/usr/src/castle-game-engine-5.2.0/opengl/castleglshadowvolumes.pas is in castle-game-engine-src 5.2.0-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 | {
Copyright 2007-2014 Michalis Kamburelis.
This file is part of "Castle Game Engine".
"Castle Game Engine" is free software; see the file COPYING.txt,
included in this distribution, for details about the copyright.
"Castle Game Engine" is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
----------------------------------------------------------------------------
}
{ Rendering shadow volumes in OpenGL (TGLShadowVolumeRenderer). }
unit CastleGLShadowVolumes;
{$I castleconf.inc}
interface
uses CastleVectors, CastleBoxes, CastleGL, CastleGLUtils, CastleFrustum, Castle3D;
type
TStencilSetupKind = (ssFrontAndBack, ssFront, ssBack);
TGLShadowVolumeRenderer = class;
TSVRenderParamsProc = procedure (const Params: TRenderParams) of object;
TSVRenderProc = procedure of object;
{ Shadow volume rendering in OpenGL.
This class provides various utilities related to shadow volume rendering.
It provides everything, except it doesn't
actually render the 3D models or their shadow volumes (actual rendering
is provided by T3D descendants, like
TCastleScene.Render and TCastleScene.RenderShadowVolume).
For general usage tutorial of this class,
see [http://castle-engine.sourceforge.net/vrml_engine_doc/output/xsl/html/chapter.shadows.html] }
TGLShadowVolumeRenderer = class(TBaseShadowVolumeRenderer)
private
FrustumAndLightPlanes: array [0..5] of TVector4Single;
FrustumAndLightPlanesCount: Cardinal;
FFrustum: TFrustum;
FrustumNearPoints: TFrustumPointsDouble;
FWrapAvailable: boolean;
FStencilOpIncrWrap, FStencilOpDecrWrap: TGLenum;
{ These will ideally be initialized to GL_INCR/DECR_WRAP (available
in OpenGL >= 2.0) or GL_INCR/DECR_WRAP_EXT (available if EXT_stencil_wrap).
Actually values with and without _EXT are the same.
If OpenGL will not have these available, then they will be equal to
old GL_INCR/DECT constants (without wrapping).
These are set by GLContextOpen. WrapAvailable says whether
they were set to _WRAP_ versions.
@groupBegin }
property StencilOpIncrWrap: TGLenum read FStencilOpIncrWrap;
property StencilOpDecrWrap: TGLenum read FStencilOpDecrWrap;
{ @groupEnd }
private
FSceneShadowPossiblyVisible: boolean;
FZFail: boolean;
FZFailAndLightCap: boolean;
FLightPosition: TVector4Single;
FLightPositionDouble: TVector4Double;
StencilConfigurationKnown: boolean;
StencilConfigurationKnownKind: TStencilSetupKind;
StencilConfigurationKnownZFail: boolean;
FStencilSetupKind: TStencilSetupKind;
FCount: boolean;
FCountScenes: Cardinal;
FCountShadowsNotVisible: Cardinal;
FCountZPass: Cardinal;
FCountZFailNoLightCap: Cardinal;
FCountZFailAndLightCap: Cardinal;
FStencilTwoSided: boolean;
procedure UpdateCount;
public
constructor Create;
property WrapAvailable: boolean read FWrapAvailable;
{ Call this when OpenGL context is initialized, this will set some things.
For now, this sets StencilOpIncrWrap, StencilOpDecrWrap. }
procedure GLContextOpen;
{ Call this when camera frustum is known and light position (of the shadow
casting light) is known, typically at the beginning of your drawing routine.
You have to call this before InitScene.
This prepares some things (so that each InitScene call doesn't have to) and
all subsequent InitScene calls assume that Frustum and
LightPosition are the same.
It also resets CountScenes etc. counters for debug purposes. }
procedure InitFrustumAndLight(
const Frustum: TFrustum;
const ALightPosition: TVector4Single);
{ Light casting shadows position, initialized by InitFrustumAndLight. }
property LightPosition: TVector4Single read FLightPosition;
property LightPositionDouble: TVector4Double read FLightPositionDouble;
{ Call this when the bounding box of shadow caster is known.
This calculates various things related to shadow volumes rendering
of this scene. 1. checks whether you need to render shadow of the
object inside SceneBox, settting SceneShadowPossiblyVisible.
2. checks whether ZFail method is needed, setting ZFail.
This assumes that Frustum and LightPosition values given
in InitFrustumAndLight are OK.
Also note that after InitFrustumAndLight, all InitScene will assume that
they have complete control over glStencilOp states for the time
of rendering shadow volumes. In other words: InitScene will setup
some stencil configuration, depending on ZFail state and StencilSetupKind.
For the sake of speed, we try to avoid setting the same state
twice, so we optimize it: first InitScene after InitFrustumAndLight
does always setup stencil confguration. Following InitScene will
only change stencil configuration if ZFail value will actually change.
This means that if e.g. all objects will be detected to be in z-pass
method, then stencil configuration will be done only once.
The above optimization works OK if you do not change StencilOp configuration
yourself during SV rendering. }
procedure InitScene(const SceneBox: TBox3D);
{ You can split InitScene call into these two calls,
first InitSceneDontSetupStencil and then InitSceneOnlySetupStencil.
This is useful only in very special cases, in particular: if you
only have one shadow caster object in your scene. Then you
can call InitSceneDontSetupStencil only once, before any drawing,
and later you can call InitSceneOnlySetupStencil multiple times
to set stencil configuration for this object.
@groupBegin }
procedure InitSceneDontSetupStencil(const SceneBox: TBox3D);
procedure InitSceneOnlySetupStencil;
{ @groupEnd }
{ Initialize scene, assuming shadow caster is always visible.
This is an alternative version of InitScene that initializes the same
variables as InitScene, but assumes that the scene, along with it's
shadow, will always be visible. This means that for example
SceneShadowPossiblyVisible, ZFail, ZFailAndLightCap will always be @true.
Use this only if you have a scene that will really be always visible
and z-fail will be needed. For example, level scene in FPS games
will usually be always visible, so making optimizations in
InitScene may be useless. Also, this is useful if for any reason you
don't know bounding box of the scene. }
procedure InitSceneAlwaysVisible;
{ Does the shadow need to be rendered, set by InitScene. }
property SceneShadowPossiblyVisible: boolean
read FSceneShadowPossiblyVisible;
{ Is the ZFail method needed, set by InitScene. }
property ZFail: boolean read FZFail;
{ Is the ZFail with light caps method needed, set by InitScene. }
property ZFailAndLightCap: boolean read FZFailAndLightCap;
{ Is two-sided stencil test (that allows you to make SV in a single pass)
available.
This is initialized by GLContextOpen, and is true if OpenGL provides
one of:
@unorderedList(
@item(glStencilOpSeparate (in OpenGL >= 2.0))
@item(GL_ATI_separate_stencil extension, glStencilOpSeparateATI)
@item(We could also handle GL_EXT_stencil_two_side extension, glActiveStencilFaceEXT.
But, since OpenGL >= 2.0 is now common, don't try.)
) }
property StencilTwoSided: boolean read FStencilTwoSided;
{ What kind of stencil settings should be set by InitScene.
Set ssFrontAndBack only if StencilTwoSided is @true.
Otherwise, you have to use 2-pass method (render everything
2 times, culling front one time, culling back second time) ---
in this case use ssFront or ssBack as appropriate. }
property StencilSetupKind: TStencilSetupKind
read FStencilSetupKind write FStencilSetupKind
default ssFrontAndBack;
{ Statistics of shadow volumes. They are enabled by default,
as calculating them takes practically no time.
@groupBegin }
property Count: boolean read FCount write FCount default true;
property CountScenes: Cardinal read FCountScenes;
property CountShadowsNotVisible: Cardinal read FCountShadowsNotVisible;
property CountZPass: Cardinal read FCountZPass;
property CountZFailNoLightCap: Cardinal read FCountZFailNoLightCap;
property CountZFailAndLightCap: Cardinal read FCountZFailAndLightCap;
{ @groupEnd }
{ Do actual rendering with shadow volumes.
You have to provide the appropriate callbacks that render given
scene parts.
Params.Transparent and Params.ShadowVolumesReceivers and Params.InShadow
are changed here (their previous values are ignored).
They cannot be modified by our callbacks.
Render3D renders part of the scene.
@unorderedList(
@item(
With Params.ShadowVolumesReceivers = @true, renders only things that
may be in the shadow.
You should use Params.InShadow to either display the version
of the scene in the shadows (so probably darker, probably with some
lights off) or the version that is currently lighted
(probably brighter, with normal scene lights on).)
@item(
With Params.ShadowVolumesReceivers = @false, renders only things that
must never be considered in shadow (are not shadow receivers).
Params.InShadow is always @false when Params.ShadowVolumesReceivers = @false.)
)
Render3D must also honour Params.Transparent,
rendering only opaque or only transparent parts.
For Transparent = @true, always Params.InShadow = @false.
Shadow volumes simply don't allow transparent object
to function properly as shadow receivers.
Reading [http://developer.nvidia.com/object/fast_shadow_volumes.html]
notes: they also just do separate rendering pass to render the
partially-transparent parts, IOW they also note that transparent parts
simply don't work at all with shadow volumes.
RenderShadowVolumes renders shadow volumes from shadow casters.
If DrawShadowVolumes then shadow volumes will be also actually drawn
to color buffer (as yellow blended polygons), this is useful for debugging
shadow volumes. }
procedure Render(
const Params: TRenderParams;
const Render3D: TSVRenderParamsProc;
const RenderShadowVolumes: TSVRenderProc;
const DrawShadowVolumes: boolean);
end;
implementation
uses SysUtils, CastleUtils, CastleStringUtils, CastleLog, CastleGLVersion,
CastleTriangles;
constructor TGLShadowVolumeRenderer.Create;
begin
inherited;
FCount := true;
end;
procedure TGLShadowVolumeRenderer.GLContextOpen;
begin
{ calcualte WrapAvailable, StencilOpIncrWrap, StencilOpDecrWrap }
{$ifdef OpenGLES}
FWrapAvailable := true;
FStencilOpIncrWrap := GL_INCR_WRAP;
FStencilOpDecrWrap := GL_DECR_WRAP;
{$else}
FWrapAvailable := GLFeatures.Version_2_0 or Load_GL_EXT_stencil_wrap;
if WrapAvailable then
begin
FStencilOpIncrWrap := GL_INCR_WRAP_EXT;
FStencilOpDecrWrap := GL_DECR_WRAP_EXT;
end else
begin
FStencilOpIncrWrap := GL_INCR;
FStencilOpDecrWrap := GL_DECR;
end;
{ This looks hacky, but actually this is how it should be:
- with Mesa versions 6.x (tested with 6.4.1, 6.5.1, 6.5.2),
glStencilOpSeparate is not nil, but it doesn't work.
- Same thing happens with NVidia legacy 96xx drivers (reported
version is "1.5.8 NVIDIA 96.43.01").
I guess that's OK (I mean, it's not Mesa/NVidia bug), as I should look
for glStencilOpSeparate only if GL version is >= 2. }
if GLVersion.Major <= 1 then
glStencilOpSeparate := nil;
{ This again looks hacky but is Ok, glStencilOpSeparateATI has the same
call semantics as glStencilOpSeparate, in fact glStencilOpSeparate
is just an extension promoted to standard in GL 2.0... }
if (glStencilOpSeparate = nil) and Load_GL_ATI_separate_stencil then
begin
if Log and LogShadowVolumes then
WritelnLog('Shadow volumes',
'Real glStencilOpSeparate not available, ' +
'but faking it by glStencilOpSeparateATI (since ' +
'GL_ATI_separate_stencil available)');
glStencilOpSeparate := glStencilOpSeparateATI;
end;
{$endif}
FStencilTwoSided := glStencilOpSeparate <> nil;
if Log and LogShadowVolumes then
WritelnLogMultiline('Shadow volumes',
Format('GL_INCR/DECR_WRAP_EXT available: %s' + nl +
'Two-sided stencil test available: %s',
[ BoolToStr[WrapAvailable],
BoolToStr[StencilTwoSided] ]));
end;
procedure TGLShadowVolumeRenderer.InitFrustumAndLight(
const Frustum: TFrustum;
const ALightPosition: TVector4Single);
procedure CalculateFrustumAndLightPlanes;
var
FP, LastPlane: TFrustumPlane;
begin
FrustumAndLightPlanesCount := 0;
LastPlane := High(FP);
Assert(LastPlane = fpFar);
{ if infinite far plane, then ignore it }
if Frustum.ZFarInfinity then
LastPlane := Pred(LastPlane);
for FP := Low(FP) to LastPlane do
begin
{ This checks that LightPosition is inside Frustum.Planes[FP] plane.
When LightPosition[3] = 1, this is normal test on which side
of plane lies a point, so then it's OK (frustum planes point inside
the frustum). For LightPosition[3] > 0 this is also equivalent.
For LightPosition[3] = 0 (directional light), this check dot product
between light direction and plane direction. So >= 0 means that they
point in the same dir (angle < 90 degs), so the light position
in infinity can also be considered inside this plane. }
if Frustum.Planes[FP][0] * LightPosition[0] +
Frustum.Planes[FP][1] * LightPosition[1] +
Frustum.Planes[FP][2] * LightPosition[2] +
Frustum.Planes[FP][3] * LightPosition[3] >= 0 then
begin
FrustumAndLightPlanes[FrustumAndLightPlanesCount] := Frustum.Planes[FP];
Inc(FrustumAndLightPlanesCount);
end;
end;
{ TODO: a better convex hull between light position and frustum could
be useful. We should add additional planes to FrustumAndLightPlanes
for this. Some pointers on [http://www.terathon.com/gdc06_lengyel.ppt]. }
end;
var
ALightPosition3: TVector3Single absolute ALightPosition;
begin
FFrustum := Frustum;
FLightPosition := ALightPosition;
FLightPositionDouble := Vector4Double(ALightPosition);
Frustum.CalculatePoints(FrustumNearPoints);
CalculateFrustumAndLightPlanes;
StencilConfigurationKnown := false;
FCountScenes := 0;
FCountShadowsNotVisible := 0;
FCountZPass := 0;
FCountZFailNoLightCap := 0;
FCountZFailAndLightCap := 0;
end;
procedure TGLShadowVolumeRenderer.InitScene(const SceneBox: TBox3D);
begin
InitSceneDontSetupStencil(SceneBox);
InitSceneOnlySetupStencil;
end;
procedure TGLShadowVolumeRenderer.InitSceneDontSetupStencil(const SceneBox: TBox3D);
function CalculateShadowPossiblyVisible(const SceneBox: TBox3D): boolean;
var
I: Integer;
function CheckPoint(const X, Y, Z: Integer): boolean;
begin
Result :=
SceneBox.Data[X][0] * FrustumAndLightPlanes[I][0] +
SceneBox.Data[Y][1] * FrustumAndLightPlanes[I][1] +
SceneBox.Data[Z][2] * FrustumAndLightPlanes[I][2] +
FrustumAndLightPlanes[I][3] < 0;
end;
begin
for I := 0 to Integer(FrustumAndLightPlanesCount) - 1 do
begin
if CheckPoint(0, 0, 0) and
CheckPoint(0, 0, 1) and
CheckPoint(0, 1, 0) and
CheckPoint(0, 1, 1) and
CheckPoint(1, 0, 0) and
CheckPoint(1, 0, 1) and
CheckPoint(1, 1, 0) and
CheckPoint(1, 1, 1) then
Exit(false);
end;
Result := true;
end;
function CalculateZFail: boolean;
{ Returns if SceneBox is (at least partially)
inside the Plane (i.e. where the plane equation is <= 0).
Also returns @true if Plane is invalid, since in this case result
of CalculateZFail should depend on other planes. }
function InsidePlane(const Plane: TVector4Double): boolean;
function CalculatePoint(const X, Y, Z: Integer): Single;
begin
Result := Plane[0] * SceneBox.Data[X][0] +
Plane[1] * SceneBox.Data[Y][1] +
Plane[2] * SceneBox.Data[Z][2] +
Plane[3];
end;
begin
Result :=
( (Plane[0] = 0) and (Plane[1] = 0) and (Plane[2] = 0) ) or
(CalculatePoint(0, 0, 0) <= 0) or
(CalculatePoint(0, 0, 1) <= 0) or
(CalculatePoint(0, 1, 0) <= 0) or
(CalculatePoint(0, 1, 1) <= 0) or
(CalculatePoint(1, 0, 0) <= 0) or
(CalculatePoint(1, 0, 1) <= 0) or
(CalculatePoint(1, 1, 0) <= 0) or
(CalculatePoint(1, 1, 1) <= 0);
end;
var
LightPosition3: PVector3Double;
NearPlane: TVector4Double;
begin
LightPosition3 := @FLightPositionDouble;
if LightPosition[3] <> 0 then
begin
{ Idea: calculate a pyramid between light position and near plane rectangle
of the frustum. Assuming light point is positional and it does not
lie on the near plane, this is simple: such pyramid has 4 side planes
(created by two succeding near plane rectangle points and light pos),
and 1 additional plane for near plane.
Now, if for any such plane, SceneBox is outside, then ZFail is for sure
not needed.
Actually, even when the light lies exactly on near rectangle plane,
usually this is still OK. The trouble will occur only if the light lies
exactly on one of near rectangle points, since then an invalid
plane (with 1st three items = 0) will be calculated. In such case,
at most two planes out of 5 will be invalid (we assume that all 4 near
rectangle points are for sure different, so the light pos may collide
with only 1 of them, so only two plane calculations will lead to
invalid plane). In such case, it's OK to simply ignore invalid planes.
That's why InsidePlane simply checks for and ignores invalid planes.
}
{ FrustumNearPoints meaning:
0: left , top
1: right, top
2: right, bottom
3: left , bottom }
NearPlane := TrianglePlane(
FrustumNearPoints[2].XYZ, FrustumNearPoints[1].XYZ, FrustumNearPoints[0].XYZ);
{ Now NearPlane points CCW outside of the frustum, but this is not
necessarily what we want. We want NearPlane to point CCW outside
from light+near plane pyramid. In other words, LightPosition should be
on CW side of this plane. If LightPosition is on CCW side,
flip NearPlane. Also, calculations of other side planes should
generate flipped planes. }
if (NearPlane[0] * LightPositionDouble[0] +
NearPlane[1] * LightPositionDouble[1] +
NearPlane[2] * LightPositionDouble[2] +
NearPlane[3] * LightPositionDouble[3]) > 0 then
begin
VectorNegateTo1st(NearPlane);
Result :=
InsidePlane(NearPlane) and
InsidePlane(TrianglePlane(FrustumNearPoints[1].XYZ, FrustumNearPoints[0].XYZ, LightPosition3^)) and
InsidePlane(TrianglePlane(FrustumNearPoints[2].XYZ, FrustumNearPoints[1].XYZ, LightPosition3^)) and
InsidePlane(TrianglePlane(FrustumNearPoints[3].XYZ, FrustumNearPoints[2].XYZ, LightPosition3^)) and
InsidePlane(TrianglePlane(FrustumNearPoints[0].XYZ, FrustumNearPoints[3].XYZ, LightPosition3^));
end else
begin
Result :=
InsidePlane(NearPlane) and
InsidePlane(TrianglePlane(FrustumNearPoints[0].XYZ, FrustumNearPoints[1].XYZ, LightPosition3^)) and
InsidePlane(TrianglePlane(FrustumNearPoints[1].XYZ, FrustumNearPoints[2].XYZ, LightPosition3^)) and
InsidePlane(TrianglePlane(FrustumNearPoints[2].XYZ, FrustumNearPoints[3].XYZ, LightPosition3^)) and
InsidePlane(TrianglePlane(FrustumNearPoints[3].XYZ, FrustumNearPoints[0].XYZ, LightPosition3^));
end;
end else
begin
{ For directional light, this is somewhat similar to positional lights,
except that you have 4 planes (each one from a segment of near rectangle,
extruded to infinity in both directions).
The corner cases may occur when light direction is the same as direction
of one of the segments. This will make at most 2 such planes invalid
(as 2 pairs of segments have different direction than other 2 pairs
of near rectangle segments). So we simply ignore such invald planes,
so again we can use InsidePlane function. }
{ Although NearPlane for directional lights is not a plane that delimits
the pyramid, we still calculate NearPlane to decide in which direction
our 4 planes should be calculated, so that they point CCW outside. }
NearPlane := TrianglePlane(
FrustumNearPoints[2].XYZ, FrustumNearPoints[1].XYZ, FrustumNearPoints[0].XYZ);
if (NearPlane[0] * LightPositionDouble[0] +
NearPlane[1] * LightPositionDouble[1] +
NearPlane[2] * LightPositionDouble[2]) > 0 then
begin
Result :=
InsidePlane(TrianglePlane(FrustumNearPoints[0].XYZ, FrustumNearPoints[1].XYZ, VectorAdd(FrustumNearPoints[0].XYZ, LightPosition3^))) and
InsidePlane(TrianglePlane(FrustumNearPoints[1].XYZ, FrustumNearPoints[2].XYZ, VectorAdd(FrustumNearPoints[1].XYZ, LightPosition3^))) and
InsidePlane(TrianglePlane(FrustumNearPoints[2].XYZ, FrustumNearPoints[3].XYZ, VectorAdd(FrustumNearPoints[2].XYZ, LightPosition3^))) and
InsidePlane(TrianglePlane(FrustumNearPoints[3].XYZ, FrustumNearPoints[0].XYZ, VectorAdd(FrustumNearPoints[3].XYZ, LightPosition3^)));
end else
begin
Result :=
InsidePlane(TrianglePlane(FrustumNearPoints[1].XYZ, FrustumNearPoints[0].XYZ, VectorAdd(FrustumNearPoints[1].XYZ, LightPosition3^))) and
InsidePlane(TrianglePlane(FrustumNearPoints[2].XYZ, FrustumNearPoints[1].XYZ, VectorAdd(FrustumNearPoints[2].XYZ, LightPosition3^))) and
InsidePlane(TrianglePlane(FrustumNearPoints[3].XYZ, FrustumNearPoints[2].XYZ, VectorAdd(FrustumNearPoints[3].XYZ, LightPosition3^))) and
InsidePlane(TrianglePlane(FrustumNearPoints[0].XYZ, FrustumNearPoints[3].XYZ, VectorAdd(FrustumNearPoints[0].XYZ, LightPosition3^)));
end;
end;
end;
begin
{ Frustum culling for shadow volumes.
If the SceneBox is outside of convex hull light pos + frustum,
the shadow of this scene is not visible for sure. }
FSceneShadowPossiblyVisible := CalculateShadowPossiblyVisible(SceneBox);
FZFail := FSceneShadowPossiblyVisible and CalculateZFail;
FZFailAndLightCap := ZFail and
FFrustum.Box3DCollisionPossibleSimple(SceneBox);
UpdateCount;
end;
procedure TGLShadowVolumeRenderer.UpdateCount;
begin
{ update counters }
if Count then
begin
Inc(FCountScenes);
if FSceneShadowPossiblyVisible then
begin
if ZFail then
begin
if ZFailAndLightCap then
Inc(FCountZFailAndLightCap) else
Inc(FCountZFailNoLightCap);
end else
Inc(FCountZPass);
end else
Inc(FCountShadowsNotVisible);
end;
end;
procedure TGLShadowVolumeRenderer.InitSceneOnlySetupStencil;
procedure ActuallySetStencilConfiguration;
{ These set glStencilOpSeparate (suitable for both front and
back faces) or glStencil (suitable only for front or only for back faces)
as appropriate.
Use this before rendering shadow volumes.
It uses ZFail to decide what setup is necessary.
It also uses StencilOpIncrWrap / StencilOpDecrWrap as needed. }
procedure SetStencilOpSeparate;
begin
if ZFail then
begin
glStencilOpSeparate(GL_FRONT, GL_KEEP, StencilOpDecrWrap, GL_KEEP);
glStencilOpSeparate(GL_BACK , GL_KEEP, StencilOpIncrWrap, GL_KEEP);
end else
begin
glStencilOpSeparate(GL_FRONT, GL_KEEP, GL_KEEP, StencilOpIncrWrap);
glStencilOpSeparate(GL_BACK , GL_KEEP, GL_KEEP, StencilOpDecrWrap);
end;
end;
procedure SetStencilOpForFront;
begin
if ZFail then
glStencilOp(GL_KEEP, StencilOpDecrWrap, GL_KEEP) else
{ For each fragment that passes depth-test, *increase* it's stencil value. }
glStencilOp(GL_KEEP, GL_KEEP, StencilOpIncrWrap);
end;
procedure SetStencilOpForBack;
begin
if ZFail then
glStencilOp(GL_KEEP, StencilOpIncrWrap, GL_KEEP) else
{ For each fragment that passes depth-test, *decrease* it's stencil value. }
glStencilOp(GL_KEEP, GL_KEEP, StencilOpDecrWrap);
end;
begin
case StencilSetupKind of
ssFrontAndBack: SetStencilOpSeparate;
ssFront: SetStencilOpForFront;
ssBack: SetStencilOpForBack;
else raise EInternalError.Create('shadowvolumes.pas 456');
end;
end;
begin
if FSceneShadowPossiblyVisible then
begin
{ setup stencil configuration. To avoid state too often changes,
use StencilConfigurationKnown. }
if (not StencilConfigurationKnown) or
(StencilConfigurationKnownZFail <> ZFail) or
(StencilConfigurationKnownKind <> StencilSetupKind) then
begin
ActuallySetStencilConfiguration;
StencilConfigurationKnown := true;
StencilConfigurationKnownKind := StencilSetupKind;
StencilConfigurationKnownZFail := ZFail;
end;
{ else, if configuration known and equals current, nothing to do }
end;
end;
procedure TGLShadowVolumeRenderer.InitSceneAlwaysVisible;
begin
FSceneShadowPossiblyVisible := true;
FZFail := true;
FZFailAndLightCap := true;
UpdateCount;
InitSceneOnlySetupStencil;
end;
procedure TGLShadowVolumeRenderer.Render(
const Params: TRenderParams;
const Render3D: TSVRenderParamsProc;
const RenderShadowVolumes: TSVRenderProc;
const DrawShadowVolumes: boolean);
{$ifdef OpenGLES}
begin
// TODO-es
Params.Transparent := false; Params.ShadowVolumesReceivers := false; Render3D(Params);
Params.Transparent := false; Params.ShadowVolumesReceivers := true ; Render3D(Params);
Params.Transparent := true ; Params.ShadowVolumesReceivers := false; Render3D(Params);
Params.Transparent := true ; Params.ShadowVolumesReceivers := true ; Render3D(Params);
{$else}
const
{ Which stencil bits should be tested when determining which things
are in the scene ?
Not only *while rendering* shadow quads but also *after this rendering*
value in stencil buffer may be > 1 (so you need more than 1 bit
to hold it in stencil buffer).
Why ? It's obvious that *while rendering* (e.g. right after rendering
all front quads) this value may be > 1. But when the point
is in the shadow because it's inside more than one shadow
(cast by 2 different shadow quads) then even *after rendering*
this point will have value > 1.
So it's important that this constant spans a couple of bits.
More precisely, it should be the maximum number of possibly overlapping
front shadow quads from any possible camera view. Practically speaking,
it will always be too little (for complicated shadow casters),
but stencil_wrap will hopefully in this case minimize artifacts. }
StencilShadowBits = $FF;
var
OldCount: boolean;
begin
Params.InShadow := false;
Params.Transparent := false;
Params.ShadowVolumesReceivers := false;
Render3D(Params);
Params.InShadow := true;
Params.Transparent := false;
Params.ShadowVolumesReceivers := true;
Render3D(Params);
glEnable(GL_STENCIL_TEST);
{ Note that stencil buffer is set to all 0 now. }
glPushAttrib(GL_ENABLE_BIT
{ saves Enable(GL_DEPTH_TEST), Enable(GL_CULL_FACE) });
glEnable(GL_DEPTH_TEST);
{ Calculate shadows to the stencil buffer.
Don't write anything to depth or color buffers. }
glSetDepthAndColorWriteable(GL_FALSE);
glStencilFunc(GL_ALWAYS, 0, 0);
if StencilTwoSided then
begin
StencilSetupKind := ssFrontAndBack;
RenderShadowVolumes;
end else
begin
glEnable(GL_CULL_FACE);
{ Render front facing shadow shadow volume faces. }
StencilSetupKind := ssFront;
glCullFace(GL_BACK);
RenderShadowVolumes;
{ Render back facing shadow shadow volume faces. }
StencilSetupKind := ssBack;
OldCount := Count;
Count := false;
glCullFace(GL_FRONT);
RenderShadowVolumes;
Count := OldCount;
end;
glSetDepthAndColorWriteable(GL_TRUE);
glPopAttrib;
glDisable(GL_STENCIL_TEST);
{ Now render everything once again, with lights turned on.
But render only things not in shadow.
----------------------------------------
Long (but maybe educational) explanation why glDepthFunc(GL_LEQUAL)
below is crucial:
What should I do with depth buffer ? Now it contains opaque
never-shadowed things, and all shadowed things.
At some time (see revision 2048 in Kambi SVN repository on kocury) I called
glClear(GL_DEPTH_BUFFER_BIT) before rendering shadowed things for the
second time. While this seems to work, the 2nd pass leaves the depth-buffer
untouched on shadowed places. So it creates a whole
lot of problems for rendering transparent things at the end:
1. I have to render them before glClear(GL_DEPTH_BUFFER_BIT),
since they can be occluded by any level parts (shadowed on not).
2. I have to render them once again (but only into depth buffer,
i.e. with temporary
glColorMask(GL_FALSE, GL_FALSE, GL_FALSE, GL_FALSE))
after glClear(GL_DEPTH_BUFFER_BIT), since they can occlude
non-shadowed level parts.
This is easy doable for opaque parts. But what about transparent
things? In other words, where should we call
Render3D(Transparent=true, ShadowVolumesReceivers=false)
and Render3D(Transparent=true, InShadow=false, ShadowVolumesReceivers=true)?
They should be rendered but they don't affect depth buffer.
Well, clearly, they have to be rendered
before glClear(GL_DEPTH_BUFFER_BIT) (for the same reason that
opaque parts must: because they can be occluded by any level
part, shadowed or not). But rendering non-shadowed parts may then
cover them (since they cannot be rendered to depth buffer).
So I should render them once again, but *only at the places
where Render_Shadowed_Lights below passed the stencil test (=0) and the depth test*.
But the second condition is not so easy (I would have to change stencil
buffer once again, based on Level.Render hits).
The simpler version, to just render them second time everywhere where
were not in shadow, i.e. stencil test (=0) passes would be no good:
we would render transparent things twice in the places on the level
when they are not in shadow.
So basically, it's all doable, but not trivial, and (more important)
I'm losing rendering time on handling this. And without taking proper care
about transparent parts, transparent things
may be e.g. visible through the walls,
in the places where shadow falls on the wall.
This was all talking assuming that we do glClear(GL_DEPTH_BUFFER_BIT)
before the 2nd pass. But do we really have to ? No!
It's enough to just set depth test GL_LEQUAL (instead of default
GL_LESS) and then the 2nd pass will naturally cover the level
rendered in the 1st pass. That's all, it's easy to implement,
works perfectly, and is fast.
End of long explanation about glDepthFunc(GL_LEQUAL).
----------------------------------------
}
Assert(Params.Pass = 0); { for now, Pass is only 0 or 1, and 1 is used only here }
Inc(Params.Pass);
glPushAttrib(GL_DEPTH_BUFFER_BIT { for glDepthFunc });
glDepthFunc(GL_LEQUAL);
{ setup stencil : don't modify stencil, stencil test passes only for =0 }
glStencilOp(GL_KEEP, GL_KEEP, GL_KEEP);
glStencilFunc(GL_EQUAL, 0, StencilShadowBits);
glEnable(GL_STENCIL_TEST);
Inc(Params.StencilTest);
Params.InShadow := false;
Params.Transparent := false;
Params.ShadowVolumesReceivers := true;
Render3D(Params);
Dec(Params.StencilTest);
glDisable(GL_STENCIL_TEST);
glPopAttrib();
if DrawShadowVolumes then
begin
OldCount := Count;
Count := false;
glPushAttrib(GL_COLOR_BUFFER_BIT or GL_DEPTH_BUFFER_BIT or GL_ENABLE_BIT);
glEnable(GL_DEPTH_TEST);
glDisable(GL_LIGHTING);
glColor4f(1, 1, 0, 0.3);
glDepthMask(GL_FALSE);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
glEnable(GL_BLEND);
RenderShadowVolumes;
glPopAttrib;
Count := OldCount;
end;
Params.InShadow := false;
Params.Transparent := true;
Params.ShadowVolumesReceivers := true;
Render3D(Params);
Params.InShadow := false;
Params.Transparent := true;
Params.ShadowVolumesReceivers := false;
Render3D(Params);
{$endif}
end;
end.
|