/usr/src/castle-game-engine-5.2.0/opengl/castleglcubemaps.pas is in castle-game-engine-src 5.2.0-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 | {
Copyright 2008-2014 Michalis Kamburelis.
This file is part of "Castle Game Engine".
"Castle Game Engine" is free software; see the file COPYING.txt,
included in this distribution, for details about the copyright.
"Castle Game Engine" is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
----------------------------------------------------------------------------
}
{ OpenGL utilities for cube (environment) maps. }
unit CastleGLCubeMaps;
{$I castleconf.inc}
interface
uses CastleVectors, CastleCubeMaps, CastleImages, CastleDDS,
CastleRenderingCamera, CastleGLImages, Castle3D, CastleGL, CastleGLUtils;
type
TCubeMapRenderSimpleFunction = procedure (ForCubeMap: boolean);
{ Calculate spherical harmonics basis describing environment rendered
by OpenGL. Environment is rendered by
Render(true) callback, from the
CapturePoint. It's rendered to color buffer, and captured as grayscale.
Captured pixel value is just assumed to be the value of spherical function
at this direction. It's also scaled by ScaleColor (since rendering
to OpenGL catches values in 0..1 range, but SH vector can express
values from any range).
This changes glViewport, so be sure to reset glViewport to something
normal after calling this.
The maps will be drawn in the color buffer (from positions MapScreenX, Y),
so will actually be visible (call this before GLClear or such if you
want to hide them). }
procedure SHVectorGLCapture(
var SHVector: array of Single;
const CapturePoint: TVector3Single;
const Render: TCubeMapRenderSimpleFunction;
const MapScreenX, MapScreenY: Integer;
const ScaleColor: Single);
type
TCubeMapImages = array [TCubeMapSide] of TCastleImage;
{ Capture cube map by rendering environment from CapturePoint.
Environment is rendered by Render callback
that must honour camera described in RenderingCamera object.
RenderingCamera.Target will be set to rtCubeMapEnvironment.
RenderingCamera camera will be set to appropriate views
from the CapturePoint. You should at least load RenderingCamera.Matrix
to OpenGL modelview matrix before rendering your 3D scene.
Cube map is recorded in six images you provide in the Images parameter.
These must be already created TCastleImage instances, with the exact same size.
(They do not have to be square, or have power-of-two
size, or honor GL_MAX_CUBE_MAP_TEXTURE_SIZE_ARB limit,
as we do not initialize actual OpenGL cube map here.
You can use generated images for any purpose.)
The classes of these images will also matter --- e.g. use TGrayscaleImage
to capture scene as grayscale, use TRGBImage for RGB colors.
This changes glViewport, so be sure to reset glViewport to something
normal after calling this.
ProjectionNear, ProjectionFar parameters will be used to set GL
projection matrix. ProjectionFar may be equal to ZFarInfinity,
as always. }
procedure GLCaptureCubeMapImages(
const Images: TCubeMapImages;
const CapturePoint: TVector3Single;
const Render: TRenderFromViewFunction;
const ProjectionNear, ProjectionFar: Single);
{ Capture cube map to DDS image by rendering environment from CapturePoint.
See GLCaptureCubeMapImages for documentation, this works the same,
but it creates TDDSImage instance containing all six images (oriented
as appropriate for DDS). }
function GLCaptureCubeMapDDS(
const Size: Cardinal;
const CapturePoint: TVector3Single;
const Render: TRenderFromViewFunction;
const ProjectionNear, ProjectionFar: Single): TDDSImage;
{ Capture cube map to OpenGL cube map texture by rendering environment
from CapturePoint.
See GLCaptureCubeMapImages for documentation, this works the same,
but it captures images to given OpenGL texture name Tex.
Tex must already be created cube map texture (with OpenGL
size and internal formats set), with square images of Size.
This also means that Size must be a valid OpenGL cube map texture size,
you can check it by GLImages.IsCubeMapTextureSized.
This captures the cube map images to "zero" texture level.
If you use mipmaps, it's your problem how to generate other texture levels
--- in the simplest case, call GenerateMipmap(GL_TEXTURE_CUBE_MAP).
It uses RenderToTexture to render to the texture, so it will use
framebuffer if available, and it's fast. }
procedure GLCaptureCubeMapTexture(
const Tex: TGLuint;
const Size: Cardinal;
const CapturePoint: TVector3Single;
const Render: TRenderFromViewFunction;
const ProjectionNear, ProjectionFar: Single;
RenderToTexture: TGLRenderToTexture);
implementation
uses SysUtils, CastleSphericalHarmonics, CastleRectangles;
procedure SHVectorGLCapture(
var SHVector: array of Single;
const CapturePoint: TVector3Single;
const Render: TCubeMapRenderSimpleFunction;
const MapScreenX, MapScreenY: Integer;
const ScaleColor: Single);
procedure DrawMap(Side: TCubeMapSide);
var
Map: TGrayscaleImage;
I, SHBasis, ScreenX, ScreenY: Integer;
begin
ScreenX := CubeMapInfo[Side].ScreenX * CubeMapSize + MapScreenX;
ScreenY := CubeMapInfo[Side].ScreenY * CubeMapSize + MapScreenY;
glViewport(Rectangle(ScreenX, ScreenY, CubeMapSize, CubeMapSize));
{$ifndef OpenGLES}
// TODO-es
glPushMatrix;
glLoadMatrix(LookDirMatrix(CapturePoint, CubeMapInfo[Side].Dir, CubeMapInfo[Side].Up));
{$endif}
Render(true);
{$ifndef OpenGLES}
glPopMatrix;
{$endif}
Map := SaveScreen_noflush(TGrayscaleImage,
Rectangle(ScreenX, ScreenY, CubeMapSize, CubeMapSize), cbBack) as TGrayscaleImage;
try
{ Use the Map to calculate SHVector[SHBasis] (this is the actual
purpose of drawing the Render). SHVector[SHBasis] is just a dot product
for all directions (for all pixels, in this case) of
light intensity values * SH basis values. }
for I := 0 to Sqr(CubeMapSize) - 1 do
for SHBasis := 0 to High(SHVector) do
SHVector[SHBasis] += (Map.GrayscalePixels[I]/255) *
ScaleColor *
SHBasisMap[SHBasis, Side, I];
finally FreeAndNil(Map) end;
end;
var
SHBasis: Integer;
Side: TCubeMapSide;
SavedProjectionMatrix: TMatrix4Single;
begin
InitializeSHBasisMap;
{ Call all DrawMap. This wil draw maps, get them,
and calculate SHVector describing them. }
for SHBasis := 0 to High(SHVector) do
SHVector[SHBasis] := 0;
SavedProjectionMatrix := ProjectionMatrix;
PerspectiveProjection(90, 1, 0.01, 100);
for Side := Low(TCubeMapSide) to High(TCubeMapSide) do
DrawMap(Side);
ProjectionMatrix := SavedProjectionMatrix;
for SHBasis := 0 to High(SHVector) do
begin
{ Each SHVector[SHBasis] is now calculated for all sphere points.
We want this to be integral over a sphere, so normalize now.
Since SHBasisMap contains result of SH function * solid angle of pixel
(on cube map, pixels have different solid angles),
so below we divide by 4*Pi (sphere area, sum of solid angles for every
pixel). }
SHVector[SHBasis] /= 4 * Pi;
end;
end;
procedure SetRenderingCamera(
const CapturePoint: TVector3Single;
const Side: TCubeMapSide);
begin
RenderingCamera.FromMatrix(
LookDirMatrix(CapturePoint, CubeMapInfo[Side].Dir, CubeMapInfo[Side].Up),
FastLookDirMatrix(CubeMapInfo[Side].Dir, CubeMapInfo[Side].Up),
ProjectionMatrix, nil);
end;
procedure GLCaptureCubeMapImages(
const Images: TCubeMapImages;
const CapturePoint: TVector3Single;
const Render: TRenderFromViewFunction;
const ProjectionNear, ProjectionFar: Single);
var
Width, Height: Cardinal;
RenderToTexture: TGLRenderToTexture;
procedure DrawMap(Side: TCubeMapSide);
begin
RenderToTexture.RenderBegin;
glViewport(Rectangle(0, 0, Width, Height));
RenderingCamera.Target := rtCubeMapEnvironment;
SetRenderingCamera(CapturePoint, Side);
Render;
SaveScreen_NoFlush(Images[Side], 0, 0, RenderToTexture.ColorBuffer);
RenderToTexture.RenderEnd(Side < High(Side));
end;
var
Side: TCubeMapSide;
SavedProjectionMatrix: TMatrix4Single;
begin
Width := Images[csPositiveX].Width ;
Height := Images[csPositiveX].Height;
RenderToTexture := TGLRenderToTexture.Create(Width, Height);
try
RenderToTexture.Buffer := tbNone;
RenderToTexture.GLContextOpen;
SavedProjectionMatrix := ProjectionMatrix;
PerspectiveProjection(90, 1, ProjectionNear, ProjectionFar);
for Side := Low(TCubeMapSide) to High(TCubeMapSide) do
DrawMap(Side);
ProjectionMatrix := SavedProjectionMatrix;
finally FreeAndNil(RenderToTexture) end;
end;
function GLCaptureCubeMapDDS(
const Size: Cardinal;
const CapturePoint: TVector3Single;
const Render: TRenderFromViewFunction;
const ProjectionNear, ProjectionFar: Single): TDDSImage;
var
Images: TCubeMapImages;
Side: TCubeMapSide;
begin
for Side := Low(Side) to High(Side) do
Images[Side] := TRGBImage.Create(Size, Size);
GLCaptureCubeMapImages(Images, CapturePoint, Render,
ProjectionNear, ProjectionFar);
Result := TDDSImage.Create;
Result.Width := Size;
Result.Height := Size;
Result.DDSType := dtCubeMap;
Result.CubeMapSides := AllDDSCubeMapSides;
Result.Mipmaps := false;
Result.MipmapsCount := 1;
Result.Images.Count := 6;
Result.Images[Ord(dcsPositiveX)] := Images[csPositiveX];
Result.Images[Ord(dcsNegativeX)] := Images[csNegativeX];
{ For DDS positive/negative Y must be swapped (Direct X has left-handed
coord system). }
Result.Images[Ord(dcsNegativeY)] := Images[csPositiveY];
Result.Images[Ord(dcsPositiveY)] := Images[csNegativeY];
Result.Images[Ord(dcsPositiveZ)] := Images[csPositiveZ];
Result.Images[Ord(dcsNegativeZ)] := Images[csNegativeZ];
end;
procedure GLCaptureCubeMapTexture(
const Tex: TGLuint;
const Size: Cardinal;
const CapturePoint: TVector3Single;
const Render: TRenderFromViewFunction;
const ProjectionNear, ProjectionFar: Single;
RenderToTexture: TGLRenderToTexture);
procedure DrawMap(Side: TCubeMapSide);
begin
RenderToTexture.RenderBegin;
RenderToTexture.SetTexture(Tex, GL_TEXTURE_CUBE_MAP_POSITIVE_X + Ord(Side));
glViewport(Rectangle(0, 0, Size, Size));
RenderingCamera.Target := rtCubeMapEnvironment;
SetRenderingCamera(CapturePoint, Side);
Render;
RenderToTexture.RenderEnd(Side < High(Side));
end;
var
Side: TCubeMapSide;
SavedProjectionMatrix: TMatrix4Single;
begin
RenderToTexture.CompleteTextureTarget := GL_TEXTURE_CUBE_MAP;
SavedProjectionMatrix := ProjectionMatrix;
PerspectiveProjection(90, 1, ProjectionNear, ProjectionFar);
for Side := Low(TCubeMapSide) to High(TCubeMapSide) do
DrawMap(Side);
ProjectionMatrix := SavedProjectionMatrix;
end;
end.
|