/usr/src/castle-game-engine-5.2.0/base/castlevectors.pas is in castle-game-engine-src 5.2.0-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 | {
Copyright 2003-2014 Michalis Kamburelis.
This file is part of "Castle Game Engine".
"Castle Game Engine" is free software; see the file COPYING.txt,
included in this distribution, for details about the copyright.
"Castle Game Engine" is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
----------------------------------------------------------------------------
}
{ @abstract(Vector and matrix types and operations.
Includes operations on basic geometric objects (2D and 3D),
like collision-checking routines.)
Representation of geometric objects in this unit :
@unorderedList(
@item(
@italic(Plane in 3D space) is a vector TVector4*. Such vector [A, B, C, D]
defines a surface that consists of all points satisfying equation
@code(A * x + B * y + C * z + D = 0). At least one of A, B, C must be
different than zero.
Vector [A, B, C] is called PlaneDir in many places.
Or PlaneNormal when it's guaranteed (or required to be) normalized,
i.e. scaled to have length 1.)
@item(
@italic(Line in 3D space) is represented by two 3D vectors:
Line0 and LineVector. They determine a line consisting of all
points that can be calculated as @code(Line0 + R * LineVector)
where R is any real value.
LineVector must not be a zero vector.)
@item(
@italic(Line in 2D space) is sometimes represented as 2D vectors
Line0 and LineVector (analogously like line in 3D).
And sometimes it's represented as a 3-items vector,
like TVector3Single (for [A, B, C] line consists of all
points satisfying @code(A * x + B * y + C = 0)).
At least one of A, B must be different than zero.)
@item(
A @italic(tunnel) is an object that you get by moving a sphere
along the line segment. In other words, this is like a cylinder,
but ended with a hemispheres. The tunnel is represented in this
unit as two points Tunnel1, Tunnel2 (this defines a line segment)
and a TunnelRadius.)
@item(
A @italic(ray) is defined just like a line: two vectors RayOrigin and RayDirection,
RayDirection must be nonzero.
Ray consists of all points @code(RayOrigin + R * RayDirection)
for R being any real value >= 0.)
@item(
A @italic(simple plane in 3D) is a plane parallel to one of
the three basic planes. This is a plane defined by the equation
@code(X = Const) or @code(Y = Count) or @code(Z = Const).
Such plane is represented as PlaneConstCoord integer value equal
to 0, 1 or 2 and PlaneConstValue.
Note that you can always represent the same plane using a more
general plane 3D equation, just take
@preformatted(
Plane[0..2 / PlaneConstCoord] = 0,
Plane[PlaneConstCoord] = -1,
Plane[3] = PlaneConstValue.
)
On such "simple plane" we can perform many calculations
much faster.)
@item(
A @italic(line segment) (often referred to as just @italic(segment))
is represented by two points Pos1 and Pos2.
For some routines the order of points Pos1 and Pos2 is significant
(but this is always explicitly stated in the interface, so don't worry).
Sometimes line segment is also represented as
Segment0 and SegmentVector, this consists of all points
@code(Segment0 + SegmentVector * t) for t in [0..1].
SegmentVector must not be a zero vector.
Conversion between the two representations above is trivial,
just take Pos1 = Segment0 and Pos2 = Segment0 + SegmentVector.)
)
In descriptions of geometric objects above, I often
stated some requirements, e.g. the triangle must not be "degenerated"
to a line segment, RayDirection must not be a zero vector, etc.
You should note that these requirements are generally @italic(not checked)
by routines in this unit (for the sake of speed) and passing
wrong values to many of the routines may lead to serious bugs
--- maybe the function will raise some arithmetic exception,
maybe it will return some nonsensible result. In other words: when
calling these functions, always make sure that values you pass
satisfy the requirements.
(However, wrong input values should never lead to some serious
bugs like access violations or range check errors ---
in cases when it would be possible, we safeguard against this.
That's because sometimes you simply cannot guarantee for 100%
that input values are correct, because of floating-point precision
problems -- see below.)
As for floating-point precision:
@unorderedList(
@item(Well, floating-point inaccuracy is, as always, a problem.
This unit always uses FloatsEqual
and variables SingleEqualityEpsilon, DoubleEqualityEpsilon
and ExtendedEpsilonEquality when comparison of floating-point
values is needed. In some cases you may be able to adjust these
variables to somewhat fine-tune the comparisons.)
@item(For collision-detecting routines, the general strategy
in case of uncertainty (when we're not sure whether there
is a collision or the objects are just very very close to each other)
is to say that there @italic(is a collision).
This means that we may detect a collision when in fact the precise
mathematical calculation says that there is no collision.
This approach should be suitable for most use cases.)
)
A design question about this unit: Right now I must declare two variables
to define a sphere (like @code(SphereCenter: vector; SphereRadius: scalar;))
Why not wrap all the geometric objects (spheres, lines, rays, tunnels etc.)
inside some records ? For example, define a sphere as
@longcode(#
TSphere = record Center: vector; Radius: scalar; end;
#)
The answer: this is not so good idea, because it would create
a lot of such types into unit, and I would have to implement
simple functions that construct and convert between these
types. Consider e.g. when I have a tunnel (given
as Tunnel1, Tunnel2 points and TunnelRadius vector)
and I want to "extract" the properties of the sphere at the 1st end
of this tunnel. Right now, it's simple: just consider
Tunnel1 as a sphere center, and TunnelRadius is obviously a sphere radius.
Computer doesn't have to actually do anything, you just have to think
in a different way about Tunnel1 and TunnelRadius.
But if I would have tunnel wrapped in a type like @code(TTunnel)
and a sphere wrapped in a type like @code(TSphere), then I would
have to actually implement this trivial conversion. And then doing
such trivial conversion at run-time would take some time,
because you have to copy 6 floating-point values.
This would be a very serious waste of time at run-time.
Well, on the other hand, routines could take less parameters
(e.g. only 1 parameter @code(TTunnel), instead of three vector parameters),
but (overall) we would still loose a lot of time.
In many places where I have to return collision with
a line segment, a line or a ray there are alternative versions
that return just a scalar "T" instead of a calculated point.
The actual collision point can be calculated then like
@code(RayOrigin + T * RayDirection). Of course for rays you can be sure
that T is >= 0, for line segments you can be sure that
0 <= T <= 1. The "T" is often useful, because it allows
you to easily calculate collision point, and also the distance
to the collision (you can e.g. compare T1 and T2 to compare which
collision is closer, and when your RayDirection is normalized then
the T gives you the exact distance). Thanks to this you can often
entirely avoid calculating the actual collision point
(@code(RayOrigin + T * RayDirection)).
Contains some stuff useful for integration with FPC's Matrix unit.
For now, there are some "glueing" functions here like
Vector_Get_Normalized that allow you to comfortably
perform operations on Matrix unit object types.
Most important is also the overload of ":=" operator that allows
you to switch between CastleVectors arrays and Matrix objects without
any syntax obfuscation. Although note that this overload is a little
dangerous, since now code like
@preformatted( V3 := VectorProduct(V1, V2);)
compiles and works both when all three V1, V2 and V3 are TVector3Single arrays
or TVector3_Single objects. However, for the case when they are all
TVector3_Single objects, this is highly un-optimal, and
@preformatted( V3 := V1 >< V2;)
is much faster, since it avoids the implicit convertions (unnecessary
memory copying around).
}
unit CastleVectors;
{$I castleconf.inc}
interface
uses SysUtils, CastleUtils, Matrix, CastleGenericLists;
{$define read_interface}
{ Define pointer types for all Matrix unit types. }
type
{ }
Pvector2_single = ^Tvector2_single ;
Pvector2_double = ^Tvector2_double ;
Pvector2_extended = ^Tvector2_extended;
Pvector3_single = ^Tvector3_single ;
Pvector3_double = ^Tvector3_double ;
Pvector3_extended = ^Tvector3_extended;
Pvector4_single = ^Tvector4_single ;
Pvector4_double = ^Tvector4_double ;
Pvector4_extended = ^Tvector4_extended;
Pmatrix2_single = ^Tmatrix2_single ;
Pmatrix2_double = ^Tmatrix2_double ;
Pmatrix2_extended = ^Tmatrix2_extended;
Pmatrix3_single = ^Tmatrix3_single ;
Pmatrix3_double = ^Tmatrix3_double ;
Pmatrix3_extended = ^Tmatrix3_extended;
Pmatrix4_single = ^Tmatrix4_single ;
Pmatrix4_double = ^Tmatrix4_double ;
Pmatrix4_extended = ^Tmatrix4_extended;
{ Most types below are packed anyway, so the "packed" keyword below
is often not needed (but it doesn't hurt).
The fact that types
below are packed is useful to easily map some of them to
OpenGL, OpenAL types etc. It's also useful to be able to safely
compare the types for exact equality by routines like CompareMem. }
type
{ }
TVector2Single = Tvector2_single_data; PVector2Single = ^TVector2Single;
TVector2Double = Tvector2_double_data; PVector2Double = ^TVector2Double;
TVector2Extended = Tvector2_extended_data; PVector2Extended = ^TVector2Extended;
TVector2Byte = packed array [0..1] of Byte; PVector2Byte = ^TVector2Byte;
TVector2Word = packed array [0..1] of Word; PVector2Word = ^TVector2Word;
TVector2SmallInt = packed array [0..1] of SmallInt; PVector2SmallInt = ^TVector2SmallInt;
TVector2Longint = packed array [0..1] of Longint; PVector2Longint = ^TVector2Longint;
TVector2Pointer = packed array [0..1] of Pointer; PVector2Pointer = ^TVector2Pointer;
TVector2Cardinal = packed array [0..1] of Cardinal; PVector2Cardinal = ^TVector2Cardinal;
TVector2Integer = packed array [0..1] of Integer; PVector2Integer = ^TVector2Integer;
TVector3Single = Tvector3_single_data; PVector3Single = ^TVector3Single;
TVector3Double = Tvector3_double_data; PVector3Double = ^TVector3Double;
TVector3Extended = Tvector3_extended_data; PVector3Extended = ^TVector3Extended;
TVector3Byte = packed array [0..2] of Byte; PVector3Byte = ^TVector3Byte;
TVector3Word = packed array [0..2] of Word; PVector3Word = ^TVector3Word;
TVector3Longint = packed array [0..2] of Longint; PVector3Longint = ^TVector3Longint;
TVector3Pointer = packed array [0..2] of Pointer; PVector3Pointer = ^TVector3Pointer;
TVector3Integer = packed array [0..2] of Integer; PVector3Integer = ^TVector3Integer;
TVector3Cardinal = packed array [0..2] of Cardinal; PVector3Cardinal = ^TVector3Cardinal;
TVector4Single = Tvector4_single_data; PVector4Single = ^TVector4Single;
TVector4Double = Tvector4_double_data; PVector4Double = ^TVector4Double;
TVector4Extended = Tvector4_extended_data; PVector4Extended = ^TVector4Extended;
TVector4Byte = packed array [0..3] of Byte; PVector4Byte = ^TVector4Byte;
TVector4Word = packed array [0..3] of Word; PVector4Word = ^TVector4Word;
TVector4Longint = packed array [0..3] of Longint; PVector4Longint = ^TVector4Longint;
TVector4Pointer = packed array [0..3] of Pointer; PVector4Pointer = ^TVector4Pointer;
TVector4Cardinal = packed array [0..3] of Cardinal; PVector4Cardinal = ^TVector4Cardinal;
TVector4Integer = packed array [0..3] of Integer; PVector4Integer = ^TVector4Integer;
{ Matrices types.
The indexing rules of these types are the same as indexing rules
for matrix types of OpenGL. I.e. the 1st index specifies the column
(where the leftmost column is numbered zero), 2nd index specifies the row
(where the uppermost row is numbered zero).
@bold(Note that this is different than how FPC Matrix unit
treats matrices ! If you want to pass matrices between Matrix unit
and this unit, you must transpose them !)
As you can see, matrices below are not declared explicitly
as 2-dimensional arrays (like @code(array [0..3, 0..3] of Single)),
but they are 1-dimensional arrays of vectors.
This is sometimes useful and comfortable.
@groupBegin }
TMatrix2Single = Tmatrix2_single_data; PMatrix2Single = ^TMatrix2Single;
TMatrix2Double = Tmatrix2_double_data; PMatrix2Double = ^TMatrix2Double;
TMatrix2Longint = packed array[0..1]of TVector2Longint; PMatrix2Longint = ^TMatrix2Longint;
TMatrix3Single = Tmatrix3_single_data; PMatrix3Single = ^TMatrix3Single;
TMatrix3Double = Tmatrix3_double_data; PMatrix3Double = ^TMatrix3Double;
TMatrix3Longint = packed array[0..2]of TVector3Longint; PMatrix3Longint = ^TMatrix3Longint;
TMatrix4Single = Tmatrix4_single_data; PMatrix4Single = ^TMatrix4Single;
TMatrix4Double = Tmatrix4_double_data; PMatrix4Double = ^TMatrix4Double;
TMatrix4Longint = packed array[0..3]of TVector4Longint; PMatrix4Longint = ^TMatrix4Longint;
{ @groupEnd }
{ The "infinite" arrays, useful for some type-casting hacks }
{ }
TArray_Vector2Byte = packed array [0..MaxInt div SizeOf(TVector2Byte)-1] of TVector2Byte;
PArray_Vector2Byte = ^TArray_Vector2Byte;
TArray_Vector3Byte = packed array [0..MaxInt div SizeOf(TVector3Byte)-1] of TVector3Byte;
PArray_Vector3Byte = ^TArray_Vector3Byte;
TArray_Vector4Byte = packed array [0..MaxInt div SizeOf(TVector4Byte)-1] of TVector4Byte;
PArray_Vector4Byte = ^TArray_Vector4Byte;
TArray_Vector2Cardinal = packed array [0..MaxInt div SizeOf(TVector2Cardinal) - 1] of TVector2Cardinal;
PArray_Vector2Cardinal = ^TArray_Vector2Cardinal;
TArray_Vector2Extended = packed array [0..MaxInt div SizeOf(TVector2Extended) - 1] of TVector2Extended;
PArray_Vector2Extended = ^TArray_Vector2Extended;
TArray_Vector2Single = packed array [0..MaxInt div SizeOf(TVector2Single) - 1] of TVector2Single;
PArray_Vector2Single = ^TArray_Vector2Single;
TArray_Vector3Single = packed array [0..MaxInt div SizeOf(TVector3Single) - 1] of TVector3Single;
PArray_Vector3Single = ^TArray_Vector3Single;
TArray_Vector4Single = packed array [0..MaxInt div SizeOf(TVector4Single) - 1] of TVector4Single;
PArray_Vector4Single = ^TArray_Vector4Single;
TVector4SingleList = class;
TVector3SingleList = class(specialize TGenericStructList<TVector3Single>)
public
procedure AssignNegated(Source: TVector3SingleList);
{ Negate all items. }
procedure Negate;
{ Normalize all items. Zero vectors are left as zero. }
procedure Normalize;
{ Multiply each item, component-wise, with V. }
procedure MultiplyComponents(const V: TVector3Single);
{ Assign linear interpolation between two other vector arrays.
We take ACount items, from V1[Index1 ... Index1 + ACount - 1] and
V2[Index2 ... Index2 + ACount - 1], and interpolate between them
like normal Lerp functions.
It's Ok for both V1 and V2 to be the same objects.
But their ranges should not overlap, for future optimizations
(although it's Ok for current implementation). }
procedure AssignLerp(const Fraction: Single;
V1, V2: TVector3SingleList; Index1, Index2, ACount: Integer);
{ Assign linear interpolation between two other vector arrays,
and normalize resulting vectors.
@seealso AssignLerp }
procedure AssignLerpNormalize(const Fraction: Single;
V1, V2: TVector3SingleList; Index1, Index2, ACount: Integer);
{ Assign linear interpolation between two other vector arrays,
treating vectors as RGB colors and interpolating in HSV space.
@seealso AssignLerp }
procedure AssignLerpRgbInHsv(const Fraction: Single;
V1, V2: TVector3SingleList; Index1, Index2, ACount: Integer);
procedure AddList(Source: TVector3SingleList);
procedure AddListRange(Source: TVector3SingleList; Index, AddCount: Integer);
procedure AddArray(const A: array of TVector3Single);
procedure AssignArray(const A: array of TVector3Single);
{ Convert to TVector4SingleList, with 4th vector component in
new array set to constant W. }
function ToVector4Single(const W: Single): TVector4SingleList;
{ When two vertexes on the list are closer than MergeDistance,
set them truly (exactly) equal.
Returns how many vertex positions were changed. }
function MergeCloseVertexes(MergeDistance: Single): Cardinal;
end;
TVector2SingleList = class(specialize TGenericStructList<TVector2Single>)
public
{ Calculate minimum and maximum values for both dimensions of
this set of points. Returns @false when Count = 0. }
function MinMax(out Min, Max: TVector2Single): boolean;
{ Assign linear interpolation between two other vector arrays.
@seealso TVector3SingleList.AssignLerp }
procedure AssignLerp(const Fraction: Single;
V1, V2: TVector2SingleList; Index1, Index2, ACount: Integer);
procedure AddList(Source: TVector2SingleList);
procedure AddListRange(Source: TVector2SingleList; Index, AddCount: Integer);
procedure AddArray(const A: array of TVector2Single);
procedure AssignArray(const A: array of TVector2Single);
end;
TVector4SingleList = class(specialize TGenericStructList<TVector4Single>)
public
procedure AddList(Source: TVector4SingleList);
procedure AddListRange(Source: TVector4SingleList; Index, AddCount: Integer);
procedure AddArray(const A: array of TVector4Single);
procedure AssignArray(const A: array of TVector4Single);
end;
TVector3CardinalList = specialize TGenericStructList<TVector3Cardinal>;
TVector2DoubleList = class(specialize TGenericStructList<TVector2Double>)
public
function ToVector2Single: TVector2SingleList;
procedure AddList(Source: TVector2DoubleList);
procedure AddArray(const A: array of TVector2Double);
end;
TVector3DoubleList = class(specialize TGenericStructList<TVector3Double>)
public
function ToVector3Single: TVector3SingleList;
procedure AddList(Source: TVector3DoubleList);
procedure AddArray(const A: array of TVector3Double);
end;
TVector4DoubleList = class(specialize TGenericStructList<TVector4Double>)
public
function ToVector4Single: TVector4SingleList;
procedure AddList(Source: TVector4DoubleList);
procedure AddArray(const A: array of TVector4Double);
end;
TMatrix3SingleList = class(specialize TGenericStructList<TMatrix3Single>)
public
procedure AddList(Source: TMatrix3SingleList);
procedure AddArray(const A: array of TMatrix3Single);
end;
TMatrix3DoubleList = class(specialize TGenericStructList<TMatrix3Double>)
public
function ToMatrix3Single: TMatrix3SingleList;
procedure AddList(Source: TMatrix3DoubleList);
procedure AddArray(const A: array of TMatrix3Double);
end;
TMatrix4SingleList = class(specialize TGenericStructList<TMatrix4Single>)
public
procedure AddList(Source: TMatrix4SingleList);
procedure AddArray(const A: array of TMatrix4Single);
end;
TMatrix4DoubleList = class(specialize TGenericStructList<TMatrix4Double>)
public
function ToMatrix4Single: TMatrix4SingleList;
procedure AddList(Source: TMatrix4DoubleList);
procedure AddArray(const A: array of TMatrix4Double);
end;
TVector2SmallIntList = specialize TGenericStructList<TVector2SmallInt>;
EVectorInvalidOp = class(Exception);
TGetVertexFromIndexFunc = function (Index: integer): TVector3Single of object;
const
ZeroVector2Integer: TVector2Integer = (0, 0);
ZeroVector2Single: TVector2Single = (0, 0);
ZeroVector2Double: TVector2Double = (0, 0);
ZeroVector3Single: TVector3Single = (0, 0, 0);
ZeroVector3Double: TVector3Double = (0, 0, 0);
ZeroVector4Single: TVector4Single = (0, 0, 0, 0);
ZeroVector4Double: TVector4Double = (0, 0, 0, 0);
ZeroMatrix2Single: TMatrix2Single = ((0, 0), (0, 0));
ZeroMatrix2Double: TMatrix2Double = ((0, 0), (0, 0));
ZeroMatrix2Longint: TMatrix2Longint = ((0, 0), (0, 0));
ZeroMatrix3Single: TMatrix3Single = ((0, 0, 0), (0, 0, 0), (0, 0, 0));
ZeroMatrix3Double: TMatrix3Double = ((0, 0, 0), (0, 0, 0), (0, 0, 0));
ZeroMatrix3Longint: TMatrix3Longint = ((0, 0, 0), (0, 0, 0), (0, 0, 0));
ZeroMatrix4Single: TMatrix4Single = ((0, 0, 0, 0), (0, 0, 0, 0), (0, 0, 0, 0), (0, 0, 0, 0));
ZeroMatrix4Double: TMatrix4Double = ((0, 0, 0, 0), (0, 0, 0, 0), (0, 0, 0, 0), (0, 0, 0, 0));
ZeroMatrix4Longint: TMatrix4Longint = ((0, 0, 0, 0), (0, 0, 0, 0), (0, 0, 0, 0), (0, 0, 0, 0));
IdentityMatrix2Single: TMatrix2Single = ((1, 0), (0, 1));
IdentityMatrix2Double: TMatrix2Double = ((1, 0), (0, 1));
IdentityMatrix2Longint: TMatrix2Longint = ((1, 0), (0, 1));
IdentityMatrix3Single: TMatrix3Single = ((1, 0, 0), (0, 1, 0), (0, 0, 1));
IdentityMatrix3Double: TMatrix3Double = ((1, 0, 0), (0, 1, 0), (0, 0, 1));
IdentityMatrix3Longint: TMatrix3Longint = ((1, 0, 0), (0, 1, 0), (0, 0, 1));
IdentityMatrix4Single: TMatrix4Single = ((1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1));
IdentityMatrix4Double: TMatrix4Double = ((1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1));
IdentityMatrix4Longint: TMatrix4Longint = ((1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1));
UnitVector3Single: array[0..2]of TVector3Single = ((1, 0, 0), (0, 1, 0), (0, 0, 1));
UnitVector3Double: array[0..2]of TVector3Double = ((1, 0, 0), (0, 1, 0), (0, 0, 1));
UnitVector4Single: array[0..3]of TVector4Single = ((1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1));
UnitVector4Double: array[0..3]of TVector4Double = ((1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1));
{ ---------------------------------------------------------------------------- }
{ @section(FloatsEqual and related things) }
var
{ Values that differ less than given *EqualityEpsilon are assumed
as equal by FloatsEqual (and so by all other routines in this unit).
Note that initial *EqualityEpsilon values are quite large,
if you compare them with the epsilons used by CastleUtils.SameValue
or Math.SameValue. Well, unfortunately they have to be so large,
to always detect collisions.
You can change the variables below (but always keep them >= 0).
Exact 0 always means that exact comparison will be used.
@groupBegin }
SingleEqualityEpsilon: Single = 1e-7;
DoubleEqualityEpsilon: Double = 1e-12;
ExtendedEqualityEpsilon: Extended = 1e-16;
{ @groupEnd }
{ Compare two float values, with some epsilon.
When two float values differ by less than given epsilon, they are
considered equal.
@groupBegin }
function FloatsEqual(const f1, f2: Single): boolean; overload;
function FloatsEqual(const f1, f2: Double): boolean; overload;
{$ifndef EXTENDED_EQUALS_DOUBLE}
function FloatsEqual(const f1, f2: Extended): boolean; overload;
{$endif}
function FloatsEqual(const f1, f2, EqEpsilon: Single): boolean; overload;
function FloatsEqual(const f1, f2, EqEpsilon: Double): boolean; overload;
{$ifndef EXTENDED_EQUALS_DOUBLE}
function FloatsEqual(const f1, f2, EqEpsilon: Extended): boolean; overload;
{$endif}
{ @groupEnd }
{ Compare float value with zero, with some epsilon.
This is somewhat optimized version of doing FloatsEqual(F1, 0).
This is named Zero, not IsZero --- to not collide with IsZero function
in Math unit (that has the same purpose, but uses different epsilons
by default).
@groupBegin }
function Zero(const f1: Single): boolean; overload;
function Zero(const f1: Double): boolean; overload;
{$ifndef EXTENDED_EQUALS_DOUBLE}
function Zero(const f1: Extended): boolean; overload;
{$endif}
function Zero(const f1, EqEpsilon: Single ): boolean; overload;
function Zero(const f1, EqEpsilon: Double ): boolean; overload;
{$ifndef EXTENDED_EQUALS_DOUBLE}
function Zero(const f1, EqEpsilon: Extended): boolean; overload;
{$endif}
{ Construct and convert vectors and other types ------------------------------ }
{ }
function Vector2Cardinal(const x, y: Cardinal): TVector2Cardinal;
function Vector2Integer(const x, y: Integer): TVector2Integer;
function Vector2LongInt(const x, y: Longint): TVector2LongInt;
function Vector2SmallInt(const x, y: SmallInt): TVector2SmallInt;
function Vector2Single(const x, y: Single): TVector2Single; overload;
function Vector2Single(const V: TVector2Double): TVector2Single; overload;
function Vector2Double(const x, y: Double): TVector2Double;
function Vector3Single(const x, y: Single; const z: Single = 0.0): TVector3Single; overload;
function Vector3Single(const v3: TVector3Double): TVector3Single; overload;
function Vector3Single(const v3: TVector3Byte): TVector3Single; overload;
function Vector3Single(const v2: TVector2Single; const z: Single = 0.0): TVector3Single; overload;
function Vector3Longint(const p0, p1, p2: Longint): TVector3Longint;
function Vector3Double(const x, y: Double; const z: Double = 0.0): TVector3Double; overload;
function Vector3Double(const v: TVector3Single): TVector3Double; overload;
function Vector4Single(const x, y: Single;
const z: Single = 0; const w: Single = 1): TVector4Single; overload;
function Vector4Single(const v3: TVector3Single;
const w: Single = 1): TVector4Single; overload;
function Vector4Single(const v2: TVector2Single;
const z: Single = 0; const w: Single = 1): TVector4Single; overload;
function Vector4Single(const ub: TVector4Byte): TVector4Single; overload;
function Vector4Single(const V3: TVector3Byte; const W: Byte): TVector4Single; overload;
function Vector4Single(const v: TVector4Double): TVector4Single; overload;
function Vector4Double(const x, y, z ,w: Double): TVector4Double; overload;
function Vector4Double(const v: TVector4Single): TVector4Double; overload;
function Vector3Byte(x, y, z: Byte): TVector3Byte; overload;
{ Convert float vectors into byte vectors.
Each float component is converted such that float 0.0 (or less) results in
0 byte, 1.0 (or more) results in byte 255 (note: not 256).
Values between 0.0 and 1.0 are appropriately (linearly) converted
into the byte range.
@groupBegin }
function Vector3Byte(const v: TVector3Single): TVector3Byte; overload;
function Vector3Byte(const v: TVector3Double): TVector3Byte; overload;
function Vector4Byte(const f4: TVector4Single): TVector4Byte; overload;
{ @groupEnd }
function Vector4Byte(const x, y, z: Byte; const w: Byte = 255): TVector4Byte; overload;
function Vector4Byte(const f3: TVector3Byte; w: Byte): TVector4Byte; overload;
function Vector4Integer(const X, Y, Z, W: Integer): TVector4Integer;
{ Convert a point in homogeneous coordinates into normal 3D point.
In other words, convert 4D @code((x, y, z, w)) into
@code((x/w, y/w, z/w)). Make sure the 4th vector component <> 0. }
function Vector3SinglePoint(const v: TVector4Single): TVector3Single;
{ Convert 4D vector into 3D by simply discarding (ignoring) the 4th vector
component. }
function Vector3SingleCut(const v: TVector4Single): TVector3Single;
function Vector3ByteCut(const v: TVector4Byte): TVector3Byte;
{ Construct and normalize 3D vector value. }
function Normal3Single(const x, y: Single; const z: Single = 0.0): TVector3Single; overload;
{ Convert string to vector. Each component is simply parsed by StrToFloat,
and components must be separated by whitespace (see @link(WhiteSpaces) constant).
@raises(EConvertError In case of problems during convertion (invalid float
or unexpected string end or expected but missed string end).)
@groupBegin }
function Vector3SingleFromStr(const s: string): TVector3Single;
function Vector3DoubleFromStr(const s: string): TVector3Double;
function Vector3ExtendedFromStr(const s: string): TVector3Extended;
function Vector4SingleFromStr(const s: string): TVector4Single;
{ @groupEnd }
{ Convert between single and double precision matrices.
@groupBegin }
function Matrix2Double(const M: TMatrix2Single): TMatrix2Double;
function Matrix2Single(const M: TMatrix2Double): TMatrix2Single;
function Matrix3Double(const M: TMatrix3Single): TMatrix3Double;
function Matrix3Single(const M: TMatrix3Double): TMatrix3Single;
function Matrix4Double(const M: TMatrix4Single): TMatrix4Double;
function Matrix4Single(const M: TMatrix4Double): TMatrix4Single;
{ @groupEnd }
{ Overload := operator to allow convertion between
Matrix unit objects and this unit's arrays easy. }
operator := (const V: TVector2_Single): TVector2Single;
operator := (const V: TVector3_Single): TVector3Single;
operator := (const V: TVector4_Single): TVector4Single;
operator := (const V: TVector2Single): TVector2_Single;
operator := (const V: TVector3Single): TVector3_Single;
operator := (const V: TVector4Single): TVector4_Single;
{ Simple vectors operations ------------------------------------------------- }
{ }
procedure SwapValues(var V1, V2: TVector2Single); overload;
procedure SwapValues(var V1, V2: TVector2Double); overload;
procedure SwapValues(var V1, V2: TVector3Single); overload;
procedure SwapValues(var V1, V2: TVector3Double); overload;
procedure SwapValues(var V1, V2: TVector4Single); overload;
procedure SwapValues(var V1, V2: TVector4Double); overload;
function VectorAverage(const V: TVector3Single): Single; overload;
function VectorAverage(const V: TVector3Double): Double; overload;
{ Linear interpolation between two vector values.
Returns (1-A) * V1 + A * V2 (well, calculated a little differently for speed).
So A = 0 gives V1, A = 1 gives V2, and values between and around are
interpolated.
@groupBegin }
function Lerp(const a: Single; const V1, V2: TVector2Byte): TVector2Byte; overload;
function Lerp(const a: Single; const V1, V2: TVector3Byte): TVector3Byte; overload;
function Lerp(const a: Single; const V1, V2: TVector4Byte): TVector4Byte; overload;
function Lerp(const a: Single; const V1, V2: TVector2Integer): TVector2Single; overload;
function Lerp(const a: Single; const V1, V2: TVector2Single): TVector2Single; overload;
function Lerp(const a: Single; const V1, V2: TVector3Single): TVector3Single; overload;
function Lerp(const a: Single; const V1, V2: TVector4Single): TVector4Single; overload;
function Lerp(const a: Double; const V1, V2: TVector2Double): TVector2Double; overload;
function Lerp(const a: Double; const V1, V2: TVector3Double): TVector3Double; overload;
function Lerp(const a: Double; const V1, V2: TVector4Double): TVector4Double; overload;
function Lerp(const a: Single; const M1, M2: TMatrix3Single): TMatrix3Single; overload;
function Lerp(const a: Single; const M1, M2: TMatrix4Single): TMatrix4Single; overload;
function Lerp(const a: Double; const M1, M2: TMatrix3Double): TMatrix3Double; overload;
function Lerp(const a: Double; const M1, M2: TMatrix4Double): TMatrix4Double; overload;
{ @groupEnd }
function Vector_Init_Lerp(const A: Single; const V1, V2: TVector3_Single): TVector3_Single; overload;
function Vector_Init_Lerp(const A: Single; const V1, V2: TVector4_Single): TVector4_Single; overload;
function Vector_Init_Lerp(const A: Double; const V1, V2: TVector3_Double): TVector3_Double; overload;
function Vector_Init_Lerp(const A: Double; const V1, V2: TVector4_Double): TVector4_Double; overload;
{ Normalize the first 3 vector components. For zero vectors, does nothing.
@groupBegin }
procedure NormalizeTo1st3Singlev(vv: PVector3Single);
procedure NormalizeTo1st3Bytev(vv: PVector3Byte);
{ @groupEnd }
procedure NormalizeTo1st(var v: TVector2Single); overload;
procedure NormalizeTo1st(var v: TVector2Double); overload;
procedure NormalizeTo1st(var v: TVector3Single); overload;
procedure NormalizeTo1st(var v: TVector3Double); overload;
function Normalized(const v: TVector2Single): TVector2Single; overload;
function Normalized(const v: TVector2Double): TVector2Double; overload;
function Normalized(const v: TVector3Single): TVector3Single; overload;
function Normalized(const v: TVector3Double): TVector3Double; overload;
function Vector_Get_Normalized(const V: TVector3_Single): TVector3_Single; overload;
function Vector_Get_Normalized(const V: TVector3_Double): TVector3_Double; overload;
procedure Vector_Normalize(var V: TVector3_Single); overload;
procedure Vector_Normalize(var V: TVector3_Double); overload;
{ This normalizes Plane by scaling all @italic(four) coordinates of Plane
so that length of plane vector (taken from 1st @italic(three) coordinates)
is one.
Also, contrary to normal NormalizeTo1st on 3-component vectors,
this will fail with some awful error (like floating point overflow)
in case length of plane vector is zero. That's because we know
that plane vector @italic(must) be always non-zero. }
procedure NormalizePlaneTo1st(var v: TVector4Single); overload;
procedure NormalizePlaneTo1st(var v: TVector4Double); overload;
function ZeroVector(const v: TVector3Single): boolean; overload;
function ZeroVector(const v: TVector3Double): boolean; overload;
function ZeroVector(const v: TVector4Single): boolean; overload;
function ZeroVector(const v: TVector4Double): boolean; overload;
function ZeroVector(const v: TVector3Single; const EqualityEpsilon: Single): boolean; overload;
function ZeroVector(const v: TVector3Double; const EqualityEpsilon: Double): boolean; overload;
function ZeroVector(const v: TVector4Single; const EqualityEpsilon: Single): boolean; overload;
function ZeroVector(const v: TVector4Double; const EqualityEpsilon: Double): boolean; overload;
function ZeroVector(const v: TVector4Cardinal): boolean; overload;
function PerfectlyZeroVector(const v: TVector2Single): boolean; overload;
function PerfectlyZeroVector(const v: TVector2Double): boolean; overload;
function PerfectlyZeroVector(const v: TVector3Single): boolean; overload;
function PerfectlyZeroVector(const v: TVector3Double): boolean; overload;
function PerfectlyZeroVector(const v: TVector4Single): boolean; overload;
function PerfectlyZeroVector(const v: TVector4Double): boolean; overload;
{ Subtract two vectors.
Versions *To1st place result back into the 1st vector,
like "-=" operator. Are @italic(very very slightly) faster.
@groupBegin }
function VectorSubtract(const V1, V2: TVector2Single): TVector2Single; overload;
function VectorSubtract(const V1, V2: TVector2Double): TVector2Double; overload;
function VectorSubtract(const V1, V2: TVector3Single): TVector3Single; overload;
function VectorSubtract(const V1, V2: TVector3Double): TVector3Double; overload;
function VectorSubtract(const V1, V2: TVector4Single): TVector4Single; overload;
function VectorSubtract(const V1, V2: TVector4Double): TVector4Double; overload;
procedure VectorSubtractTo1st(var v1: TVector2Single; const v2: TVector2Single); overload;
procedure VectorSubtractTo1st(var v1: TVector2Double; const v2: TVector2Double); overload;
procedure VectorSubtractTo1st(var v1: TVector3Single; const v2: TVector3Single); overload;
procedure VectorSubtractTo1st(var v1: TVector3Double; const v2: TVector3Double); overload;
procedure VectorSubtractTo1st(var v1: TVector4Single; const v2: TVector4Single); overload;
procedure VectorSubtractTo1st(var v1: TVector4Double; const v2: TVector4Double); overload;
{ @groupEnd }
{ Add two vectors.
Versions *To1st place result back into the 1st vector,
like "+=" operator. Are @italic(very very slightly) faster.
@groupBegin }
function VectorAdd(const V1, V2: TVector2Single): TVector2Single; overload;
function VectorAdd(const V1, V2: TVector2Double): TVector2Double; overload;
function VectorAdd(const V1, V2: TVector3Single): TVector3Single; overload;
function VectorAdd(const V1, V2: TVector3Double): TVector3Double; overload;
function VectorAdd(const V1, V2: TVector4Single): TVector4Single; overload;
function VectorAdd(const V1, V2: TVector4Double): TVector4Double; overload;
procedure VectorAddTo1st(var v1: TVector2Single; const v2: TVector2Single); overload;
procedure VectorAddTo1st(var v1: TVector2Double; const v2: TVector2Double); overload;
procedure VectorAddTo1st(var v1: TVector3Single; const v2: TVector3Single); overload;
procedure VectorAddTo1st(var v1: TVector3Double; const v2: TVector3Double); overload;
procedure VectorAddTo1st(var v1: TVector4Single; const v2: TVector4Single); overload;
procedure VectorAddTo1st(var v1: TVector4Double; const v2: TVector4Double); overload;
{ @groupEnd }
{ Scale vector (aka multiply by scalar).
Versions *To1st scale place result back into the 1st vector,
like "*=" operator. Are @italic(very very slightly) faster.
@groupBegin }
function VectorScale(const v1: TVector2Single; const Scalar: Single): TVector2Single; overload;
function VectorScale(const v1: TVector2Double; const Scalar: Double): TVector2Double; overload;
function VectorScale(const v1: TVector3Single; const Scalar: Single): TVector3Single; overload;
function VectorScale(const v1: TVector3Double; const Scalar: Double): TVector3Double; overload;
function VectorScale(const v1: TVector4Single; const Scalar: Single): TVector4Single; overload;
function VectorScale(const v1: TVector4Double; const Scalar: Double): TVector4Double; overload;
procedure VectorScaleTo1st(var v1: TVector2Single; const Scalar: Single); overload;
procedure VectorScaleTo1st(var v1: TVector2Double; const Scalar: Double); overload;
procedure VectorScaleTo1st(var v1: TVector3Single; const Scalar: Single); overload;
procedure VectorScaleTo1st(var v1: TVector3Double; const Scalar: Double); overload;
procedure VectorScaleTo1st(var v1: TVector4Single; const Scalar: Single); overload;
procedure VectorScaleTo1st(var v1: TVector4Double; const Scalar: Double); overload;
{ @groupEnd }
{ Negate vector (return -V).
Versions *To1st scale place result back into the 1st vector.
Are @italic(very very slightly) faster.
@groupBegin }
function VectorNegate(const v: TVector2Single): TVector2Single; overload;
function VectorNegate(const v: TVector2Double): TVector2Double; overload;
function VectorNegate(const v: TVector3Single): TVector3Single; overload;
function VectorNegate(const v: TVector3Double): TVector3Double; overload;
function VectorNegate(const v: TVector4Single): TVector4Single; overload;
function VectorNegate(const v: TVector4Double): TVector4Double; overload;
procedure VectorNegateTo1st(var v: TVector2Single); overload;
procedure VectorNegateTo1st(var v: TVector2Double); overload;
procedure VectorNegateTo1st(var v: TVector3Single); overload;
procedure VectorNegateTo1st(var v: TVector3Double); overload;
procedure VectorNegateTo1st(var v: TVector4Single); overload;
procedure VectorNegateTo1st(var v: TVector4Double); overload;
{ @groupEnd }
{ Scale vector such that it has given length (VecLen).
Given VecLen may be negative, then we'll additionally negate the vector.
@groupBegin }
function VectorAdjustToLength(const v: TVector3Single; VecLen: Single): TVector3Single; overload;
function VectorAdjustToLength(const v: TVector3Double; VecLen: Double): TVector3Double; overload;
procedure VectorAdjustToLengthTo1st(var v: TVector3Single; VecLen: Single); overload;
procedure VectorAdjustToLengthTo1st(var v: TVector3Double; VecLen: Double); overload;
{ @groupEnd }
{ Vector length.
@groupBegin }
function VectorLen(const v: TVector2Single): Single; overload;
function VectorLen(const v: TVector2Double): Double; overload;
function VectorLen(const v: TVector3Single): Single; overload;
function VectorLen(const v: TVector3Double): Double; overload;
function VectorLen(const v: TVector3Byte): Single; overload;
function VectorLen(const v: TVector4Single): Single; overload;
function VectorLen(const v: TVector4Double): Double; overload;
{ @groupEnd }
{ Vector length squared.
This is slightly faster than calculating actual vector length,
as it avoids doing expensive Sqrt. In many cases, you can
operate on such squared vector length, and thus you gain some speed.
For example, to check if vector is longer than 10,
check @code(VectorLenSqr(V) > 100) instead of @code(VectorLen(V) > 10).
Also note that when you have a vector with discrete values
(like TVector3Byte), VectorLenSqr returns a precide integer
value, while VectorLen must return floating-point value. }
function VectorLenSqr(const v: TVector2Single): Single; overload;
function VectorLenSqr(const v: TVector2Double): Double; overload;
function VectorLenSqr(const v: TVector3Single): Single; overload;
function VectorLenSqr(const v: TVector3Double): Double; overload;
function VectorLenSqr(const v: TVector3Byte): Integer; overload;
function VectorLenSqr(const v: TVector4Single): Single; overload;
function VectorLenSqr(const v: TVector4Double): Double; overload;
{ Vector cross product.
This is a vector orthogonal to both given vectors.
Generally there are two such vectors, this function returns
the one following right-hand rule. More precisely, V1, V2 and
VectorProduct(V1, V2) are in the same relation as basic X, Y, Z
axes. Reverse the order of arguments to get negated result.
If you use this to calculate a normal vector of a triangle
(P0, P1, P2): note that @code(VectorProduct(P1 - P0, P1 - P2))
points out from CCW triangle side in right-handed coordinate system.
When V1 and V2 are parallel (that is, when V1 = V2 multiplied by some scalar),
and this includes the case when one of them is zero,
then result is a zero vector.
See http://en.wikipedia.org/wiki/Cross_product
@groupBegin }
function VectorProduct(const V1, V2: TVector3Double): TVector3Double; overload;
function VectorProduct(const V1, V2: TVector3Single): TVector3Single; overload;
{ @groupEnd }
{ Dot product (aka scalar product) of two vectors.
Overloaded versions that take as one argument 3-component vector and
as the second argument 4-component vector: they simply behave like
the missing 4th component would be equal 1.0. This is useful when
V1 is a 3D point and V2 is something like plane equation.
@groupBegin }
function VectorDotProduct(const V1, V2: TVector2Single): Single; overload;
function VectorDotProduct(const V1, V2: TVector2Double): Double; overload;
function VectorDotProduct(const V1, V2: TVector3Single): Single; overload;
function VectorDotProduct(const V1, V2: TVector3Double): Double; overload;
function VectorDotProduct(const V1, V2: TVector4Single): Single; overload;
function VectorDotProduct(const V1, V2: TVector4Double): Double; overload;
function VectorDotProduct(const v1: TVector3Single; const v2: TVector4Single): Single; overload;
function VectorDotProduct(const v1: TVector3Double; const v2: TVector4Double): Double; overload;
{ @groupEnd }
{ Multiply two vectors component-wise.
That is, Result[I] := V1[I] * V2[I] for each I.
@groupBegin }
function VectorMultiplyComponents(const V1, V2: TVector3Single): TVector3Single; overload;
function VectorMultiplyComponents(const V1, V2: TVector3Double): TVector3Double; overload;
procedure VectorMultiplyComponentsTo1st(var v1: TVector3Single; const v2: TVector3Single); overload;
procedure VectorMultiplyComponentsTo1st(var v1: TVector3Double; const v2: TVector3Double); overload;
{ @groupEnd }
{ Change each vector component into Power(component, Exp).
@raises(EInvalidArgument When some component is < 0 and Exp <> 0.
Version VectorPowerComponentsTo1st leaves the V in undefined state
in case of such exception.) }
function VectorPowerComponents(const v: TVector3Single; const Exp: Single): TVector3Single; overload;
function VectorPowerComponents(const v: TVector3Double; const Exp: Double): TVector3Double; overload;
procedure VectorPowerComponentsTo1st(var v: TVector3Single; const Exp: Single); overload;
procedure VectorPowerComponentsTo1st(var v: TVector3Double; const Exp: Double); overload;
{ Cosinus of angle between two vectors.
CosAngleBetweenNormals is a little faster, but must receive
normalized (length 1) vectors. This avoids expensive Sqrt
inside CosAngleBetweenVectors.
@raises EVectorInvalidOp If V1 or V2 is zero.
@groupBegin }
function CosAngleBetweenVectors(const V1, V2: TVector3Single): Single; overload;
function CosAngleBetweenVectors(const V1, V2: TVector3Double): Double; overload;
function CosAngleBetweenNormals(const V1, V2: TVector3Single): Single; overload;
function CosAngleBetweenNormals(const V1, V2: TVector3Double): Double; overload;
{ @groupEnd }
{ Angle between two vectors, in radians.
Returns always positive angle, between 0 and Pi.
AngleRadBetweenNormals is a little faster, but must receive
normalized (length 1) vectors. This avoids expensive Sqrt.
See also CosAngleBetweenVectors and CosAngleBetweenNormals
to avoid expensive ArcCos.
@raises EVectorInvalidOp If V1 or V2 is zero.
@groupBegin }
function AngleRadBetweenVectors(const V1, V2: TVector3Single): Single; overload;
function AngleRadBetweenVectors(const V1, V2: TVector3Double): Double; overload;
function AngleRadBetweenNormals(const V1, V2: TVector3Single): Single; overload;
function AngleRadBetweenNormals(const V1, V2: TVector3Double): Double; overload;
{ @groupEnd }
{ Signed angle between two vectors, in radians.
As opposed to AngleRadBetweenNormals, this returns a signed angle,
between -Pi and Pi. This is guaranteed to be such angle that rotating
V1 around vector cross product (V1 x V2) will produce V2.
As you see, the order or arguments is important (just like it's important
for vector cross).
Overloaded versions with Cross argument assume the rotation is done around
given Cross vector, which @italic(must) be a cross product or it's negation
(in other words, it must be orthogonal to both vectors).
@raises EVectorInvalidOp If V1 or V2 is zero.
@groupBegin }
function RotationAngleRadBetweenVectors(const V1, V2: TVector3Single): Single; overload;
function RotationAngleRadBetweenVectors(const V1, V2: TVector3Double): Double; overload;
function RotationAngleRadBetweenVectors(const V1, V2, Cross: TVector3Single): Single; overload;
function RotationAngleRadBetweenVectors(const V1, V2, Cross: TVector3Double): Double; overload;
{ @groupEnd }
{ Rotate point Point around the Axis by given Angle.
Axis cannot be zero.
Note that this is equivalent to constructing a rotation matrix
and then using it, like
@longCode(#
M := RotationMatrixDeg(Angle, Axis);
Result := MatrixMultPoint(M, Point);
#)
Except this will be a little faster. So rotations are done in the
same direction as RotationMatrixDeg, and as OpenGL.
@groupBegin }
function RotatePointAroundAxisDeg(Angle: Single; const Point: TVector3Single; const Axis: TVector3Single): TVector3Single; overload;
function RotatePointAroundAxisDeg(Angle: Double; const Point: TVector3Double; const Axis: TVector3Double): TVector3Double; overload;
function RotatePointAroundAxisRad(Angle: Single; const Point: TVector3Single; const Axis: TVector3Single): TVector3Single; overload;
function RotatePointAroundAxisRad(Angle: Double; const Point: TVector3Double; const Axis: TVector3Double): TVector3Double; overload;
{ @groupEnd }
{ Which coordinate (0, 1, 2, and eventually 3 for 4D versions) is the largest.
When the vector components are equal, the first one "wins", for example
if V[0] = V[1] (and are larger than other vector component) we return 0.
MaxAbsVectorCoord compares the absolute value of components.
@groupBegin }
function MaxVectorCoord(const v: TVector3Single): integer; overload;
function MaxVectorCoord(const v: TVector3Double): integer; overload;
function MaxVectorCoord(const v: TVector4Single): integer; overload;
function MaxVectorCoord(const v: TVector4Double): integer; overload;
function MaxAbsVectorCoord(const v: TVector2Single): integer; overload;
function MaxAbsVectorCoord(const v: TVector2Double): integer; overload;
function MaxAbsVectorCoord(const v: TVector3Single): integer; overload;
function MaxAbsVectorCoord(const v: TVector3Double): integer; overload;
{ @groupEnd }
function VectorAbs(const V: TVector2Single): TVector2Single;
function VectorAbs(const V: TVector2Double): TVector2Double;
function VectorAbs(const V: TVector3Single): TVector3Single;
function VectorAbs(const V: TVector3Double): TVector3Double;
function VectorAbs(const V: TVector4Single): TVector4Single;
function VectorAbs(const V: TVector4Double): TVector4Double;
function MinVectorCoord(const v: TVector3Single): integer; overload;
function MinVectorCoord(const v: TVector3Double): integer; overload;
procedure SortAbsVectorCoord(const v: TVector3Single; out Max, Middle, Min: Integer); overload;
procedure SortAbsVectorCoord(const v: TVector3Double; out Max, Middle, Min: Integer); overload;
{ Vector orthogonal to plane and pointing in the given direction.
Given a plane equation (or just the first 3 components of this equation),
we have vector orthogonal to the plane (just the first 3 components of plane
equation). This returns either this vector, or it's negation.
It chooses the one that points in the same 3D half-space as given Direction.
When given Direction is paralell to Plane, returns original
plane direction, not it's negation.
This really simply returns the first 3 components of plane equation.
possibly negated. So e.g. if the plane direction was normalized, result
is normalized too.
PlaneDirNotInDirection chooses the direction opposite to given Direction
parameter. So it's like @code(PlaneDirInDirection(Plane, -Direction)).
@groupBegin }
function PlaneDirInDirection(const Plane: TVector4Single; const Direction: TVector3Single): TVector3Single; overload;
function PlaneDirInDirection(const PlaneDir, Direction: TVector3Single): TVector3Single; overload;
function PlaneDirInDirection(const Plane: TVector4Double; const Direction: TVector3Double): TVector3Double; overload;
function PlaneDirInDirection(const PlaneDir, Direction: TVector3Double): TVector3Double; overload;
function PlaneDirNotInDirection(const Plane: TVector4Single; const Direction: TVector3Single): TVector3Single; overload;
function PlaneDirNotInDirection(const PlaneDir, Direction: TVector3Single): TVector3Single; overload;
function PlaneDirNotInDirection(const Plane: TVector4Double; const Direction: TVector3Double): TVector3Double; overload;
function PlaneDirNotInDirection(const PlaneDir, Direction: TVector3Double): TVector3Double; overload;
{ @groupEnd }
type
EPlanesParallel = class(Exception);
{ Intersection of two 3D planes.
@raises EPlanesParallel If planes are parallel.
@groupBegin }
procedure TwoPlanesIntersectionLine(const Plane0, Plane1: TVector4Single;
out Line0, LineVector: TVector3Single); overload;
procedure TwoPlanesIntersectionLine(const Plane0, Plane1: TVector4Double;
out Line0, LineVector: TVector3Double); overload;
{ @groupEnd }
type
ELinesParallel = class(Exception);
{ Intersection of two 2D lines.
2D lines are expressed here as a vector of three values (A,B,C),
such that Ax+By+C=0 is true for points on the line.
@raises ELinesParallel if lines parallel
@groupBegin }
function Lines2DIntersection(const Line0, Line1: TVector3Single): TVector2Single; overload;
function Lines2DIntersection(const Line0, Line1: TVector3Double): TVector2Double; overload;
{ @groupEnd }
{ Intersection of three 3D planes, results in a single 3D point.
If the intersection is not a single 3D point, result is undefined,
so don't try to use this.
@groupBegin }
function ThreePlanesIntersectionPoint(
const Plane0, Plane1, Plane2: TVector4Single): TVector3Single; overload;
function ThreePlanesIntersectionPoint(
const Plane0, Plane1, Plane2: TVector4Double): TVector3Double; overload;
{ @groupEnd }
{ Move a plane by a specifed vector.
The first three plane numbers (plane normal vector) don't change
(so, in particular, if you used the plane to define the half-space,
the half-space gets moved as it should).
PlaneAntiMove work like PlaneMove, but they translate by negated Move
So it's like PlaneAntiMove(Plane, V) := PlaneMove(Plane, -V),
but (very slightly) faster.
This works Ok with invalid planes (1st three components = 0),
that is after the move the plane remains invalid (1st three components
remain = 0).
@groupBegin }
function PlaneMove(const Plane: TVector4Single;
const Move: TVector3Single): TVector4Single; overload;
function PlaneMove(const Plane: TVector4Double;
const Move: TVector3Double): TVector4Double; overload;
procedure PlaneMoveTo1st(var Plane: TVector4Single; const Move: TVector3Single); overload;
procedure PlaneMoveTo1st(var Plane: TVector4Double; const Move: TVector3Double); overload;
function PlaneAntiMove(const Plane: TVector4Single;
const Move: TVector3Single): TVector4Single; overload;
function PlaneAntiMove(const Plane: TVector4Double;
const Move: TVector3Double): TVector4Double; overload;
{ @groupEnd }
{ Check if both directions indicate the same side of given 3D plane.
If one direction is parallel to the plane, also returns @true.
You can specify only the first 3 components of plane equation (PlaneDir),
since the 4th component would be ignored anyway.
@groupBegin }
function VectorsSamePlaneDirections(const V1, V2: TVector3Single; const Plane: TVector4Single): boolean; overload;
function VectorsSamePlaneDirections(const V1, V2: TVector3Double; const Plane: TVector4Double): boolean; overload;
function VectorsSamePlaneDirections(const V1, V2: TVector3Single; const PlaneDir: TVector3Single): boolean; overload;
function VectorsSamePlaneDirections(const V1, V2: TVector3Double; const PlaneDir: TVector3Double): boolean; overload;
{ @groupEnd }
{ Check if both points are on the same side of given 3D plane.
If one of the points is exactly on the plane, also returns @true.
@groupBegin }
function PointsSamePlaneSides(const p1, p2: TVector3Single; const Plane: TVector4Single): boolean; overload;
function PointsSamePlaneSides(const p1, p2: TVector3Double; const Plane: TVector4Double): boolean; overload;
{ @groupEnd }
function PointsDistance(const V1, V2: TVector2Single): Single; overload;
function PointsDistance(const V1, V2: TVector2Double): Double; overload;
function PointsDistance(const V1, V2: TVector3Single): Single; overload;
function PointsDistance(const V1, V2: TVector3Double): Double; overload;
function PointsDistanceSqr(const V1, V2: TVector3Single): Single; overload;
function PointsDistanceSqr(const V1, V2: TVector3Double): Double; overload;
function PointsDistanceSqr(const V1, V2: TVector2Single): Single; overload;
function PointsDistanceSqr(const V1, V2: TVector2Double): Double; overload;
{ Distance between points projected on the 2D plane.
Projection is done by rejecting IgnoreIndex coordinate (must be 0, 1 or 2).
@groupBegin }
function PointsDistance2DSqr(const V1, V2: TVector3Single; const IgnoreIndex: Integer): Single; overload;
function PointsDistance2DSqr(const V1, V2: TVector3Double; const IgnoreIndex: Integer): Double; overload;
{ @groupEnd }
{ Compare two vectors, with epsilon to tolerate slightly different floats.
Uses singleEqualityEpsilon, DoubleEqualityEpsilon just like FloatsEqual.
Note that the case when EqualityEpsilon (or SingleEqualityEpsilon
or DoubleEqualityEpsilon) is exactly 0 is optimized here,
just like VectorsPerfectlyEqual.
@seealso VectorsPerfectlyEqual
@groupBegin }
function VectorsEqual(const V1, V2: TVector2Single): boolean; overload;
function VectorsEqual(const V1, V2: TVector2Double): boolean; overload;
function VectorsEqual(const V1, V2: TVector2Single; const EqualityEpsilon: Single): boolean; overload;
function VectorsEqual(const V1, V2: TVector2Double; const EqualityEpsilon: Double): boolean; overload;
function VectorsEqual(const V1, V2: TVector3Single): boolean; overload;
function VectorsEqual(const V1, V2: TVector3Double): boolean; overload;
function VectorsEqual(const V1, V2: TVector3Single; const EqualityEpsilon: Single): boolean; overload;
function VectorsEqual(const V1, V2: TVector3Double; const EqualityEpsilon: Double): boolean; overload;
function VectorsEqual(const V1, V2: TVector4Single): boolean; overload;
function VectorsEqual(const V1, V2: TVector4Double): boolean; overload;
function VectorsEqual(const V1, V2: TVector4Single; const EqualityEpsilon: Single): boolean; overload;
function VectorsEqual(const V1, V2: TVector4Double; const EqualityEpsilon: Double): boolean; overload;
{ @groupEnd }
{ Compare two vectors using perfect comparison, that is using the "=" operator
to compare floats.
@seealso VectorsEqual
@groupBegin }
function VectorsPerfectlyEqual(const V1, V2: TVector2Single): boolean; overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
function VectorsPerfectlyEqual(const V1, V2: TVector2Double): boolean; overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
function VectorsPerfectlyEqual(const V1, V2: TVector3Single): boolean; overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
function VectorsPerfectlyEqual(const V1, V2: TVector3Double): boolean; overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
function VectorsPerfectlyEqual(const V1, V2: TVector4Single): boolean; overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
function VectorsPerfectlyEqual(const V1, V2: TVector4Double): boolean; overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
function VectorsPerfectlyEqual(const V1, V2: TVector3Byte ): boolean; overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
{ @groupEnd }
function MatricesEqual(const M1, M2: TMatrix3Single; const EqualityEpsilon: Single): boolean; overload;
function MatricesEqual(const M1, M2: TMatrix3Double; const EqualityEpsilon: Double): boolean; overload;
function MatricesEqual(const M1, M2: TMatrix4Single; const EqualityEpsilon: Single): boolean; overload;
function MatricesEqual(const M1, M2: TMatrix4Double; const EqualityEpsilon: Double): boolean; overload;
function MatricesPerfectlyEqual(const M1, M2: TMatrix3Single): boolean; overload;
function MatricesPerfectlyEqual(const M1, M2: TMatrix3Double): boolean; overload;
function MatricesPerfectlyEqual(const M1, M2: TMatrix4Single): boolean; overload;
function MatricesPerfectlyEqual(const M1, M2: TMatrix4Double): boolean; overload;
function VectorsPerp(const V1, V2: TVector3Single): boolean; overload;
function VectorsPerp(const V1, V2: TVector3Double): boolean; overload;
{ Are the two vectors parallel (one is a scaled version of another).
In particular, if one of the vectors is zero, then this is @true.
@groupBegin }
function VectorsParallel(const V1, V2: TVector3Single): boolean; overload;
function VectorsParallel(const V1, V2: TVector3Double): boolean; overload;
{ @groupEnd }
{ Adjust the V1 vector to force given angle between V1 and V2.
Vector V1 will be adjusted, such that it has the same length
and the 3D plane defined by V1, V2 and (0, 0, 0) is the same.
When vectors are parallel (this includes the case when one of them is zero),
we set V1 to ResultWhenParallel.
We make it such that V1 rotated around axis VectorProduct(V1, V2) by given
angle will result in V2. Note that this means that
@code(MakeVectorsAngleRadOnTheirPlane(V1, V2, Angle, ...))
results in the same (not reversed) relation between vectors as
@code(MakeVectorsAngleRadOnTheirPlane(V2, V1, Angle, ...)).
That's because you change the arguments order, but also VectorProduct
sign changes.
@groupBegin }
procedure MakeVectorsAngleRadOnTheirPlane(var v1: TVector3Single;
const v2: TVector3Single; const AngleRad: Single;
const ResultWhenParallel: TVector3Single); overload;
procedure MakeVectorsAngleRadOnTheirPlane(var v1: TVector3Double;
const v2: TVector3Double; const AngleRad: Double;
const ResultWhenParallel: TVector3Double); overload;
{ @groupEnd }
{ Adjust the V1 vector to force V1 and V2 to be orthogonal.
When vectors are parallel, we set V1 to be AnyOrthogonalVector(V2). }
procedure MakeVectorsOrthoOnTheirPlane(var v1: TVector3Single;
const v2: TVector3Single); overload;
procedure MakeVectorsOrthoOnTheirPlane(var v1: TVector3Double;
const v2: TVector3Double); overload;
{ Return, deterministically, some vector orthogonal to V.
When V is non-zero, then the result is non-zero.
This uses a simple trick to make an orthogonal vector:
if you take @code(Result := (V[1], -V[0], 0)) then the dot product
between the Result and V is zero, so they are orthogonal.
There's also a small check needed to use a similar but different version
when the only non-zero component of V is V[2].
@groupBegin }
function AnyOrthogonalVector(const v: TVector3Single): TVector3Single; overload;
function AnyOrthogonalVector(const v: TVector3Double): TVector3Double; overload;
{ @groupEnd }
function IsLineParallelToPlane(const lineVector: TVector3Single; const plane: TVector4Single): boolean; overload;
function IsLineParallelToPlane(const lineVector: TVector3Double; const plane: TVector4Double): boolean; overload;
function IsLineParallelToSimplePlane(const lineVector: TVector3Single;
const PlaneConstCoord: integer): boolean; overload;
function IsLineParallelToSimplePlane(const lineVector: TVector3Double;
const PlaneConstCoord: integer): boolean; overload;
{ Assuming that Vector1 and Vector2 are parallel,
check do they point in the same direction.
This assumes that both vectors are non-zero.
If one of the vectors is zero, the result is undefined --- false or true.
(but the function will surely not raise some floating point error etc.) }
function AreParallelVectorsSameDirection(
const Vector1, Vector2: TVector3Single): boolean; overload;
function AreParallelVectorsSameDirection(
const Vector1, Vector2: TVector3Double): boolean; overload;
{ Orthogonally project a point on a plane, that is find a closest
point to Point lying on a Plane.
@groupBegin }
function PointOnPlaneClosestToPoint(const plane: TVector4Single; const point: TVector3Single): TVector3Single; overload;
function PointOnPlaneClosestToPoint(const plane: TVector4Double; const point: TVector3Double): TVector3Double; overload;
{ @groupEnd }
function PointToPlaneDistanceSqr(const Point: TVector3Single;
const Plane: TVector4Single): Single; overload;
function PointToPlaneDistanceSqr(const Point: TVector3Double;
const Plane: TVector4Double): Double; overload;
{ Distance from a point to a plane (with already normalized direction).
Note: distance of the plane from origin point (0,0,0) may be simply
obtained by Abs(Plane[3]) when Plane is Normalized.
@groupBegin }
function PointToNormalizedPlaneDistance(const Point: TVector3Single;
const Plane: TVector4Single): Single; overload;
function PointToNormalizedPlaneDistance(const Point: TVector3Double;
const Plane: TVector4Double): Double; overload;
{ @groupEnd }
{ Distance from a point to a plane.
Note that calculating this costs you one Sqrt
(contrary to PointToPlaneDistanceSqr or
PointToNormalizedPlaneDistance).
@groupBegin }
function PointToPlaneDistance(const Point: TVector3Single;
const Plane: TVector4Single): Single; overload;
function PointToPlaneDistance(const Point: TVector3Double;
const Plane: TVector4Double): Double; overload;
{ @groupEnd }
function PointToSimplePlaneDistance(const point: TVector3Single;
const PlaneConstCoord: integer; const PlaneConstValue: Single): Single; overload;
function PointToSimplePlaneDistance(const point: TVector3Double;
const PlaneConstCoord: integer; const PlaneConstValue: Double): Double; overload;
function PointOnLineClosestToPoint(const line0, lineVector, point: TVector3Single): TVector3Single; overload;
function PointOnLineClosestToPoint(const line0, lineVector, point: TVector3Double): TVector3Double; overload;
function PointToLineDistanceSqr(const point, line0, lineVector: TVector3Single): Single; overload;
function PointToLineDistanceSqr(const point, line0, lineVector: TVector3Double): Double; overload;
{ Plane and line intersection.
Returns @false and doesn't modify Intersection or T when
the line is parallel to the plane (this includes the case when
the line @italic(lies on a plane), so theoretically the whole
line is an intersection).
Otherwise, returns @true, and calculates 3D intersection point,
or calculates T such that @code(3D intersection = Line0 + LineVector * T).
@groupBegin }
function TryPlaneLineIntersection(out intersection: TVector3Single;
const plane: TVector4Single; const line0, lineVector: TVector3Single): boolean; overload;
function TryPlaneLineIntersection(out intersection: TVector3Double;
const plane: TVector4Double; const line0, lineVector: TVector3Double): boolean; overload;
function TryPlaneLineIntersection(out t: Single;
const plane: TVector4Single; const line0, lineVector: TVector3Single): boolean; overload;
function TryPlaneLineIntersection(out t: Double;
const plane: TVector4Double; const line0, lineVector: TVector3Double): boolean; overload;
{ @groupEnd }
{ Plane and ray intersection.
Returns @false and doesn't modify Intersection or T when
the ray is parallel to the plane (this includes the case when
the ray @italic(lies on a plane). Also returns @false when the ray would
have to point in the opposite direction to hit the plane.
Otherwise, returns @true, and calculates 3D intersection point,
or calculates T such that @code(3D intersection = RayOrigin + RayDirection * T).
@groupBegin }
function TrySimplePlaneRayIntersection(out Intersection: TVector3Single;
const PlaneConstCoord: integer; const PlaneConstValue: Single;
const RayOrigin, RayDirection: TVector3Single): boolean; overload;
function TrySimplePlaneRayIntersection(out Intersection: TVector3Double;
const PlaneConstCoord: integer; const PlaneConstValue: Double;
const RayOrigin, RayDirection: TVector3Double): boolean; overload;
function TrySimplePlaneRayIntersection(out Intersection: TVector3Single; out T: Single;
const PlaneConstCoord: integer; const PlaneConstValue: Single;
const RayOrigin, RayDirection: TVector3Single): boolean; overload;
function TrySimplePlaneRayIntersection(out Intersection: TVector3Double; out T: Double;
const PlaneConstCoord: integer; const PlaneConstValue: Double;
const RayOrigin, RayDirection: TVector3Double): boolean; overload;
function TrySimplePlaneRayIntersection(out T: Single;
const PlaneConstCoord: integer; const PlaneConstValue: Single;
const RayOrigin, RayDirection: TVector3Single): boolean; overload;
function TrySimplePlaneRayIntersection(out T: Double;
const PlaneConstCoord: integer; const PlaneConstValue: Double;
const RayOrigin, RayDirection: TVector3Double): boolean; overload;
function TryPlaneRayIntersection(out Intersection: TVector3Single;
const Plane: TVector4Single; const RayOrigin, RayDirection: TVector3Single): boolean; overload;
function TryPlaneRayIntersection(out Intersection: TVector3Double;
const Plane: TVector4Double; const RayOrigin, RayDirection: TVector3Double): boolean; overload;
function TryPlaneRayIntersection(out Intersection: TVector3Single; out T: Single;
const Plane: TVector4Single; const RayOrigin, RayDirection: TVector3Single): boolean; overload;
function TryPlaneRayIntersection(out Intersection: TVector3Double; out T: Double;
const Plane: TVector4Double; const RayOrigin, RayDirection: TVector3Double): boolean; overload;
{ @groupEnd }
{ Plane and line segment intersection.
Returns @false and doesn't modify Intersection or T when
the segment is parallel to the plane (this includes the case when
the segment @italic(lies on a plane). Also returns @false when the segment
would have to be longer to hit the plane.
Otherwise, returns @true, and calculates 3D intersection point,
or calculates T such that @code(3D intersection = RayOrigin + RayDirection * T).
@groupBegin }
function TrySimplePlaneSegmentDirIntersection(var Intersection: TVector3Single;
const PlaneConstCoord: integer; const PlaneConstValue: Single;
const Segment0, SegmentVector: TVector3Single): boolean; overload;
function TrySimplePlaneSegmentDirIntersection(var Intersection: TVector3Double;
const PlaneConstCoord: integer; const PlaneConstValue: Double;
const Segment0, SegmentVector: TVector3Double): boolean; overload;
function TrySimplePlaneSegmentDirIntersection(var Intersection: TVector3Single; var T: Single;
const PlaneConstCoord: integer; const PlaneConstValue: Single;
const Segment0, SegmentVector: TVector3Single): boolean; overload;
function TrySimplePlaneSegmentDirIntersection(var Intersection: TVector3Double; var T: Double;
const PlaneConstCoord: integer; const PlaneConstValue: Double;
const Segment0, SegmentVector: TVector3Double): boolean; overload;
function TrySimplePlaneSegmentDirIntersection(var T: Single;
const PlaneConstCoord: integer; const PlaneConstValue: Single;
const Segment0, SegmentVector: TVector3Single): boolean; overload;
function TrySimplePlaneSegmentDirIntersection(var T: Double;
const PlaneConstCoord: integer; const PlaneConstValue: Double;
const Segment0, SegmentVector: TVector3Double): boolean; overload;
function TrySimplePlaneSegmentIntersection(
out Intersection: TVector3Single;
const PlaneConstCoord: integer; const PlaneConstValue: Single;
const Pos1, Pos2: TVector3Single): boolean; overload;
function TrySimplePlaneSegmentIntersection(
out Intersection: TVector3Double;
const PlaneConstCoord: integer; const PlaneConstValue: Double;
const Pos1, Pos2: TVector3Double): boolean; overload;
function TrySimplePlaneSegmentIntersection(
out Intersection: TVector3Single; out T: Single;
const PlaneConstCoord: integer; const PlaneConstValue: Single;
const Pos1, Pos2: TVector3Single): boolean; overload;
function TrySimplePlaneSegmentIntersection(
out Intersection: TVector3Double; out T: Double;
const PlaneConstCoord: integer; const PlaneConstValue: Double;
const Pos1, Pos2: TVector3Double): boolean; overload;
function TrySimplePlaneSegmentIntersection(
out T: Single;
const PlaneConstCoord: integer; const PlaneConstValue: Single;
const Pos1, Pos2: TVector3Single): boolean; overload;
function TrySimplePlaneSegmentIntersection(
out T: Double;
const PlaneConstCoord: integer; const PlaneConstValue: Double;
const Pos1, Pos2: TVector3Double): boolean; overload;
function TryPlaneSegmentDirIntersection(out Intersection: TVector3Single;
const Plane: TVector4Single; const Segment0, SegmentVector: TVector3Single): boolean; overload;
function TryPlaneSegmentDirIntersection(out Intersection: TVector3Double;
const Plane: TVector4Double; const Segment0, SegmentVector: TVector3Double): boolean; overload;
function TryPlaneSegmentDirIntersection(out Intersection: TVector3Single; out T: Single;
const Plane: TVector4Single; const Segment0, SegmentVector: TVector3Single): boolean; overload;
function TryPlaneSegmentDirIntersection(out Intersection: TVector3Double; out T: Double;
const Plane: TVector4Double; const Segment0, SegmentVector: TVector3Double): boolean; overload;
{ @groupEnd }
function IsPointOnSegmentLineWithinSegment(const intersection, pos1, pos2: TVector3Single): boolean; overload;
function IsPointOnSegmentLineWithinSegment(const intersection, pos1, pos2: TVector3Double): boolean; overload;
{ Line passing through two @italic(different) points.
When the points are equal, undefined.
@groupBegin }
function LineOfTwoDifferentPoints2d(const p1, p2: TVector2Single): TVector3Single; overload;
function LineOfTwoDifferentPoints2d(const p1, p2: TVector2Double): TVector3Double; overload;
{ @groupEnd }
function PointToSegmentDistanceSqr(const point, pos1, pos2: TVector3Single): Single; overload;
function PointToSegmentDistanceSqr(const point, pos1, pos2: TVector3Double): Double; overload;
{ Transform plane by a matrix.
@raises(ETransformedResultInvalid Raised when matrix
will transform some point to a direction, or direction to point,
in homogeneous coordinates.)
@groupBegin }
function PlaneTransform(const Plane: TVector4Single; const Matrix: TMatrix4Single): TVector4Single;
function PlaneTransform(const Plane: TVector4Double; const Matrix: TMatrix4Double): TVector4Double;
{ @groupEnd }
function IsTunnelSphereCollision(const Tunnel1, Tunnel2: TVector3Single;
const TunnelRadius: Single; const SphereCenter: TVector3Single;
const SphereRadius: Single): boolean; overload;
function IsTunnelSphereCollision(const Tunnel1, Tunnel2: TVector3Double;
const TunnelRadius: Double; const SphereCenter: TVector3Double;
const SphereRadius: Double): boolean; overload;
function IsSpheresCollision(const Sphere1Center: TVector3Single; const Sphere1Radius: Single;
const Sphere2Center: TVector3Single; const Sphere2Radius: Single): boolean; overload;
function IsSpheresCollision(const Sphere1Center: TVector3Double; const Sphere1Radius: Double;
const Sphere2Center: TVector3Double; const Sphere2Radius: Double): boolean; overload;
function IsSegmentSphereCollision(const pos1, pos2, SphereCenter: TVector3Single;
const SphereRadius: Single): boolean; overload;
function IsSegmentSphereCollision(const pos1, pos2, SphereCenter: TVector3Double;
const SphereRadius: Double): boolean; overload;
function TrySphereRayIntersection(out Intersection: TVector3Single;
const SphereCenter: TVector3Single; const SphereRadius: Single;
const RayOrigin, RayDirection: TVector3Single): boolean; overload;
function TrySphereRayIntersection(out Intersection: TVector3Double;
const SphereCenter: TVector3Double; const SphereRadius: Double;
const RayOrigin, RayDirection: TVector3Double): boolean; overload;
{ Intersection between an (infinitely tall) cylinder and a ray.
@groupBegin }
function TryCylinderRayIntersection(out Intersection: TVector3Single;
const CylinderAxisOrigin, CylinderAxis: TVector3Single;
const CylinderRadius: Single;
const RayOrigin, RayDirection: TVector3Single): boolean; overload;
function TryCylinderRayIntersection(out Intersection: TVector3Double;
const CylinderAxisOrigin, CylinderAxis: TVector3Double;
const CylinderRadius: Double;
const RayOrigin, RayDirection: TVector3Double): boolean; overload;
{ @groupEnd }
{ Converting stuff to string ---------------------------------------------------
Functions named ToNiceStr use FloatToNiceStr that in turn uses
Format('%' + FloatNiceFormat, [f]). In effect, the floating-point value
is by default displayed nicely for human, and moreover you can control
the output by global FloatNiceFormat value.
Also, functions named ToNiceStr sometimes add some decoration (like
"[ ]" characters around matrix rows) to make the result look nice
and readable.
Functions that take a LineIndent parameter (may) output a multiline-string.
In such case, the last line is @italic(never) terminated with newline
character(s).
Functions named ToRawStr output the precise floating-point value,
using the ugly exponential (scientific) notation if needed.
They are suitable for storing the floating-point value in a file,
with a best precision possible.
Also, functions named ToRawStr do not add any decoration when outputting
vectors / matrices. They simply spit a sequence of floating-point values
separated by spaces.
}
{ }
var
FloatNiceFormat: string = 'f';
function FloatToNiceStr(f: Single): string; overload;
function FloatToNiceStr(f: Double): string; overload;
function VectorToNiceStr(const v: array of Byte): string; overload;
function VectorToNiceStr(const v: array of Single): string; overload;
function VectorToNiceStr(const v: array of Double): string; overload;
function VectorToNiceStr(const v: array of Integer): string; overload;
function MatrixToNiceStr(const v: TMatrix4Single; const LineIndent: string): string; overload;
function MatrixToNiceStr(const v: TMatrix4Double; const LineIndent: string): string; overload;
function FloatToRawStr(f: Single): string; overload;
function FloatToRawStr(f: Double): string; overload;
function VectorToRawStr(const v: array of Single): string; overload;
function VectorToRawStr(const v: array of Double): string; overload;
function MatrixToRawStr(const v: TMatrix4Single; const LineIndent: string): string; overload;
function MatrixToRawStr(const v: TMatrix4Double; const LineIndent: string): string; overload;
{ Matrix operations ---------------------------------------------------------- }
{ }
function MatrixAdd(const m1, m2: TMatrix3Single): TMatrix3Single; overload;
function MatrixAdd(const m1, m2: TMatrix4Single): TMatrix4Single; overload;
function MatrixAdd(const m1, m2: TMatrix3Double): TMatrix3Double; overload;
function MatrixAdd(const m1, m2: TMatrix4Double): TMatrix4Double; overload;
procedure MatrixAddTo1st(var m1: TMatrix3Single; const m2: TMatrix3Single); overload;
procedure MatrixAddTo1st(var m1: TMatrix4Single; const m2: TMatrix4Single); overload;
procedure MatrixAddTo1st(var m1: TMatrix3Double; const m2: TMatrix3Double); overload;
procedure MatrixAddTo1st(var m1: TMatrix4Double; const m2: TMatrix4Double); overload;
function MatrixSubtract(const m1, m2: TMatrix3Single): TMatrix3Single; overload;
function MatrixSubtract(const m1, m2: TMatrix4Single): TMatrix4Single; overload;
function MatrixSubtract(const m1, m2: TMatrix3Double): TMatrix3Double; overload;
function MatrixSubtract(const m1, m2: TMatrix4Double): TMatrix4Double; overload;
procedure MatrixSubtractTo1st(var m1: TMatrix3Single; const m2: TMatrix3Single); overload;
procedure MatrixSubtractTo1st(var m1: TMatrix4Single; const m2: TMatrix4Single); overload;
procedure MatrixSubtractTo1st(var m1: TMatrix3Double; const m2: TMatrix3Double); overload;
procedure MatrixSubtractTo1st(var m1: TMatrix4Double; const m2: TMatrix4Double); overload;
function MatrixNegate(const m1: TMatrix3Single): TMatrix3Single; overload;
function MatrixNegate(const m1: TMatrix4Single): TMatrix4Single; overload;
function MatrixNegate(const m1: TMatrix3Double): TMatrix3Double; overload;
function MatrixNegate(const m1: TMatrix4Double): TMatrix4Double; overload;
function MatrixMultScalar(const m: TMatrix3Single; const s: Single): TMatrix3Single; overload;
function MatrixMultScalar(const m: TMatrix4Single; const s: Single): TMatrix4Single; overload;
function MatrixMultScalar(const m: TMatrix3Double; const s: Double): TMatrix3Double; overload;
function MatrixMultScalar(const m: TMatrix4Double; const s: Double): TMatrix4Double; overload;
type
ETransformedResultInvalid = class(EVectorInvalidOp);
{ Transform a 3D point with 4x4 matrix.
This works by temporarily converting point to 4-component vector
(4th component is 1). After multiplying matrix * vector we divide
by 4th component. So this works Ok for all matrices,
even with last row different than identity (0, 0, 0, 1).
E.g. this works for projection matrices too.
@raises(ETransformedResultInvalid This is raised when matrix
will transform point to a direction (vector with 4th component
equal zero). In this case we just cannot interpret the result as a 3D point.)
@groupBegin }
function MatrixMultPoint(const m: TMatrix4Single; const pt: TVector3Single): TVector3Single; overload;
function MatrixMultPoint(const m: TMatrix4Double; const pt: TVector3Double): TVector3Double; overload;
{ @groupEnd }
{ Transform a 3D direction with 4x4 matrix.
This works by temporarily converting direction to 4-component vector
(4th component is 0). After multiplying matrix * vector we check
is the 4th component still 0 (eventually raising ETransformedResultInvalid).
@raises(ETransformedResultInvalid This is raised when matrix
will transform direction to a point (vector with 4th component
nonzero). In this case we just cannot interpret the result as a 3D direction.)
@groupBegin }
function MatrixMultDirection(const m: TMatrix4Single;
const Dir: TVector3Single): TVector3Single; overload;
function MatrixMultDirection(const m: TMatrix4Double;
const Dir: TVector3Double): TVector3Double; overload;
{ @groupEnd }
function MatrixMultVector(const m: TMatrix2Single; const v: TVector2Single): TVector2Single; overload;
function MatrixMultVector(const m: TMatrix3Single; const v: TVector3Single): TVector3Single; overload;
function MatrixMultVector(const m: TMatrix4Single; const v: TVector4Single): TVector4Single; overload;
function MatrixMultVector(const m: TMatrix2Double; const v: TVector2Double): TVector2Double; overload;
function MatrixMultVector(const m: TMatrix3Double; const v: TVector3Double): TVector3Double; overload;
function MatrixMultVector(const m: TMatrix4Double; const v: TVector4Double): TVector4Double; overload;
function MatrixMult(const m1, m2: TMatrix2Single): TMatrix2Single; overload;
function MatrixMult(const m1, m2: TMatrix3Single): TMatrix3Single; overload;
function MatrixMult(const m1, m2: TMatrix4Single): TMatrix4Single; overload;
function MatrixMult(const m1, m2: TMatrix2Double): TMatrix2Double; overload;
function MatrixMult(const m1, m2: TMatrix3Double): TMatrix3Double; overload;
function MatrixMult(const m1, m2: TMatrix4Double): TMatrix4Double; overload;
function MatrixRow(const m: TMatrix2Single; const Row: Integer): TVector2Single; overload;
function MatrixRow(const m: TMatrix3Single; const Row: Integer): TVector3Single; overload;
function MatrixRow(const m: TMatrix4Single; const Row: Integer): TVector4Single; overload;
function MatrixRow(const m: TMatrix2Double; const Row: Integer): TVector2Double; overload;
function MatrixRow(const m: TMatrix3Double; const Row: Integer): TVector3Double; overload;
function MatrixRow(const m: TMatrix4Double; const Row: Integer): TVector4Double; overload;
function MatrixDeterminant(const M: TMatrix2Single): Single; overload;
function MatrixDeterminant(const M: TMatrix2Double): Double; overload;
function MatrixDeterminant(const M: TMatrix3Single): Single; overload;
function MatrixDeterminant(const M: TMatrix3Double): Double; overload;
function MatrixDeterminant(const M: TMatrix4Single): Single; overload;
function MatrixDeterminant(const M: TMatrix4Double): Double; overload;
{ Inverse the matrix.
They do division by Determinant internally, so will raise exception
from this float division if the matrix is not reversible.
@groupBegin }
function MatrixInverse(const M: TMatrix2Single; const Determinant: Single): TMatrix2Single; overload;
function MatrixInverse(const M: TMatrix2Double; const Determinant: Double): TMatrix2Double; overload;
function MatrixInverse(const M: TMatrix3Single; const Determinant: Single): TMatrix3Single; overload;
function MatrixInverse(const M: TMatrix3Double; const Determinant: Double): TMatrix3Double; overload;
function MatrixInverse(const M: TMatrix4Single; const Determinant: Single): TMatrix4Single; overload;
function MatrixInverse(const M: TMatrix4Double; const Determinant: Double): TMatrix4Double; overload;
{ @groupEnd }
{ Transpose the matrix.
@groupBegin }
procedure MatrixTransposeTo1st(var M: TMatrix3Single); overload;
procedure MatrixTransposeTo1st(var M: TMatrix3Double); overload;
function MatrixTranspose(const M: TMatrix3Single): TMatrix3Single; overload;
function MatrixTranspose(const M: TMatrix3Double): TMatrix3Double; overload;
function MatrixTranspose(const M: TMatrix4Single): TMatrix4Single; overload;
function MatrixTranspose(const M: TMatrix4Double): TMatrix4Double; overload;
{ @groupEnd }
{ Inverse the matrix, trying harder (but possibly slower).
Basically, they internally calculate determinant and then calculate
inverse using this determinant. Return @false if the determinant is zero.
The main feature is that Single precision versions actually internally
calculate everything (determinant and inverse) in Double precision.
This gives better accuracy, and safety from matrices with very very small
(but not zero) determinants.
This is quite important for many matrices. For example, a 4x4 matrix
with scaling = 1/200 (which can be easily found in practice,
see e.g. castle/data/levels/gate/gate_processed.wrl) already
has determinant = 1/8 000 000, which will not pass Zero test
(with SingleEqualityEpsilon). But it's possible to calculate it
(even on Single precision, although safer in Double precision).
@groupBegin }
function TryMatrixInverse(const M: TMatrix2Single; out MInverse: TMatrix2Single): boolean; overload;
function TryMatrixInverse(const M: TMatrix2Double; out MInverse: TMatrix2Double): boolean; overload;
function TryMatrixInverse(const M: TMatrix3Single; out MInverse: TMatrix3Single): boolean; overload;
function TryMatrixInverse(const M: TMatrix3Double; out MInverse: TMatrix3Double): boolean; overload;
function TryMatrixInverse(const M: TMatrix4Single; out MInverse: TMatrix4Single): boolean; overload;
function TryMatrixInverse(const M: TMatrix4Double; out MInverse: TMatrix4Double): boolean; overload;
{ @groupEnd }
{ Convert ModelView matrix to a Normal matrix, just like 3D graphic libraries do.
See e.g. http://www.lighthouse3d.com/tutorials/glsl-tutorial/the-normal-matrix/
for explanation why this is necessary, and how it's done. }
function ModelViewToNormalMatrix(const M: TMatrix4Single): TMatrix3Single;
{ Multiply vector by a transposition of the same vector.
For 3d vectors, this results in a 3x3 matrix.
To put this inside a 4x4 matrix,
we fill the last row and column just like for an identity matrix.
This is useful for calculating rotation matrix. }
function VectorMultTransposedSameVector(const v: TVector3Single): TMatrix4Single;
const
{ Special value that you can pass to FrustumProjMatrix and
PerspectiveProjMatrix as ZFar, with intention to set far plane at infinity.
If would be "cooler" to define ZFarInfinity as Math.Infinity,
but operating on Math.Infinity requires unnecessary turning
off of compiler checks. The point was only to have some special ZFar
value, so 0 is as good as Infinity. }
ZFarInfinity = 0.0;
{ Functions to create common 4x4 matrices used in 3D graphics.
These functions generate the same matrices that are made by corresponding
OpenGL (gl or glu) functions. So rotations will be generated in the same
fashion, etc. For exact specification of what matrices they create see
OpenGL specification for routines glTranslate, glScale, glRotate,
glOrtho, glFrustum, gluPerspective.
For frustum and pespective projection matrices, we have a special bonus
here: you can pass as ZFar the special value ZFarInfinity.
Then you get perspective projection matrix withour far clipping plane,
which is very useful for z-fail shadow volumes technique.
Functions named Matrices below generate both normal and inverted matrices.
For example, function RotationMatrices returns two matrices that you
could calculate separately by
@longCode(#
Matrix: = RotationMatrix( Angle, Axis);
InvertedMatrix: = RotationMatrix(-Angle, Axis);
#)
This is useful sometimes, and generating them both at the same time
allows for some speedup (for example, calling RotationMatrix twice will
calculate sincos of Angle twice).
Note that inverse of scaling matrix will not exist if the
ScaleFactor has one of the components zero !
Depending on InvertedMatrixIdentityIfNotExists, this will
(if @false) raise division by zero exception or (if @true) cause
the matrix to be set to identity.
Note that rotation matrix (both normal and inverse) is always defined,
for Axis = zero both normal and inverse matrices are set to identity.
@groupBegin }
function TranslationMatrix(const X, Y, Z: Single): TMatrix4Single; overload;
function TranslationMatrix(const X, Y, Z: Double): TMatrix4Single; overload;
function TranslationMatrix(const Transl: TVector3Single): TMatrix4Single; overload;
function TranslationMatrix(const Transl: TVector3Double): TMatrix4Single; overload;
procedure TranslationMatrices(const X, Y, Z: Single; out Matrix, InvertedMatrix: TMatrix4Single); overload;
procedure TranslationMatrices(const X, Y, Z: Double; out Matrix, InvertedMatrix: TMatrix4Single); overload;
procedure TranslationMatrices(const Transl: TVector3Single; out Matrix, InvertedMatrix: TMatrix4Single); overload;
procedure TranslationMatrices(const Transl: TVector3Double; out Matrix, InvertedMatrix: TMatrix4Single); overload;
function ScalingMatrix(const ScaleFactor: TVector3Single): TMatrix4Single;
procedure ScalingMatrices(const ScaleFactor: TVector3Single;
InvertedMatrixIdentityIfNotExists: boolean;
out Matrix, InvertedMatrix: TMatrix4Single);
function RotationMatrixRad(const AngleRad: Single; const Axis: TVector3Single): TMatrix4Single; overload;
function RotationMatrixDeg(const AngleDeg: Single; const Axis: TVector3Single): TMatrix4Single; overload;
function RotationMatrixRad(const AngleRad: Single; const AxisX, AxisY, AxisZ: Single): TMatrix4Single; overload;
function RotationMatrixDeg(const AngleDeg: Single; const AxisX, AxisY, AxisZ: Single): TMatrix4Single; overload;
procedure RotationMatricesRad(const AngleRad: Single; const Axis: TVector3Single;
out Matrix, InvertedMatrix: TMatrix4Single);
procedure RotationMatricesRad(const AxisAngle: TVector4Single;
out Matrix, InvertedMatrix: TMatrix4Single);
function OrthoProjMatrix(const left, right, bottom, top, zNear, zFar: Single): TMatrix4Single;
function Ortho2dProjMatrix(const left, right, bottom, top: Single): TMatrix4Single;
function FrustumProjMatrix(const left, right, bottom, top, zNear, zFar: Single): TMatrix4Single;
function PerspectiveProjMatrixDeg(const fovyDeg, aspect, zNear, zFar: Single): TMatrix4Single;
function PerspectiveProjMatrixRad(const fovyRad, aspect, zNear, zFar: Single): TMatrix4Single;
{ @groupEnd }
{ Multiply matrix M by translation matrix.
This is equivalent to M := MatrixMult(M, TranslationMatrix(Transl)),
but it works much faster since TranslationMatrix is a very simple matrix
and multiplication by it may be much optimized.
An additional speedup comes from the fact that the result is placed
back in M (so on places where M doesn't change (and there's a lot
of them for multiplication with translation matrix) there's no useless
copying).
MultMatricesTranslation is analogous to calculating both
TranslationMatrix(Transl) and it's inverse, and then
@longCode(#
M := MatrixMult(M, translation);
MInvert := MatrixMult(inverted translation, MInvert);
#)
The idea is that if M represented some translation, and MInvert it's
inverse, then after MultMatricesTranslation this will still hold.
@groupBegin }
procedure MultMatrixTranslation(var M: TMatrix4Single; const Transl: TVector3Single); overload;
procedure MultMatrixTranslation(var M: TMatrix4Double; const Transl: TVector3Double); overload;
procedure MultMatricesTranslation(var M, MInvert: TMatrix4Single; const Transl: TVector3Single); overload;
procedure MultMatricesTranslation(var M, MInvert: TMatrix4Double; const Transl: TVector3Double); overload;
{ @groupEnd }
function MatrixDet4x4(const mat: TMatrix4Single): Single;
function MatrixDet3x3(const a1, a2, a3, b1, b2, b3, c1, c2, c3: Single): Single;
function MatrixDet2x2(const a, b, c, d: Single): Single;
{ Transform coordinates to / from a coordinate system.
Stuff multiplied by this matrix is supplied in other coordinate system.
The "new" coordinate system (you specify it explicitly for
TransformToCoordsMatrix) is the coordinate system in which your 3D stuff
is defined. That is, when you supply the points (that will later be
multiplied by TransformToCoordsMatrix) you think in the "new" coordinate
system. The "old" coordinate system
(you specify it explicitly for TransformFromCoordsMatrix)
is the coordinate system of stuff @italic(after)
it's multiplied by this matrix.
This may get confusing, so to be more precise:
@unorderedList(
@item(
TransformToCoordsMatrix says how the new coords system looks
from the point of view of the old coords system.
A stuff lying at (0, 0, 0) in new coord system will be seen
at NewOrigin after the transformation (in the old coordinate system).
Similarly, direction (0, 1, 0) will be seen as NewY after
the transformation.)
@item(
TransformFromCoordsMatrix is the inverse: how the old system
is seen from the new one. If before the transformation you are
at OldOrigin, then after the transformation you are at (0, 0, 0).
This is natural way to implement LookAtMatrix, LookDirMatrix.)
)
The lengths of directions (New or Old X, Y, Z vectors) are meaningful.
These vectors correspond to unit vectors (1, 0, 0), (0, 1, 0) and (0, 0, 1)
in the other coordinate system. Supplying here non-normalized vectors
will result in scaling.
You can use the "NoScale" versions to have the vectors automatically
normalized, thus you waste a little time (on normalizing) but you
avoid the scaling.
Overloaded versions without OldOrigin / NewOrigin parameters
work like the old/new origin is zero. IOW, the origin of the coordinate
system doesn't change in this case.
@groupBegin }
function TransformToCoordsMatrix(const
NewX, NewY, NewZ: TVector3Single): TMatrix4Single; overload;
function TransformToCoordsMatrix(const
NewX, NewY, NewZ: TVector3Double): TMatrix4Single; overload;
function TransformToCoordsMatrix(const NewOrigin,
NewX, NewY, NewZ: TVector3Single): TMatrix4Single; overload;
function TransformToCoordsMatrix(const NewOrigin,
NewX, NewY, NewZ: TVector3Double): TMatrix4Single; overload;
function TransformToCoordsNoScaleMatrix(const NewOrigin,
NewX, NewY, NewZ: TVector3Single): TMatrix4Single; overload;
function TransformToCoordsNoScaleMatrix(const NewOrigin,
NewX, NewY, NewZ: TVector3Double): TMatrix4Single; overload;
function TransformFromCoordsMatrix(const
OldX, OldY, OldZ: TVector3Single): TMatrix4Single; overload;
function TransformFromCoordsMatrix(const
OldX, OldY, OldZ: TVector3Double): TMatrix4Single; overload;
function TransformFromCoordsMatrix(const OldOrigin,
OldX, OldY, OldZ: TVector3Single): TMatrix4Single; overload;
function TransformFromCoordsMatrix(const OldOrigin,
OldX, OldY, OldZ: TVector3Double): TMatrix4Single; overload;
function TransformFromCoordsNoScaleMatrix(const OldOrigin,
OldX, OldY, OldZ: TVector3Single): TMatrix4Single; overload;
function TransformFromCoordsNoScaleMatrix(const OldOrigin,
OldX, OldY, OldZ: TVector3Double): TMatrix4Single; overload;
{ @groupEnd }
{ Calculate matrix to convert to given coordinate system
(like TransformToCoordsMatrix) and it's inverse
(like TransformFromCoordsMatrix).
@groupBegin }
procedure TransformCoordsMatrices(const NewX, NewY, NewZ: TVector3Single;
out ToCoords, FromCoords: TMatrix4Single); overload;
procedure TransformCoordsMatrices(const NewX, NewY, NewZ: TVector3Double;
out ToCoords, FromCoords: TMatrix4Single); overload;
{ @groupEnd }
{ Transform vector into new coordinate space.
Equivalent to @code(MatrixMultPoint(TransformToCoordsMatrix(ZeroVector3Single,
NewX, NewY, NewZ))). So the origin of new coordinate system is at the same
place. You should pass NewX, NewY, NewZ vectors normalized if you want to
preserve vector length.
@groupBegin }
function TransformToCoords(const V, NewX, NewY, NewZ: TVector3Single): TVector3Single;
function TransformToCoords(const V, NewX, NewY, NewZ: TVector3Double): TVector3Double;
{ @groupEnd }
{ Camera matrix to look at the specified point (or along the specified direction).
Work according to right-handed coordinate system.
When applied to the scene, they transform it, such that a camera standing
at (0, 0, 0) (with dir (0, 0, -1) and up vector (0, 1, 0)),
was seeing the same view as if it was standing at Eye
(with given Dir and Up vectors).
For LookAtMatrix, looking direction is implicitly given as @code(Center - Eye).
Just like gluLookAt.
Dir and Up do not have to normalized (we'll normalize them if needed).
So the lengths of Dir and Up do not affect the result
(just as the distance between Center and Eye points for LookAtMatrix).
Also, Dir and Up do not have to be perfectly orthogonal
(we will eventually adjust Up internally to make it orthogonal to Up).
But make sure they are not parallel.
@groupBegin }
function LookAtMatrix(const Eye, Center, Up: TVector3Single): TMatrix4Single; overload;
function LookAtMatrix(const Eye, Center, Up: TVector3Double): TMatrix4Single; overload;
function LookDirMatrix(const Eye, Dir, Up: TVector3Single): TMatrix4Single; overload;
function LookDirMatrix(const Eye, Dir, Up: TVector3Double): TMatrix4Single; overload;
{ @groupEnd }
{ Calculate LookDirMatrix (or it's inverse), fast.
Has some assumptions that make it run fast:
@unorderedList(
@item(It assumes camera position is zero.)
@item(It assumes that Dir and Up are already normalized and orthogonal.)
)
@groupBegin
}
function FastLookDirMatrix(const Direction, Up: TVector3Single): TMatrix4Single;
function FastLookDirMatrix(const Direction, Up: TVector3Double): TMatrix4Single;
function InverseFastLookDirMatrix(const Direction, Up: TVector3Single): TMatrix4Single;
function InverseFastLookDirMatrix(const Direction, Up: TVector3Double): TMatrix4Single;
{ @groupEnd }
{$I castlevectors_operators.inc}
{$undef read_interface}
implementation
uses Math, CastleStringUtils, CastleColors;
{$define read_implementation}
{$I castlevectors_operators.inc}
{ Separated from PointsDistance2DSqr, to not slowdown it by implicit
try/finally section because we use string. }
procedure PointsDistance2DSqr_InvalidIgnoreIndex;
begin
raise EInternalError.Create('Invalid IgnoreIndex for PointsDistance2DSqr');
end;
{ include castlevectors_dualimplementation.inc ---------------------------------- }
{$define TScalar := Single}
{$define TVector2 := TVector2Single}
{$define TVector3 := TVector3Single}
{$define TVector4 := TVector4Single}
{$define PVector2 := PVector2Single}
{$define PVector3 := PVector3Single}
{$define PVector4 := PVector4Single}
{$define TMatrix2 := TMatrix2Single}
{$define TMatrix3 := TMatrix3Single}
{$define TMatrix4 := TMatrix4Single}
{$define ScalarEqualityEpsilon := SingleEqualityEpsilon}
{$define UnitVector3 := UnitVector3Single}
{$define ZeroVector3 := ZeroVector3Single}
{$define IdentityMatrix4 := IdentityMatrix4Single}
{$define TMatrix2_ := TMatrix2_Single}
{$define TMatrix3_ := TMatrix3_Single}
{$define TMatrix4_ := TMatrix4_Single}
{$define TVector2_ := TVector2_Single}
{$define TVector3_ := TVector3_Single}
{$define TVector4_ := TVector4_Single}
{$I castlevectors_dualimplementation.inc}
{$define TScalar := Double}
{$define TVector2 := TVector2Double}
{$define TVector3 := TVector3Double}
{$define TVector4 := TVector4Double}
{$define PVector2 := PVector2Double}
{$define PVector3 := PVector3Double}
{$define PVector4 := PVector4Double}
{$define TMatrix2 := TMatrix2Double}
{$define TMatrix3 := TMatrix3Double}
{$define TMatrix4 := TMatrix4Double}
{$define ScalarEqualityEpsilon := DoubleEqualityEpsilon}
{$define UnitVector3 := UnitVector3Double}
{$define ZeroVector3 := ZeroVector3Double}
{$define IdentityMatrix4 := IdentityMatrix4Double}
{$define TMatrix2_ := TMatrix2_Double}
{$define TMatrix3_ := TMatrix3_Double}
{$define TMatrix4_ := TMatrix4_Double}
{$define TVector2_ := TVector2_Double}
{$define TVector3_ := TVector3_Double}
{$define TVector4_ := TVector4_Double}
{$I castlevectors_dualimplementation.inc}
{ TVector3SingleList ----------------------------------------------------- }
procedure TVector3SingleList.AssignNegated(Source: TVector3SingleList);
begin
Assign(Source);
Negate;
end;
procedure TVector3SingleList.Negate;
var
I: Integer;
begin
for I := 0 to Count - 1 do
VectorNegateTo1st(L[I]);
end;
procedure TVector3SingleList.Normalize;
var
I: Integer;
begin
for I := 0 to Count - 1 do
NormalizeTo1st(L[I]);
end;
procedure TVector3SingleList.MultiplyComponents(const V: TVector3Single);
var
I: Integer;
begin
for I := 0 to Count - 1 do
VectorMultiplyComponentsTo1st(L[I], V);
end;
procedure TVector3SingleList.AssignLerp(const Fraction: Single;
V1, V2: TVector3SingleList; Index1, Index2, ACount: Integer);
var
I: Integer;
begin
Count := ACount;
for I := 0 to Count - 1 do
L[I] := Lerp(Fraction, V1.L[Index1 + I], V2.L[Index2 + I]);
end;
procedure TVector3SingleList.AssignLerpNormalize(const Fraction: Single;
V1, V2: TVector3SingleList; Index1, Index2, ACount: Integer);
var
I: Integer;
begin
Count := ACount;
for I := 0 to Count - 1 do
begin
L[I] := Lerp(Fraction, V1.L[Index1 + I], V2.L[Index2 + I]);
NormalizeTo1st(L[I]);
end;
end;
procedure TVector3SingleList.AssignLerpRgbInHsv(const Fraction: Single;
V1, V2: TVector3SingleList; Index1, Index2, ACount: Integer);
var
I: Integer;
begin
Count := ACount;
for I := 0 to Count - 1 do
L[I] := LerpRgbInHsv(Fraction, V1.L[Index1 + I], V2.L[Index2 + I]);
end;
function TVector3SingleList.ToVector4Single(const W: Single): TVector4SingleList;
var
I: Integer;
begin
Result := TVector4SingleList.Create;
Result.Count := Count;
for I := 0 to Count - 1 do
Result.L[I] := Vector4Single(L[I], W);
end;
function TVector3SingleList.MergeCloseVertexes(MergeDistance: Single): Cardinal;
var
V1, V2: PVector3Single;
I, J: Integer;
begin
MergeDistance := Sqr(MergeDistance);
Result := 0;
V1 := PVector3Single(List);
for I := 0 to Count - 1 do
begin
{ Find vertexes closer to L[I], and merge them.
Note that this is not optimal: we could avoid processing
here L[I] that were detected previously (and possibly merged)
as being equal to some previous items. But in practice this seems
not needed, as there are not many merged vertices in typical situation,
so time saving would be minimal (and small temporary memory cost
introduced). }
V2 := Addr(L[I + 1]);
for J := I + 1 to Count - 1 do
begin
if PointsDistanceSqr(V1^, V2^) < MergeDistance then
{ We do the VectorsPerfectlyEqual comparison only to get nice Result.
But this *is* an important value for the user, so it's worth it. }
if not VectorsPerfectlyEqual(V1^, V2^) then
begin
V2^ := V1^;
Inc(Result);
end;
Inc(V2);
end;
Inc(V1);
end;
end;
procedure TVector3SingleList.AddList(Source: TVector3SingleList);
var
OldCount: Integer;
begin
OldCount := Count;
Count := Count + Source.Count;
if Source.Count <> 0 then
System.Move(Source.L[0], L[OldCount], SizeOf(TVector3Single) * Source.Count);
end;
procedure TVector3SingleList.AddListRange(Source: TVector3SingleList; Index, AddCount: Integer);
var
OldCount: Integer;
begin
OldCount := Count;
Count := Count + AddCount;
if Source.Count <> 0 then
System.Move(Source.L[Index], L[OldCount], SizeOf(TVector3Single) * AddCount);
end;
procedure TVector3SingleList.AddArray(const A: array of TVector3Single);
var
OldCount: Integer;
begin
OldCount := Count;
Count := Count + High(A) + 1;
if High(A) <> -1 then
System.Move(A[0], L[OldCount], SizeOf(TVector3Single) * (High(A) + 1));
end;
procedure TVector3SingleList.AssignArray(const A: array of TVector3Single);
begin
Clear;
AddArray(A);
end;
{ TVector2SingleList ----------------------------------------------------- }
function TVector2SingleList.MinMax(out Min, Max: TVector2Single): boolean;
var
I: Integer;
begin
Result := Count > 0;
if Result then
begin
Min := L[0];
Max := L[0];
for I := 1 to Count - 1 do
begin
if L[I][0] < Min[0] then Min[0] := L[I][0] else
if L[I][0] > Max[0] then Max[0] := L[I][0];
if L[I][1] < Min[1] then Min[1] := L[I][1] else
if L[I][1] > Max[1] then Max[1] := L[I][1];
end;
end;
end;
procedure TVector2SingleList.AssignLerp(const Fraction: Single;
V1, V2: TVector2SingleList; Index1, Index2, ACount: Integer);
var
I: Integer;
begin
Count := ACount;
for I := 0 to Count - 1 do
L[I] := Lerp(Fraction, V1.L[Index1 + I], V2.L[Index2 + I]);
end;
procedure TVector2SingleList.AddList(Source: TVector2SingleList);
var
OldCount: Integer;
begin
OldCount := Count;
Count := Count + Source.Count;
if Source.Count <> 0 then
System.Move(Source.L[0], L[OldCount], SizeOf(TVector2Single) * Source.Count);
end;
procedure TVector2SingleList.AddListRange(Source: TVector2SingleList; Index, AddCount: Integer);
var
OldCount: Integer;
begin
OldCount := Count;
Count := Count + AddCount;
if Source.Count <> 0 then
System.Move(Source.L[Index], L[OldCount], SizeOf(TVector2Single) * AddCount);
end;
procedure TVector2SingleList.AddArray(const A: array of TVector2Single);
var
OldCount: Integer;
begin
OldCount := Count;
Count := Count + High(A) + 1;
if High(A) <> -1 then
System.Move(A[0], L[OldCount], SizeOf(TVector2Single) * (High(A) + 1));
end;
procedure TVector2SingleList.AssignArray(const A: array of TVector2Single);
begin
Clear;
AddArray(A);
end;
{ TVector4SingleList ----------------------------------------------------- }
procedure TVector4SingleList.AddList(Source: TVector4SingleList);
var
OldCount: Integer;
begin
OldCount := Count;
Count := Count + Source.Count;
if Source.Count <> 0 then
System.Move(Source.L[0], L[OldCount], SizeOf(TVector4Single) * Source.Count);
end;
procedure TVector4SingleList.AddListRange(Source: TVector4SingleList; Index, AddCount: Integer);
var
OldCount: Integer;
begin
OldCount := Count;
Count := Count + AddCount;
if Source.Count <> 0 then
System.Move(Source.L[Index], L[OldCount], SizeOf(TVector4Single) * AddCount);
end;
procedure TVector4SingleList.AddArray(const A: array of TVector4Single);
var
OldCount: Integer;
begin
OldCount := Count;
Count := Count + High(A) + 1;
if High(A) <> -1 then
System.Move(A[0], L[OldCount], SizeOf(TVector4Single) * (High(A) + 1));
end;
procedure TVector4SingleList.AssignArray(const A: array of TVector4Single);
begin
Clear;
AddArray(A);
end;
{ TVector2DoubleList ----------------------------------------------------- }
function TVector2DoubleList.ToVector2Single: TVector2SingleList;
var
I: Integer;
Source: PDouble;
Dest: PSingle;
begin
Result := TVector2SingleList.Create;
Result.Count := Count;
Source := PDouble(List);
Dest := PSingle(Result.List);
for I := 0 to Count * 2 - 1 do
begin
Dest^ := Source^;
Inc(Source);
Inc(Dest);
end;
end;
procedure TVector2DoubleList.AddList(Source: TVector2DoubleList);
var
OldCount: Integer;
begin
OldCount := Count;
Count := Count + Source.Count;
if Source.Count <> 0 then
System.Move(Source.L[0], L[OldCount], SizeOf(TVector2Double) * Source.Count);
end;
procedure TVector2DoubleList.AddArray(const A: array of TVector2Double);
var
OldCount: Integer;
begin
OldCount := Count;
Count := Count + High(A) + 1;
if High(A) <> -1 then
System.Move(A[0], L[OldCount], SizeOf(TVector2Double) * (High(A) + 1));
end;
{ TVector3DoubleList ----------------------------------------------------- }
function TVector3DoubleList.ToVector3Single: TVector3SingleList;
var
I: Integer;
Source: PDouble;
Dest: PSingle;
begin
Result := TVector3SingleList.Create;
Result.Count := Count;
Source := PDouble(List);
Dest := PSingle(Result.List);
for I := 0 to Count * 3 - 1 do
begin
Dest^ := Source^;
Inc(Source);
Inc(Dest);
end;
end;
procedure TVector3DoubleList.AddList(Source: TVector3DoubleList);
var
OldCount: Integer;
begin
OldCount := Count;
Count := Count + Source.Count;
if Source.Count <> 0 then
System.Move(Source.L[0], L[OldCount], SizeOf(TVector3Double) * Source.Count);
end;
procedure TVector3DoubleList.AddArray(const A: array of TVector3Double);
var
OldCount: Integer;
begin
OldCount := Count;
Count := Count + High(A) + 1;
if High(A) <> -1 then
System.Move(A[0], L[OldCount], SizeOf(TVector3Double) * (High(A) + 1));
end;
{ TVector4DoubleList ----------------------------------------------------- }
function TVector4DoubleList.ToVector4Single: TVector4SingleList;
var
I: Integer;
Source: PDouble;
Dest: PSingle;
begin
Result := TVector4SingleList.Create;
Result.Count := Count;
Source := PDouble(List);
Dest := PSingle(Result.List);
for I := 0 to Count * 4 - 1 do
begin
Dest^ := Source^;
Inc(Source);
Inc(Dest);
end;
end;
procedure TVector4DoubleList.AddList(Source: TVector4DoubleList);
var
OldCount: Integer;
begin
OldCount := Count;
Count := Count + Source.Count;
if Source.Count <> 0 then
System.Move(Source.L[0], L[OldCount], SizeOf(TVector4Double) * Source.Count);
end;
procedure TVector4DoubleList.AddArray(const A: array of TVector4Double);
var
OldCount: Integer;
begin
OldCount := Count;
Count := Count + High(A) + 1;
if High(A) <> -1 then
System.Move(A[0], L[OldCount], SizeOf(TVector4Double) * (High(A) + 1));
end;
{ TMatrix3SingleList ----------------------------------------------------- }
procedure TMatrix3SingleList.AddList(Source: TMatrix3SingleList);
var
OldCount: Integer;
begin
OldCount := Count;
Count := Count + Source.Count;
if Source.Count <> 0 then
System.Move(Source.L[0], L[OldCount], SizeOf(TMatrix3Single) * Source.Count);
end;
procedure TMatrix3SingleList.AddArray(const A: array of TMatrix3Single);
var
OldCount: Integer;
begin
OldCount := Count;
Count := Count + High(A) + 1;
if High(A) <> -1 then
System.Move(A[0], L[OldCount], SizeOf(TMatrix3Single) * (High(A) + 1));
end;
{ TMatrix4SingleList ----------------------------------------------------- }
procedure TMatrix4SingleList.AddList(Source: TMatrix4SingleList);
var
OldCount: Integer;
begin
OldCount := Count;
Count := Count + Source.Count;
if Source.Count <> 0 then
System.Move(Source.L[0], L[OldCount], SizeOf(TMatrix4Single) * Source.Count);
end;
procedure TMatrix4SingleList.AddArray(const A: array of TMatrix4Single);
var
OldCount: Integer;
begin
OldCount := Count;
Count := Count + High(A) + 1;
if High(A) <> -1 then
System.Move(A[0], L[OldCount], SizeOf(TMatrix4Single) * (High(A) + 1));
end;
{ TMatrix3DoubleList ----------------------------------------------------- }
function TMatrix3DoubleList.ToMatrix3Single: TMatrix3SingleList;
var
I: Integer;
Source: PDouble;
Dest: PSingle;
begin
Result := TMatrix3SingleList.Create;
Result.Count := Count;
Source := PDouble(List);
Dest := PSingle(Result.List);
for I := 0 to Count * 3 * 3 - 1 do
begin
Dest^ := Source^;
Inc(Source);
Inc(Dest);
end;
end;
procedure TMatrix3DoubleList.AddList(Source: TMatrix3DoubleList);
var
OldCount: Integer;
begin
OldCount := Count;
Count := Count + Source.Count;
if Source.Count <> 0 then
System.Move(Source.L[0], L[OldCount], SizeOf(TMatrix3Double) * Source.Count);
end;
procedure TMatrix3DoubleList.AddArray(const A: array of TMatrix3Double);
var
OldCount: Integer;
begin
OldCount := Count;
Count := Count + High(A) + 1;
if High(A) <> -1 then
System.Move(A[0], L[OldCount], SizeOf(TMatrix3Double) * (High(A) + 1));
end;
{ TMatrix4DoubleList ----------------------------------------------------- }
function TMatrix4DoubleList.ToMatrix4Single: TMatrix4SingleList;
var
I: Integer;
Source: PDouble;
Dest: PSingle;
begin
Result := TMatrix4SingleList.Create;
Result.Count := Count;
Source := PDouble(List);
Dest := PSingle(Result.List);
for I := 0 to Count * 4 * 4 - 1 do
begin
Dest^ := Source^;
Inc(Source);
Inc(Dest);
end;
end;
procedure TMatrix4DoubleList.AddList(Source: TMatrix4DoubleList);
var
OldCount: Integer;
begin
OldCount := Count;
Count := Count + Source.Count;
if Source.Count <> 0 then
System.Move(Source.L[0], L[OldCount], SizeOf(TMatrix4Double) * Source.Count);
end;
procedure TMatrix4DoubleList.AddArray(const A: array of TMatrix4Double);
var
OldCount: Integer;
begin
OldCount := Count;
Count := Count + High(A) + 1;
if High(A) <> -1 then
System.Move(A[0], L[OldCount], SizeOf(TMatrix4Double) * (High(A) + 1));
end;
{ FloatsEqual ------------------------------------------------------------- }
function FloatsEqual(const f1, f2: Single): boolean;
begin
if SingleEqualityEpsilon = 0 then
Result := f1 = f2 else
Result := Abs(f1-f2) < SingleEqualityEpsilon;
end;
function FloatsEqual(const f1, f2: Double): boolean;
begin
if DoubleEqualityEpsilon = 0 then
Result := f1 = f2 else
Result := Abs(f1-f2) < DoubleEqualityEpsilon;
end;
{$ifndef EXTENDED_EQUALS_DOUBLE}
function FloatsEqual(const f1, f2: Extended): boolean;
begin
if ExtendedEqualityEpsilon = 0 then
Result := f1 = f2 else
Result := Abs(f1-f2) < ExtendedEqualityEpsilon
end;
{$endif}
function FloatsEqual(const f1, f2, EqEpsilon: Single): boolean;
begin
if EqEpsilon = 0 then
Result := f1 = f2 else
Result := Abs(f1-f2) < EqEpsilon
end;
function FloatsEqual(const f1, f2, EqEpsilon: Double): boolean;
begin
if EqEpsilon = 0 then
Result := f1 = f2 else
Result := Abs(f1-f2) < EqEpsilon
end;
{$ifndef EXTENDED_EQUALS_DOUBLE}
function FloatsEqual(const f1, f2, EqEpsilon: Extended): boolean;
begin
if EqEpsilon = 0 then
Result := f1 = f2 else
Result := Abs(f1-f2) < EqEpsilon
end;
{$endif}
function Zero(const f1: Single ): boolean;
begin
if SingleEqualityEpsilon = 0 then
Result := f1 = 0 else
Result := Abs(f1)< SingleEqualityEpsilon
end;
function Zero(const f1: Double ): boolean;
begin
if DoubleEqualityEpsilon = 0 then
Result := f1 = 0 else
Result := Abs(f1)< DoubleEqualityEpsilon
end;
{$ifndef EXTENDED_EQUALS_DOUBLE}
function Zero(const f1: Extended): boolean;
begin
if ExtendedEqualityEpsilon = 0 then
Result := f1 = 0 else
Result := Abs(f1) < ExtendedEqualityEpsilon
end;
{$endif}
function Zero(const f1, EqEpsilon: Single ): boolean;
begin
if EqEpsilon = 0 then
Result := f1 = 0 else
result := Abs(f1) < EqEpsilon
end;
function Zero(const f1, EqEpsilon: Double ): boolean;
begin
if EqEpsilon = 0 then
Result := f1 = 0 else
Result := Abs(f1) < EqEpsilon
end;
{$ifndef EXTENDED_EQUALS_DOUBLE}
function Zero(const f1, EqEpsilon: Extended): boolean;
begin
if EqEpsilon = 0 then
Result := f1 = 0 else
Result := Abs(f1) < EqEpsilon
end;
{$endif}
{ type constructors ---------------------------------------------------------- }
function Vector2Integer(const x, y: Integer): TVector2Integer;
begin
result[0] := x; result[1] := y;
end;
function Vector2LongInt(const x, y: Longint): TVector2LongInt;
begin
result[0] := x; result[1] := y;
end;
function Vector2SmallInt(const x, y: SmallInt): TVector2SmallInt;
begin
result[0] := x; result[1] := y;
end;
function Vector2Cardinal(const x, y: Cardinal): TVector2Cardinal;
begin
result[0] := x; result[1] := y;
end;
function Vector2Single(const x, y: Single): TVector2Single;
begin
result[0] := x; result[1] := y;
end;
function Vector2Single(const V: TVector2Double): TVector2Single;
begin
Result[0] := V[0];
Result[1] := V[1];
end;
function Vector2Double(const x, y: Double): TVector2Double;
begin
result[0] := x; result[1] := y;
end;
function Vector4Single(const x, y: Single; const z: Single{=0}; const w: Single{=1}): TVector4Single;
begin
result[0] := x; result[1] := y; result[2] := z; result[3] := w;
end;
function Vector4Single(const v3: TVector3Single; const w: Single{=1}): TVector4Single;
begin
move(v3, result, SizeOf(TVector3Single));
result[3] := w;
end;
function Vector4Single(const v2: TVector2Single;
const z: Single = 0; const w: Single = 1): TVector4Single;
begin
Move(V2, Result, SizeOf(TVector2Single));
Result[2] := Z;
Result[3] := W;
end;
function Vector4Single(const ub: TVector4Byte): TVector4Single;
begin
result[0] := ub[0]/255;
result[1] := ub[1]/255;
result[2] := ub[2]/255;
result[3] := ub[3]/255;
end;
function Vector4Single(const V3: TVector3Byte; const W: Byte): TVector4Single;
begin
result[0] := V3[0] / 255;
result[1] := V3[1] / 255;
result[2] := V3[2] / 255;
result[3] := W;
end;
function Vector4Single(const v: TVector4Double): TVector4Single;
begin
result[0] := v[0];
result[1] := v[1];
result[2] := v[2];
result[3] := v[3];
end;
function Vector4Double(const x, y, z, w: Double): TVector4Double;
begin
result[0] := x;
result[1] := y;
result[2] := z;
result[3] := w;
end;
function Vector4Double(const v: TVector4Single): TVector4Double;
begin
result[0] := v[0];
result[1] := v[1];
result[2] := v[2];
result[3] := v[3];
end;
function Vector3Single(const x, y: Single; const z: Single{=0.0}): TVector3Single;
begin
result[0] := x; result[1] := y; result[2] := z;
end;
function Vector3Double(const x, y: Double; const z: Double{=0.0}): TVector3Double;
begin
result[0] := x; result[1] := y; result[2] := z;
end;
function Vector3Single(const v3: TVector3Double): TVector3Single;
begin
result[0] := v3[0]; result[1] := v3[1]; result[2] := v3[2];
end;
function Vector3Single(const v3: TVector3Byte): TVector3Single;
begin
result[0] := v3[0]/255;
result[1] := v3[1]/255;
result[2] := v3[2]/255;
end;
function Vector3Single(const v2: TVector2Single; const z: Single): TVector3Single;
begin
move(v2, result, SizeOf(v2));
result[2] := z;
end;
function Vector3Double(const v: TVector3Single): TVector3Double;
begin
result[0] := v[0]; result[1] := v[1]; result[2] := v[2];
end;
function Vector3Byte(x, y, z: Byte): TVector3Byte;
begin
result[0] := x; result[1] := y; result[2] := z;
end;
function Vector3Byte(const v: TVector3Single): TVector3Byte;
begin
result[0] := Clamped(Round(v[0] * 255), Low(Byte), High(Byte));
result[1] := Clamped(Round(v[1] * 255), Low(Byte), High(Byte));
result[2] := Clamped(Round(v[2] * 255), Low(Byte), High(Byte));
end;
function Vector3Byte(const v: TVector3Double): TVector3Byte;
begin
result[0] := Clamped(Round(v[0] * 255), Low(Byte), High(Byte));
result[1] := Clamped(Round(v[1] * 255), Low(Byte), High(Byte));
result[2] := Clamped(Round(v[2] * 255), Low(Byte), High(Byte));
end;
function Vector3Longint(const p0, p1, p2: Longint): TVector3Longint;
begin
result[0] := p0;
result[1] := p1;
result[2] := p2;
end;
function Vector4Byte(const x, y, z, w: Byte): TVector4Byte;
begin
result[0] := x; result[1] := y; result[2] := z; result[3] := w;
end;
function Vector4Byte(const f4: TVector4Single): TVector4Byte;
begin
result[0] := Round(f4[0] * 255);
result[1] := Round(f4[1] * 255);
result[2] := Round(f4[2] * 255);
result[3] := Round(f4[3] * 255);
end;
function Vector4Byte(const f3: TVector3Byte; w: Byte): TVector4Byte;
begin
result[0] := f3[0];
result[1] := f3[1];
result[2] := f3[2];
result[3] := w;
end;
function Vector4Integer(const X, Y, Z, W: Integer): TVector4Integer;
begin
Result[0] := X;
Result[1] := Y;
Result[2] := Z;
Result[3] := W;
end;
function Vector3SinglePoint(const v: TVector4Single): TVector3Single;
begin
result[0] := v[0]/v[3];
result[1] := v[1]/v[3];
result[2] := v[2]/v[3];
end;
function Vector3SingleCut(const v: TVector4Single): TVector3Single;
begin
Move(v, Result, SizeOf(Result));
end;
function Vector3ByteCut(const v: TVector4Byte): TVector3Byte;
begin
Move(v, Result, SizeOf(Result));
end;
function Normal3Single(const x, y: Single; const z: Single{=0}): TVector3Single;
begin
result[0] := x; result[1] := y; result[2] := z;
NormalizeTo1st3Singlev(@result);
end;
function Vector3SingleFromStr(const s: string): TVector3Single; {$I castlevectors_vector3fromstr.inc}
function Vector3DoubleFromStr(const s: string): TVector3Double; {$I castlevectors_vector3fromstr.inc}
function Vector3ExtendedFromStr(const s: string): TVector3Extended; {$I castlevectors_vector3fromstr.inc}
function Vector4SingleFromStr(const S: string): TVector4Single;
var
SPosition: Integer;
begin
SPosition := 1;
Result[0] := StrToFloat(NextToken(S, SPosition));
Result[1] := StrToFloat(NextToken(S, SPosition));
Result[2] := StrToFloat(NextToken(S, SPosition));
Result[3] := StrToFloat(NextToken(S, SPosition));
if NextToken(s, SPosition) <> '' then
raise EConvertError.Create('Expected end of data when reading vector from string');
end;
function Matrix2Double(const M: TMatrix2Single): TMatrix2Double;
begin
Result[0][0] := M[0][0];
Result[0][1] := M[0][1];
Result[1][0] := M[1][0];
Result[1][1] := M[1][1];
end;
function Matrix2Single(const M: TMatrix2Double): TMatrix2Single;
begin
Result[0][0] := M[0][0];
Result[0][1] := M[0][1];
Result[1][0] := M[1][0];
Result[1][1] := M[1][1];
end;
function Matrix3Double(const M: TMatrix3Single): TMatrix3Double;
begin
Result[0][0] := M[0][0];
Result[0][1] := M[0][1];
Result[0][2] := M[0][2];
Result[1][0] := M[1][0];
Result[1][1] := M[1][1];
Result[1][2] := M[1][2];
Result[2][0] := M[2][0];
Result[2][1] := M[2][1];
Result[2][2] := M[2][2];
end;
function Matrix3Single(const M: TMatrix3Double): TMatrix3Single;
begin
Result[0][0] := M[0][0];
Result[0][1] := M[0][1];
Result[0][2] := M[0][2];
Result[1][0] := M[1][0];
Result[1][1] := M[1][1];
Result[1][2] := M[1][2];
Result[2][0] := M[2][0];
Result[2][1] := M[2][1];
Result[2][2] := M[2][2];
end;
function Matrix4Double(const M: TMatrix4Single): TMatrix4Double;
begin
Result[0][0] := M[0][0];
Result[0][1] := M[0][1];
Result[0][2] := M[0][2];
Result[0][3] := M[0][3];
Result[1][0] := M[1][0];
Result[1][1] := M[1][1];
Result[1][2] := M[1][2];
Result[1][3] := M[1][3];
Result[2][0] := M[2][0];
Result[2][1] := M[2][1];
Result[2][2] := M[2][2];
Result[2][3] := M[2][3];
Result[3][0] := M[3][0];
Result[3][1] := M[3][1];
Result[3][2] := M[3][2];
Result[3][3] := M[3][3];
end;
function Matrix4Single(const M: TMatrix4Double): TMatrix4Single;
begin
Result[0][0] := M[0][0];
Result[0][1] := M[0][1];
Result[0][2] := M[0][2];
Result[0][3] := M[0][3];
Result[1][0] := M[1][0];
Result[1][1] := M[1][1];
Result[1][2] := M[1][2];
Result[1][3] := M[1][3];
Result[2][0] := M[2][0];
Result[2][1] := M[2][1];
Result[2][2] := M[2][2];
Result[2][3] := M[2][3];
Result[3][0] := M[3][0];
Result[3][1] := M[3][1];
Result[3][2] := M[3][2];
Result[3][3] := M[3][3];
end;
{ some math on vectors ------------------------------------------------------- }
function VectorsPerfectlyEqual(const V1, V2: TVector3Byte): boolean;
begin
Result := (V1[0] = V2[0]) and
(V1[1] = V2[1]) and
(V1[2] = V2[2]);
end;
function Lerp(const a: Single; const V1, V2: TVector2Byte): TVector2Byte;
begin
Result[0] := Clamped(Round(V1[0] + A * (V2[0] - V1[0])), 0, High(Byte));
Result[1] := Clamped(Round(V1[1] + A * (V2[1] - V1[1])), 0, High(Byte));
end;
function Lerp(const a: Single; const V1, V2: TVector3Byte): TVector3Byte;
begin
Result[0] := Clamped(Round(V1[0] + A * (V2[0] - V1[0])), 0, High(Byte));
Result[1] := Clamped(Round(V1[1] + A * (V2[1] - V1[1])), 0, High(Byte));
Result[2] := Clamped(Round(V1[2] + A * (V2[2] - V1[2])), 0, High(Byte));
end;
function Lerp(const a: Single; const V1, V2: TVector4Byte): TVector4Byte;
begin
Result[0] := Clamped(Round(V1[0] + A * (V2[0] - V1[0])), 0, High(Byte));
Result[1] := Clamped(Round(V1[1] + A * (V2[1] - V1[1])), 0, High(Byte));
Result[2] := Clamped(Round(V1[2] + A * (V2[2] - V1[2])), 0, High(Byte));
Result[3] := Clamped(Round(V1[3] + A * (V2[3] - V1[3])), 0, High(Byte));
end;
function Lerp(const a: Single; const V1, V2: TVector2Integer): TVector2Single;
begin
result[0] := V1[0] + a*(V2[0]-V1[0]);
result[1] := V1[1] + a*(V2[1]-V1[1]);
end;
function Lerp(const a: Single; const V1, V2: TVector2Single): TVector2Single;
begin
result[0] := V1[0] + a*(V2[0]-V1[0]);
result[1] := V1[1] + a*(V2[1]-V1[1]);
end;
function Lerp(const a: Single; const V1, V2: TVector3Single): TVector3Single;
begin
result[0] := V1[0] + a*(V2[0]-V1[0]);
result[1] := V1[1] + a*(V2[1]-V1[1]);
result[2] := V1[2] + a*(V2[2]-V1[2]);
end;
function Lerp(const a: Single; const V1, V2: TVector4Single): TVector4Single;
begin
result[0] := V1[0] + a*(V2[0]-V1[0]);
result[1] := V1[1] + a*(V2[1]-V1[1]);
result[2] := V1[2] + a*(V2[2]-V1[2]);
result[3] := V1[3] + a*(V2[3]-V1[3]);
end;
function Lerp(const a: Double; const V1, V2: TVector2Double): TVector2Double;
begin
result[0] := V1[0] + a*(V2[0]-V1[0]);
result[1] := V1[1] + a*(V2[1]-V1[1]);
end;
function Lerp(const a: Double; const V1, V2: TVector3Double): TVector3Double;
begin
result[0] := V1[0] + a*(V2[0]-V1[0]);
result[1] := V1[1] + a*(V2[1]-V1[1]);
result[2] := V1[2] + a*(V2[2]-V1[2]);
end;
function Lerp(const a: Double; const V1, V2: TVector4Double): TVector4Double;
begin
result[0] := V1[0] + a*(V2[0]-V1[0]);
result[1] := V1[1] + a*(V2[1]-V1[1]);
result[2] := V1[2] + a*(V2[2]-V1[2]);
result[3] := V1[3] + a*(V2[3]-V1[3]);
end;
function Vector_Init_Lerp(const A: Single; const V1, V2: TVector3_Single): TVector3_Single;
begin
Result.Data[0] := V1.Data[0] + A * (V2.Data[0] - V1.Data[0]);
Result.Data[1] := V1.Data[1] + A * (V2.Data[1] - V1.Data[1]);
Result.Data[2] := V1.Data[2] + A * (V2.Data[2] - V1.Data[2]);
end;
function Vector_Init_Lerp(const A: Single; const V1, V2: TVector4_Single): TVector4_Single;
begin
Result.Data[0] := V1.Data[0] + A * (V2.Data[0] - V1.Data[0]);
Result.Data[1] := V1.Data[1] + A * (V2.Data[1] - V1.Data[1]);
Result.Data[2] := V1.Data[2] + A * (V2.Data[2] - V1.Data[2]);
Result.Data[3] := V1.Data[3] + A * (V2.Data[3] - V1.Data[3]);
end;
function Vector_Init_Lerp(const A: Double; const V1, V2: TVector3_Double): TVector3_Double;
begin
Result.Data[0] := V1.Data[0] + A * (V2.Data[0] - V1.Data[0]);
Result.Data[1] := V1.Data[1] + A * (V2.Data[1] - V1.Data[1]);
Result.Data[2] := V1.Data[2] + A * (V2.Data[2] - V1.Data[2]);
end;
function Vector_Init_Lerp(const A: Double; const V1, V2: TVector4_Double): TVector4_Double;
begin
Result.Data[0] := V1.Data[0] + A * (V2.Data[0] - V1.Data[0]);
Result.Data[1] := V1.Data[1] + A * (V2.Data[1] - V1.Data[1]);
Result.Data[2] := V1.Data[2] + A * (V2.Data[2] - V1.Data[2]);
Result.Data[3] := V1.Data[3] + A * (V2.Data[3] - V1.Data[3]);
end;
procedure NormalizeTo1st3Singlev(vv: PVector3Single);
var
Len: Single;
begin
Len := Sqrt(
Sqr(vv^[0]) +
Sqr(vv^[1]) +
Sqr(vv^[2]));
if Len = 0 then exit;
vv^[0] := vv^[0] / Len;
vv^[1] := vv^[1] / Len;
vv^[2] := vv^[2] / Len;
end;
procedure NormalizeTo1st3Bytev(vv: PVector3Byte);
var
Len: integer;
begin
Len := Round( Sqrt(
Sqr(Integer(vv^[0])) +
Sqr(Integer(vv^[1])) +
Sqr(Integer(vv^[2]))) );
if Len = 0 then exit;
vv^[0] := vv^[0] div Len;
vv^[1] := vv^[1] div Len;
vv^[2] := vv^[2] div Len;
end;
function ZeroVector(const v: TVector4Cardinal): boolean;
begin
result := IsMemCharFilled(v, SizeOf(v), #0);
end;
function VectorLen(const v: TVector3Byte): Single;
begin
result := Sqrt(VectorLenSqr(v))
end;
function VectorLenSqr(const v: TVector3Byte): Integer;
begin
result := Sqr(Integer(v[0])) + Sqr(Integer(v[1])) + Sqr(Integer(v[2]));
end;
function VectorToNiceStr(const v: array of Byte): string; overload;
var
i: Integer;
begin
result := '(';
for i := 0 to High(v)-1 do result := result +IntToStr(v[i]) +', ';
if High(v) >= 0 then result := result +IntToStr(v[High(v)]) +')';
end;
function VectorToNiceStr(const v: array of Integer): string; overload;
var
i: Integer;
begin
result := '(';
for i := 0 to High(v)-1 do result := result +IntToStr(v[i]) +', ';
if High(v) >= 0 then result := result +IntToStr(v[High(v)]) +')';
end;
{ math with matrices ---------------------------------------------------------- }
function VectorMultTransposedSameVector(const v: TVector3Single): TMatrix4Single;
begin
(* Naive version:
for i := 0 to 2 do { i = column, j = row }
for j := 0 to 2 do
result[i, j] := v[i]*v[j];
Expanded and optimized version below. *)
result[0, 0] := sqr(v[0]);
result[1, 1] := sqr(v[1]);
result[2, 2] := sqr(v[2]);
result[0, 1] := v[0]*v[1]; result[1, 0] := result[0, 1];
result[0, 2] := v[0]*v[2]; result[2, 0] := result[0, 2];
result[1, 2] := v[1]*v[2]; result[2, 1] := result[1, 2];
{ Fill the last row and column like an identity matrix }
Result[3, 0] := 0;
Result[3, 1] := 0;
Result[3, 2] := 0;
Result[0, 3] := 0;
Result[1, 3] := 0;
Result[2, 3] := 0;
Result[3, 3] := 1;
end;
function ScalingMatrix(const ScaleFactor: TVector3Single): TMatrix4Single;
begin
result := IdentityMatrix4Single;
result[0, 0] := ScaleFactor[0];
result[1, 1] := ScaleFactor[1];
result[2, 2] := ScaleFactor[2];
end;
procedure ScalingMatrices(const ScaleFactor: TVector3Single;
InvertedMatrixIdentityIfNotExists: boolean;
out Matrix, InvertedMatrix: TMatrix4Single);
begin
Matrix := IdentityMatrix4Single;
Matrix[0, 0] := ScaleFactor[0];
Matrix[1, 1] := ScaleFactor[1];
Matrix[2, 2] := ScaleFactor[2];
InvertedMatrix := IdentityMatrix4Single;
if not
(InvertedMatrixIdentityIfNotExists and
( Zero(ScaleFactor[0]) or
Zero(ScaleFactor[1]) or
Zero(ScaleFactor[2]) )) then
begin
InvertedMatrix[0, 0] := 1 / ScaleFactor[0];
InvertedMatrix[1, 1] := 1 / ScaleFactor[1];
InvertedMatrix[2, 2] := 1 / ScaleFactor[2];
end;
end;
function RotationMatrixRad(const AngleRad: Single;
const Axis: TVector3Single): TMatrix4Single;
var
NormAxis: TVector3Single;
AngleSin, AngleCos: Float;
S, C: Single;
begin
NormAxis := Normalized(Axis);
SinCos(AngleRad, AngleSin, AngleCos);
{ convert Float to Single once }
S := AngleSin;
C := AngleCos;
Result := VectorMultTransposedSameVector(NormAxis);
{ We do not touch the last column and row of Result in the following code,
treating Result like a 3x3 matrix. The last column and row are already Ok. }
{ Expanded Result := Result + (IdentityMatrix3Single - Result) * AngleCos; }
Result[0, 0] += (1 - Result[0, 0]) * C;
Result[1, 0] += - Result[1, 0] * C;
Result[2, 0] += - Result[2, 0] * C;
Result[0, 1] += - Result[0, 1] * C;
Result[1, 1] += (1 - Result[1, 1]) * C;
Result[2, 1] += - Result[2, 1] * C;
Result[0, 2] += - Result[0, 2] * C;
Result[1, 2] += - Result[1, 2] * C;
Result[2, 2] += (1 - Result[2, 2]) * C;
NormAxis[0] *= S;
NormAxis[1] *= S;
NormAxis[2] *= S;
{ Add M3 (from OpenGL matrix equations) }
Result[1, 0] += -NormAxis[2];
Result[2, 0] += NormAxis[1];
Result[0, 1] += NormAxis[2];
Result[2, 1] += -NormAxis[0];
Result[0, 2] += -NormAxis[1];
Result[1, 2] += NormAxis[0];
end;
procedure RotationMatricesRad(const AxisAngle: TVector4Single;
out Matrix, InvertedMatrix: TMatrix4Single);
var
Axis: TVector3Single absolute AxisAngle;
begin
RotationMatricesRad(AxisAngle[3], Axis, Matrix, InvertedMatrix);
end;
procedure RotationMatricesRad(const AngleRad: Single;
const Axis: TVector3Single;
out Matrix, InvertedMatrix: TMatrix4Single);
var
NormAxis: TVector3Single;
V: Single;
AngleSin, AngleCos: Float;
S, C: Single;
begin
NormAxis := Normalized(Axis);
SinCos(AngleRad, AngleSin, AngleCos);
{ convert Float to Single once }
S := AngleSin;
C := AngleCos;
Matrix := VectorMultTransposedSameVector(NormAxis);
{ We do not touch the last column and row of Matrix in the following code,
treating Matrix like a 3x3 matrix. The last column and row are already Ok. }
{ Expanded Matrix := Matrix + (IdentityMatrix3Single - Matrix) * AngleCos; }
Matrix[0, 0] += (1 - Matrix[0, 0]) * C;
Matrix[1, 0] += - Matrix[1, 0] * C;
Matrix[2, 0] += - Matrix[2, 0] * C;
Matrix[0, 1] += - Matrix[0, 1] * C;
Matrix[1, 1] += (1 - Matrix[1, 1]) * C;
Matrix[2, 1] += - Matrix[2, 1] * C;
Matrix[0, 2] += - Matrix[0, 2] * C;
Matrix[1, 2] += - Matrix[1, 2] * C;
Matrix[2, 2] += (1 - Matrix[2, 2]) * C;
{ Up to this point, calculated Matrix is also good for InvertedMatrix }
InvertedMatrix := Matrix;
NormAxis[0] *= S;
NormAxis[1] *= S;
NormAxis[2] *= S;
{ Now add M3 to Matrix, and subtract M3 from InvertedMatrix.
That's because for the inverted rotation, AngleSin is negated,
so the M3 should be subtracted. }
V := -NormAxis[2]; Matrix[1, 0] += V; InvertedMatrix[1, 0] -= V;
V := NormAxis[1]; Matrix[2, 0] += V; InvertedMatrix[2, 0] -= V;
V := NormAxis[2]; Matrix[0, 1] += V; InvertedMatrix[0, 1] -= V;
V := -NormAxis[0]; Matrix[2, 1] += V; InvertedMatrix[2, 1] -= V;
V := -NormAxis[1]; Matrix[0, 2] += V; InvertedMatrix[0, 2] -= V;
V := NormAxis[0]; Matrix[1, 2] += V; InvertedMatrix[1, 2] -= V;
end;
function RotationMatrixDeg(const AngleDeg: Single; const Axis: TVector3Single): TMatrix4Single;
begin
result := RotationMatrixRad(DegToRad(AngleDeg), Axis);
end;
function RotationMatrixDeg(const AngleDeg: Single;
const AxisX, AxisY, AxisZ: Single): TMatrix4Single;
begin
result := RotationMatrixRad(DegToRad(AngleDeg), Vector3Single(AxisX, AxisY, AxisZ));
end;
function RotationMatrixRad(const AngleRad: Single;
const AxisX, AxisY, AxisZ: Single): TMatrix4Single;
begin
result := RotationMatrixRad(AngleRad, Vector3Single(AxisX, AxisY, AxisZ));
end;
function OrthoProjMatrix(const Left, Right, Bottom, Top, ZNear, ZFar: Single): TMatrix4Single;
var
Width, Height, Depth: Single;
begin
Width := Right - Left;
Height := Top - Bottom;
Depth := ZFar - ZNear;
result := ZeroMatrix4Single;
result[0, 0] := 2 / Width;
result[1, 1] := 2 / Height;
result[2, 2] := - 2 / Depth; { tutaj - bo nasze Z-y sa ujemne w glab ekranu }
result[3, 0] := - (Right + Left) / Width;
result[3, 1] := - (Top + Bottom) / Height;
result[3, 2] := - (ZFar + ZNear) / Depth;
result[3, 3] := 1;
end;
function Ortho2dProjMatrix(const Left, Right, Bottom, Top: Single): TMatrix4Single;
var
Width, Height: Single;
begin
{wersja prosta : result := OrthoProjMatrix(Left, Right, Bottom, Top, -1, 1);}
{wersja zoptymalizowana :}
Width := Right - Left;
Height := Top - Bottom;
{Depth := ZFar - ZNear = (1 - (-1)) = 2}
Result := ZeroMatrix4Single;
Result[0, 0] := 2 / Width;
Result[1, 1] := 2 / Height;
Result[2, 2] := {-2 / Depth = -2 / 2} -1;
Result[3, 0] := - (Right + Left) / Width;
Result[3, 1] := - (Top + Bottom) / Height;
Result[3, 2] := {- (ZFar + ZNear) / Depth = 0 / 2} 0;
Result[3, 3] := 1;
end;
function FrustumProjMatrix(const Left, Right, Bottom, Top, ZNear, ZFar: Single): TMatrix4Single;
{ This is of course based on "OpenGL Programming Guide",
Appendix G "... and Transformation Matrices".
ZFarInfinity version based on various sources, pretty much every
article about shadow volumes mentions z-fail and this trick. }
var
Width, Height, Depth, ZNear2: Single;
begin
Width := Right - Left;
Height := Top - Bottom;
ZNear2 := ZNear * 2;
Result := ZeroMatrix4Single;
Result[0, 0] := ZNear2 / Width;
Result[2, 0] := (Right + Left) / Width;
Result[1, 1] := ZNear2 / Height;
Result[2, 1] := (Top + Bottom) / Height;
if ZFar <> ZFarInfinity then
begin
Depth := ZFar - ZNear;
Result[2, 2] := - (ZFar + ZNear) / Depth;
Result[3, 2] := - ZNear2 * ZFar / Depth;
end else
begin
Result[2, 2] := -1;
Result[3, 2] := -ZNear2;
end;
Result[2, 3] := -1;
end;
function PerspectiveProjMatrixDeg(const FovyDeg, Aspect, ZNear, ZFar: Single): TMatrix4Single;
begin
Result := PerspectiveProjMatrixRad(DegToRad(FovyDeg), Aspect, ZNear, ZFar);
end;
function PerspectiveProjMatrixRad(const FovyRad, Aspect, ZNear, ZFar: Single): TMatrix4Single;
{ Based on various sources, e.g. sample implementation of
glu by SGI in Mesa3d sources. }
var
Depth, ZNear2, Cotangent: Single;
begin
ZNear2 := ZNear * 2;
Cotangent := CastleCoTan(FovyRad / 2);
Result := ZeroMatrix4Single;
Result[0, 0] := Cotangent / Aspect;
Result[1, 1] := Cotangent;
if ZFar <> ZFarInfinity then
begin
Depth := ZFar - ZNear;
Result[2, 2] := - (ZFar + ZNear) / Depth;
Result[3, 2] := - ZNear2 * ZFar / Depth;
end else
begin
Result[2, 2] := -1;
Result[3, 2] := -ZNear2;
end;
Result[2, 3] := -1;
end;
{ kod dla MatrixDet* przerobiony z vect.c z mgflib }
function MatrixDet4x4(const mat: TMatrix4Single): Single;
var
a1, a2, a3, a4, b1, b2, b3, b4, c1, c2, c3, c4, d1, d2, d3, d4: Single;
begin
a1 := mat[0][0]; b1 := mat[0][1];
c1 := mat[0][2]; d1 := mat[0][3];
a2 := mat[1][0]; b2 := mat[1][1];
c2 := mat[1][2]; d2 := mat[1][3];
a3 := mat[2][0]; b3 := mat[2][1];
c3 := mat[2][2]; d3 := mat[2][3];
a4 := mat[3][0]; b4 := mat[3][1];
c4 := mat[3][2]; d4 := mat[3][3];
result := a1 * MatrixDet3x3 (b2, b3, b4, c2, c3, c4, d2, d3, d4) -
b1 * MatrixDet3x3 (a2, a3, a4, c2, c3, c4, d2, d3, d4) +
c1 * MatrixDet3x3 (a2, a3, a4, b2, b3, b4, d2, d3, d4) -
d1 * MatrixDet3x3 (a2, a3, a4, b2, b3, b4, c2, c3, c4);
end;
function MatrixDet3x3(const a1, a2, a3, b1, b2, b3, c1, c2, c3: Single): Single;
begin
result := a1 * MatrixDet2x2 (b2, b3, c2, c3)
- b1 * MatrixDet2x2 (a2, a3, c2, c3)
+ c1 * MatrixDet2x2 (a2, a3, b2, b3);
end;
function MatrixDet2x2(const a, b, c, d: Single): Single;
begin
result := a * d - b * c;
end;
function TryMatrixInverse(const M: TMatrix2Single; out MInverse: TMatrix2Single): boolean;
var
D: Double;
MD, MDInverse: TMatrix2Double;
begin
MD := Matrix2Double(M);
D := MatrixDeterminant(MD);
Result := not Zero(D);
if Result then
begin
MDInverse := MatrixInverse(MD, D);
MInverse := Matrix2Single(MDInverse);
end;
end;
function TryMatrixInverse(const M: TMatrix2Double; out MInverse: TMatrix2Double): boolean;
var
D: Double;
begin
D := MatrixDeterminant(M);
Result := not Zero(D);
if Result then
MInverse := MatrixInverse(M, D);
end;
function TryMatrixInverse(const M: TMatrix3Single; out MInverse: TMatrix3Single): boolean;
var
D: Double;
MD, MDInverse: TMatrix3Double;
begin
MD := Matrix3Double(M);
D := MatrixDeterminant(MD);
Result := not Zero(D);
if Result then
begin
MDInverse := MatrixInverse(MD, D);
MInverse := Matrix3Single(MDInverse);
end;
end;
function TryMatrixInverse(const M: TMatrix3Double; out MInverse: TMatrix3Double): boolean;
var
D: Double;
begin
D := MatrixDeterminant(M);
Result := not Zero(D);
if Result then
MInverse := MatrixInverse(M, D);
end;
function TryMatrixInverse(const M: TMatrix4Single; out MInverse: TMatrix4Single): boolean;
var
D: Double;
MD, MDInverse: TMatrix4Double;
begin
MD := Matrix4Double(M);
D := MatrixDeterminant(MD);
Result := not Zero(D);
if Result then
begin
MDInverse := MatrixInverse(MD, D);
MInverse := Matrix4Single(MDInverse);
end;
end;
function TryMatrixInverse(const M: TMatrix4Double; out MInverse: TMatrix4Double): boolean;
var
D: Double;
begin
D := MatrixDeterminant(M);
Result := not Zero(D);
if Result then
MInverse := MatrixInverse(M, D);
end;
function ModelViewToNormalMatrix(const M: TMatrix4Single): TMatrix3Single;
var
D: Single;
M3: TMatrix3Single;
begin
Move(M[0], M3[0], SizeOf(TVector3Single));
Move(M[1], M3[1], SizeOf(TVector3Single));
Move(M[2], M3[2], SizeOf(TVector3Single));
D := MatrixDeterminant(M3);
if Zero(D) then
{ modelview not invertible, nothing good to do but we have to continue
without errors, since this can happen with arbitrary 3D scenes. }
Result := M3 else
begin
Result := MatrixInverse(M3, D);
MatrixTransposeTo1st(Result);
end;
end;
end.
|