must have exactly one more Color than Angles');
      { We know now that ColorCount >= 1, and of course AngleCount >= 0
        (since array always has >= 0 items). So we correct one of them to be
        smaller. }
      if AngleCount + 1 > ColorCount then
        AngleCount := ColorCount - 1 else
        ColorCount := AngleCount + 1;
    end;

    Assert(ColorCount >= 1);
    Assert(AngleCount + 1 = ColorCount);

    ClearColor := Vector4Single(Color[0], 1.0);
    if ColorCount > 1 then
    begin
      { When ColorCount >= 2, the idea of rendering is to do:
        - RenderFirstStack
        - RenderNextStack many times
        - RenderLastStack
        But we try to break this early, to not waste time rendering
        something that will be covered anyway by the ground sphere,
        using GroundHighestAngle. }

      NeedsSphere;

      RenderFirstStack(Color[0], 0,
                       Color[1], Angle[0]);
      for I := 1 to AngleCount - 1 do
      begin
        if Angle[I - 1] > GroundHighestAngle then Break;
        RenderNextStack(Color[I + 1], Angle[I]);
      end;
      { close the tip of the sky sphere with constant color (last on Color[] table) }
      if Angle[AngleCount - 1] <= GroundHighestAngle then
        RenderLastStack(Color[ColorCount - 1], Pi);
    end;
  end;

  procedure RenderGround;
  var
    I: Integer;
    ColorCount, AngleCount: Integer;
    Angle: PSingle;
    Color: PVector3Single;
  begin
    ColorCount := Node.FdGroundColor.Count;
    AngleCount := Node.FdGroundAngle.Count;
    Color := Node.FdGroundColor.Items.L;
    Angle := Node.FdGroundAngle.Items.L;

    if AngleCount <> 0 then
    begin
      if AngleCount + 1 <> ColorCount then
      begin
        OnWarning(wtMajor, 'VRML/X3D', 'Background node incorrect: Ground must have exactly one more Color than Angles');
        if AngleCount + 1 > ColorCount then
          AngleCount := ColorCount - 1 else
          ColorCount := AngleCount + 1;
      end;
      Assert(AngleCount + 1 = ColorCount);

      NeedsSphere;

      RenderFirstStack(Color[0], Pi,
                       Color[1], Pi - Angle[0]);
      for I := 1 to AngleCount - 1 do
        RenderNextStack(Color[I + 1], Pi - Angle[I]);
    end;
  end;

begin
  RootNode := TX3DRootNode.Create('', Node.BaseUrl);
  SphereCreated := false;

  MatrixTransform := TMatrixTransformNode.Create('', Node.BaseUrl);
  MatrixTransform.FdMatrix.Value := Node.TransformRotation;
  RootNode.FdChildren.Add(MatrixTransform);

  RenderSky;
  RenderGround;
  RenderCubeSides;

  Scene.Load(RootNode, true);
end;

procedure TBackground.Render(const Wireframe: boolean; const Frustum: TFrustum);
begin
  Params.InShadow := false;
  { since we constructed Scene ourselves,
    we know it only has ShadowVolumesReceivers=true shapes }
  Params.ShadowVolumesReceivers := true;

  if Wireframe then
    Scene.Attributes.WireframeEffect := weWireframeOnly else
    Scene.Attributes.WireframeEffect := weNormal;

  { TODO: in the old times, we had here an optimization:
    if the background is not displayed as Wireframe,
    and it has all 6 cube sides filled with textures without
    an alpha channel, then there's no need to display sky/ground spheres,
    and no need to even clear color buffer before.
    We lose this optimization now, since we don't know now which cube sides
    are successfully loaded and which have alpha. }
  GLClear([cbColor], ClearColor);

  { Note: the Frustum is useless now, as it contains a shifted camera,
    not just rotated. We pass it, but it will be ignored. }
  Params.Transparent := false; Scene.Render(nil, Frustum, Params);
  Params.Transparent := true ; Scene.Render(nil, Frustum, Params);
end;

procedure TBackground.FreeResources;
begin
  Scene.FreeResources([frTextureDataInNodes]);
end;

procedure TBackground.UpdateTransform(const Transform: TMatrix4Single);
begin
  MatrixTransform.FdMatrix.Send(Transform);
end;

end.