This file is indexed.

/usr/src/castle-game-engine-5.2.0/base/castlevectors.pas is in castle-game-engine-src 5.2.0-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
{
  Copyright 2003-2014 Michalis Kamburelis.

  This file is part of "Castle Game Engine".

  "Castle Game Engine" is free software; see the file COPYING.txt,
  included in this distribution, for details about the copyright.

  "Castle Game Engine" is distributed in the hope that it will be useful,
  but WITHOUT ANY WARRANTY; without even the implied warranty of
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

  ----------------------------------------------------------------------------
}

{ @abstract(Vector and matrix types and operations.
  Includes operations on basic geometric objects (2D and 3D),
  like collision-checking routines.)

  Representation of geometric objects in this unit :

  @unorderedList(
    @item(
      @italic(Plane in 3D space) is a vector TVector4*. Such vector [A, B, C, D]
      defines a surface that consists of all points satisfying equation
      @code(A * x + B * y + C * z + D = 0). At least one of A, B, C must be
      different than zero.

      Vector [A, B, C] is called PlaneDir in many places.
      Or PlaneNormal when it's guaranteed (or required to be) normalized,
      i.e. scaled to have length 1.)

    @item(
      @italic(Line in 3D space) is represented by two 3D vectors:
      Line0 and LineVector. They determine a line consisting of all
      points that can be calculated as @code(Line0 + R * LineVector)
      where R is any real value.

      LineVector must not be a zero vector.)

    @item(
      @italic(Line in 2D space) is sometimes represented as 2D vectors
      Line0 and LineVector (analogously like line in 3D).

      And sometimes it's represented as a 3-items vector,
      like TVector3Single (for [A, B, C] line consists of all
      points satisfying @code(A * x + B * y + C = 0)).
      At least one of A, B must be different than zero.)

    @item(
      A @italic(tunnel) is an object that you get by moving a sphere
      along the line segment. In other words, this is like a cylinder,
      but ended with a hemispheres. The tunnel is represented in this
      unit as two points Tunnel1, Tunnel2 (this defines a line segment)
      and a TunnelRadius.)

    @item(
      A @italic(ray) is defined just like a line: two vectors RayOrigin and RayDirection,
      RayDirection must be nonzero.
      Ray consists of all points @code(RayOrigin + R * RayDirection)
      for R being any real value >= 0.)

    @item(
      A @italic(simple plane in 3D) is a plane parallel to one of
      the three basic planes. This is a plane defined by the equation
      @code(X = Const) or @code(Y = Count) or @code(Z = Const).
      Such plane is represented as PlaneConstCoord integer value equal
      to 0, 1 or 2 and PlaneConstValue.

      Note that you can always represent the same plane using a more
      general plane 3D equation, just take

@preformatted(
  Plane[0..2 / PlaneConstCoord] = 0,
  Plane[PlaneConstCoord] = -1,
  Plane[3] = PlaneConstValue.
)

      On such "simple plane" we can perform many calculations
      much faster.)

    @item(
      A @italic(line segment) (often referred to as just @italic(segment))
      is represented by two points Pos1 and Pos2.
      For some routines the order of points Pos1 and Pos2 is significant
      (but this is always explicitly stated in the interface, so don't worry).

      Sometimes line segment is also represented as
      Segment0 and SegmentVector, this consists of all points
      @code(Segment0 + SegmentVector * t) for t in [0..1].
      SegmentVector must not be a zero vector.

      Conversion between the two representations above is trivial,
      just take Pos1 = Segment0 and Pos2 = Segment0 + SegmentVector.)
  )

  In descriptions of geometric objects above, I often
  stated some requirements, e.g. the triangle must not be "degenerated"
  to a line segment, RayDirection must not be a zero vector, etc.
  You should note that these requirements are generally @italic(not checked)
  by routines in this unit (for the sake of speed) and passing
  wrong values to many of the routines may lead to serious bugs
  --- maybe the function will raise some arithmetic exception,
  maybe it will return some nonsensible result. In other words: when
  calling these functions, always make sure that values you pass
  satisfy the requirements.

  (However, wrong input values should never lead to some serious
  bugs like access violations or range check errors ---
  in cases when it would be possible, we safeguard against this.
  That's because sometimes you simply cannot guarantee for 100%
  that input values are correct, because of floating-point precision
  problems -- see below.)

  As for floating-point precision:
  @unorderedList(
    @item(Well, floating-point inaccuracy is, as always, a problem.
      This unit always uses FloatsEqual
      and variables SingleEqualityEpsilon, DoubleEqualityEpsilon
      and ExtendedEpsilonEquality when comparison of floating-point
      values is needed. In some cases you may be able to adjust these
      variables to somewhat fine-tune the comparisons.)

    @item(For collision-detecting routines, the general strategy
      in case of uncertainty (when we're not sure whether there
      is a collision or the objects are just very very close to each other)
      is to say that there @italic(is a collision).

      This means that we may detect a collision when in fact the precise
      mathematical calculation says that there is no collision.

      This approach should be suitable for most use cases.)
  )

  A design question about this unit: Right now I must declare two variables
  to define a sphere (like @code(SphereCenter: vector; SphereRadius: scalar;))
  Why not wrap all the geometric objects (spheres, lines, rays, tunnels etc.)
  inside some records ? For example, define a sphere as
@longcode(#
  TSphere = record Center: vector; Radius: scalar; end;
#)

  The answer: this is not so good idea, because it would create
  a lot of such types into unit, and I would have to implement
  simple functions that construct and convert between these
  types. Consider e.g. when I have a tunnel (given
  as Tunnel1, Tunnel2 points and TunnelRadius vector)
  and I want to "extract" the properties of the sphere at the 1st end
  of this tunnel. Right now, it's simple: just consider
  Tunnel1 as a sphere center, and TunnelRadius is obviously a sphere radius.
  Computer doesn't have to actually do anything, you just have to think
  in a different way about Tunnel1 and TunnelRadius.
  But if I would have tunnel wrapped in a type like @code(TTunnel)
  and a sphere wrapped in a type like @code(TSphere), then I would
  have to actually implement this trivial conversion. And then doing
  such trivial conversion at run-time would take some time,
  because you have to copy 6 floating-point values.
  This would be a very serious waste of time at run-time.
  Well, on the other hand, routines could take less parameters
  (e.g. only 1 parameter @code(TTunnel), instead of three vector parameters),
  but (overall) we would still loose a lot of time.

  In many places where I have to return collision with
  a line segment, a line or a ray there are alternative versions
  that return just a scalar "T" instead of a calculated point.
  The actual collision point can be calculated then like
  @code(RayOrigin + T * RayDirection). Of course for rays you can be sure
  that T is >= 0, for line segments you can be sure that
  0 <= T <= 1. The "T" is often useful, because it allows
  you to easily calculate collision point, and also the distance
  to the collision (you can e.g. compare T1 and T2 to compare which
  collision is closer, and when your RayDirection is normalized then
  the T gives you the exact distance). Thanks to this you can often
  entirely avoid calculating the actual collision point
  (@code(RayOrigin + T * RayDirection)).

  Contains some stuff useful for integration with FPC's Matrix unit.
  For now, there are some "glueing" functions here like
  Vector_Get_Normalized that allow you to comfortably
  perform operations on Matrix unit object types.
  Most important is also the overload of ":=" operator that allows
  you to switch between CastleVectors arrays and Matrix objects without
  any syntax obfuscation. Although note that this overload is a little
  dangerous, since now code like
  @preformatted(  V3 := VectorProduct(V1, V2);)
  compiles and works both when all three V1, V2 and V3 are TVector3Single arrays
  or TVector3_Single objects. However, for the case when they are all
  TVector3_Single objects, this is highly un-optimal, and
  @preformatted(  V3 := V1 >< V2;)
  is much faster, since it avoids the implicit convertions (unnecessary
  memory copying around).
}

unit CastleVectors;

{$I castleconf.inc}

interface

uses SysUtils, CastleUtils, Matrix, CastleGenericLists;

{$define read_interface}

{ Define pointer types for all Matrix unit types. }
type
  { }
  Pvector2_single   = ^Tvector2_single  ;
  Pvector2_double   = ^Tvector2_double  ;
  Pvector2_extended = ^Tvector2_extended;

  Pvector3_single   = ^Tvector3_single  ;
  Pvector3_double   = ^Tvector3_double  ;
  Pvector3_extended = ^Tvector3_extended;

  Pvector4_single   = ^Tvector4_single  ;
  Pvector4_double   = ^Tvector4_double  ;
  Pvector4_extended = ^Tvector4_extended;

  Pmatrix2_single   = ^Tmatrix2_single  ;
  Pmatrix2_double   = ^Tmatrix2_double  ;
  Pmatrix2_extended = ^Tmatrix2_extended;

  Pmatrix3_single   = ^Tmatrix3_single  ;
  Pmatrix3_double   = ^Tmatrix3_double  ;
  Pmatrix3_extended = ^Tmatrix3_extended;

  Pmatrix4_single   = ^Tmatrix4_single  ;
  Pmatrix4_double   = ^Tmatrix4_double  ;
  Pmatrix4_extended = ^Tmatrix4_extended;

{ Most types below are packed anyway, so the "packed" keyword below
  is often not needed (but it doesn't hurt).

  The fact that types
  below are packed is useful to easily map some of them to
  OpenGL, OpenAL types etc. It's also useful to be able to safely
  compare the types for exact equality by routines like CompareMem. }

type
  { }
  TVector2Single = Tvector2_single_data;              PVector2Single = ^TVector2Single;
  TVector2Double = Tvector2_double_data;              PVector2Double = ^TVector2Double;
  TVector2Extended = Tvector2_extended_data;          PVector2Extended = ^TVector2Extended;
  TVector2Byte = packed array [0..1] of Byte;         PVector2Byte = ^TVector2Byte;
  TVector2Word = packed array [0..1] of Word;         PVector2Word = ^TVector2Word;
  TVector2SmallInt = packed array [0..1] of SmallInt; PVector2SmallInt = ^TVector2SmallInt;
  TVector2Longint = packed array [0..1] of Longint;   PVector2Longint = ^TVector2Longint;
  TVector2Pointer = packed array [0..1] of Pointer;   PVector2Pointer = ^TVector2Pointer;
  TVector2Cardinal = packed array [0..1] of Cardinal; PVector2Cardinal = ^TVector2Cardinal;
  TVector2Integer = packed array [0..1] of Integer;   PVector2Integer = ^TVector2Integer;

  TVector3Single = Tvector3_single_data;              PVector3Single = ^TVector3Single;
  TVector3Double = Tvector3_double_data;              PVector3Double = ^TVector3Double;
  TVector3Extended = Tvector3_extended_data;          PVector3Extended = ^TVector3Extended;
  TVector3Byte = packed array [0..2] of Byte;         PVector3Byte = ^TVector3Byte;
  TVector3Word = packed array [0..2] of Word;         PVector3Word = ^TVector3Word;
  TVector3Longint = packed array [0..2] of Longint;   PVector3Longint = ^TVector3Longint;
  TVector3Pointer = packed array [0..2] of Pointer;   PVector3Pointer = ^TVector3Pointer;
  TVector3Integer = packed array [0..2] of Integer;   PVector3Integer = ^TVector3Integer;
  TVector3Cardinal = packed array [0..2] of Cardinal; PVector3Cardinal = ^TVector3Cardinal;

  TVector4Single = Tvector4_single_data;              PVector4Single = ^TVector4Single;
  TVector4Double = Tvector4_double_data;              PVector4Double = ^TVector4Double;
  TVector4Extended = Tvector4_extended_data;          PVector4Extended = ^TVector4Extended;
  TVector4Byte = packed array [0..3] of Byte;         PVector4Byte = ^TVector4Byte;
  TVector4Word = packed array [0..3] of Word;         PVector4Word = ^TVector4Word;
  TVector4Longint = packed array [0..3] of Longint;   PVector4Longint = ^TVector4Longint;
  TVector4Pointer = packed array [0..3] of Pointer;   PVector4Pointer = ^TVector4Pointer;
  TVector4Cardinal = packed array [0..3] of Cardinal; PVector4Cardinal = ^TVector4Cardinal;
  TVector4Integer = packed array [0..3] of Integer;   PVector4Integer = ^TVector4Integer;

  { Matrices types.

    The indexing rules of these types are the same as indexing rules
    for matrix types of OpenGL. I.e. the 1st index specifies the column
    (where the leftmost column is numbered zero), 2nd index specifies the row
    (where the uppermost row is numbered zero).

    @bold(Note that this is different than how FPC Matrix unit
    treats matrices ! If you want to pass matrices between Matrix unit
    and this unit, you must transpose them !)

    As you can see, matrices below are not declared explicitly
    as 2-dimensional arrays (like @code(array [0..3, 0..3] of Single)),
    but they are 1-dimensional arrays of vectors.
    This is sometimes useful and comfortable.

    @groupBegin }
  TMatrix2Single = Tmatrix2_single_data;                   PMatrix2Single = ^TMatrix2Single;
  TMatrix2Double = Tmatrix2_double_data;                   PMatrix2Double = ^TMatrix2Double;
  TMatrix2Longint = packed array[0..1]of TVector2Longint;  PMatrix2Longint = ^TMatrix2Longint;

  TMatrix3Single = Tmatrix3_single_data;                   PMatrix3Single = ^TMatrix3Single;
  TMatrix3Double = Tmatrix3_double_data;                   PMatrix3Double = ^TMatrix3Double;
  TMatrix3Longint = packed array[0..2]of TVector3Longint;  PMatrix3Longint = ^TMatrix3Longint;

  TMatrix4Single = Tmatrix4_single_data;                   PMatrix4Single = ^TMatrix4Single;
  TMatrix4Double = Tmatrix4_double_data;                   PMatrix4Double = ^TMatrix4Double;
  TMatrix4Longint = packed array[0..3]of TVector4Longint;  PMatrix4Longint = ^TMatrix4Longint;
  { @groupEnd }

  { The "infinite" arrays, useful for some type-casting hacks }

  { }
  TArray_Vector2Byte = packed array [0..MaxInt div SizeOf(TVector2Byte)-1] of TVector2Byte;
  PArray_Vector2Byte = ^TArray_Vector2Byte;
  TArray_Vector3Byte = packed array [0..MaxInt div SizeOf(TVector3Byte)-1] of TVector3Byte;
  PArray_Vector3Byte = ^TArray_Vector3Byte;
  TArray_Vector4Byte = packed array [0..MaxInt div SizeOf(TVector4Byte)-1] of TVector4Byte;
  PArray_Vector4Byte = ^TArray_Vector4Byte;

  TArray_Vector2Cardinal = packed array [0..MaxInt div SizeOf(TVector2Cardinal) - 1] of TVector2Cardinal;
  PArray_Vector2Cardinal = ^TArray_Vector2Cardinal;

  TArray_Vector2Extended = packed array [0..MaxInt div SizeOf(TVector2Extended) - 1] of TVector2Extended;
  PArray_Vector2Extended = ^TArray_Vector2Extended;

  TArray_Vector2Single = packed array [0..MaxInt div SizeOf(TVector2Single) - 1] of TVector2Single;
  PArray_Vector2Single = ^TArray_Vector2Single;
  TArray_Vector3Single = packed array [0..MaxInt div SizeOf(TVector3Single) - 1] of TVector3Single;
  PArray_Vector3Single = ^TArray_Vector3Single;
  TArray_Vector4Single = packed array [0..MaxInt div SizeOf(TVector4Single) - 1] of TVector4Single;
  PArray_Vector4Single = ^TArray_Vector4Single;

  TVector4SingleList = class;

  TVector3SingleList = class(specialize TGenericStructList<TVector3Single>)
  public
    procedure AssignNegated(Source: TVector3SingleList);
    { Negate all items. }
    procedure Negate;
    { Normalize all items. Zero vectors are left as zero. }
    procedure Normalize;
    { Multiply each item, component-wise, with V. }
    procedure MultiplyComponents(const V: TVector3Single);

    { Assign linear interpolation between two other vector arrays.
      We take ACount items, from V1[Index1 ... Index1 + ACount - 1] and
      V2[Index2 ... Index2 + ACount - 1], and interpolate between them
      like normal Lerp functions.

      It's Ok for both V1 and V2 to be the same objects.
      But their ranges should not overlap, for future optimizations
      (although it's Ok for current implementation). }
    procedure AssignLerp(const Fraction: Single;
      V1, V2: TVector3SingleList; Index1, Index2, ACount: Integer);

    { Assign linear interpolation between two other vector arrays,
      and normalize resulting vectors.
      @seealso AssignLerp }
    procedure AssignLerpNormalize(const Fraction: Single;
      V1, V2: TVector3SingleList; Index1, Index2, ACount: Integer);

    { Assign linear interpolation between two other vector arrays,
      treating vectors as RGB colors and interpolating in HSV space.
      @seealso AssignLerp }
    procedure AssignLerpRgbInHsv(const Fraction: Single;
      V1, V2: TVector3SingleList; Index1, Index2, ACount: Integer);

    procedure AddList(Source: TVector3SingleList);
    procedure AddListRange(Source: TVector3SingleList; Index, AddCount: Integer);
    procedure AddArray(const A: array of TVector3Single);
    procedure AssignArray(const A: array of TVector3Single);

    { Convert to TVector4SingleList, with 4th vector component in
      new array set to constant W. }
    function ToVector4Single(const W: Single): TVector4SingleList;

    { When two vertexes on the list are closer than MergeDistance,
      set them truly (exactly) equal.
      Returns how many vertex positions were changed. }
    function MergeCloseVertexes(MergeDistance: Single): Cardinal;
  end;

  TVector2SingleList = class(specialize TGenericStructList<TVector2Single>)
  public
    { Calculate minimum and maximum values for both dimensions of
      this set of points. Returns @false when Count = 0. }
    function MinMax(out Min, Max: TVector2Single): boolean;

    { Assign linear interpolation between two other vector arrays.
      @seealso TVector3SingleList.AssignLerp }
    procedure AssignLerp(const Fraction: Single;
      V1, V2: TVector2SingleList; Index1, Index2, ACount: Integer);

    procedure AddList(Source: TVector2SingleList);
    procedure AddListRange(Source: TVector2SingleList; Index, AddCount: Integer);
    procedure AddArray(const A: array of TVector2Single);
    procedure AssignArray(const A: array of TVector2Single);
  end;

  TVector4SingleList = class(specialize TGenericStructList<TVector4Single>)
  public
    procedure AddList(Source: TVector4SingleList);
    procedure AddListRange(Source: TVector4SingleList; Index, AddCount: Integer);
    procedure AddArray(const A: array of TVector4Single);
    procedure AssignArray(const A: array of TVector4Single);
  end;

  TVector3CardinalList = specialize TGenericStructList<TVector3Cardinal>;

  TVector2DoubleList = class(specialize TGenericStructList<TVector2Double>)
  public
    function ToVector2Single: TVector2SingleList;
    procedure AddList(Source: TVector2DoubleList);
    procedure AddArray(const A: array of TVector2Double);
  end;

  TVector3DoubleList = class(specialize TGenericStructList<TVector3Double>)
  public
    function ToVector3Single: TVector3SingleList;
    procedure AddList(Source: TVector3DoubleList);
    procedure AddArray(const A: array of TVector3Double);
  end;

  TVector4DoubleList = class(specialize TGenericStructList<TVector4Double>)
  public
    function ToVector4Single: TVector4SingleList;
    procedure AddList(Source: TVector4DoubleList);
    procedure AddArray(const A: array of TVector4Double);
  end;

  TMatrix3SingleList = class(specialize TGenericStructList<TMatrix3Single>)
  public
    procedure AddList(Source: TMatrix3SingleList);
    procedure AddArray(const A: array of TMatrix3Single);
  end;

  TMatrix3DoubleList = class(specialize TGenericStructList<TMatrix3Double>)
  public
    function ToMatrix3Single: TMatrix3SingleList;
    procedure AddList(Source: TMatrix3DoubleList);
    procedure AddArray(const A: array of TMatrix3Double);
  end;

  TMatrix4SingleList = class(specialize TGenericStructList<TMatrix4Single>)
  public
    procedure AddList(Source: TMatrix4SingleList);
    procedure AddArray(const A: array of TMatrix4Single);
  end;

  TMatrix4DoubleList = class(specialize TGenericStructList<TMatrix4Double>)
  public
    function ToMatrix4Single: TMatrix4SingleList;
    procedure AddList(Source: TMatrix4DoubleList);
    procedure AddArray(const A: array of TMatrix4Double);
  end;

  TVector2SmallIntList = specialize TGenericStructList<TVector2SmallInt>;

  EVectorInvalidOp = class(Exception);

  TGetVertexFromIndexFunc = function (Index: integer): TVector3Single of object;

const
  ZeroVector2Integer: TVector2Integer = (0, 0);
  ZeroVector2Single: TVector2Single = (0, 0);
  ZeroVector2Double: TVector2Double = (0, 0);

  ZeroVector3Single: TVector3Single = (0, 0, 0);
  ZeroVector3Double: TVector3Double = (0, 0, 0);

  ZeroVector4Single: TVector4Single = (0, 0, 0, 0);
  ZeroVector4Double: TVector4Double = (0, 0, 0, 0);

  ZeroMatrix2Single: TMatrix2Single =   ((0, 0), (0, 0));
  ZeroMatrix2Double: TMatrix2Double =   ((0, 0), (0, 0));
  ZeroMatrix2Longint: TMatrix2Longint = ((0, 0), (0, 0));

  ZeroMatrix3Single: TMatrix3Single =   ((0, 0, 0), (0, 0, 0), (0, 0, 0));
  ZeroMatrix3Double: TMatrix3Double =   ((0, 0, 0), (0, 0, 0), (0, 0, 0));
  ZeroMatrix3Longint: TMatrix3Longint = ((0, 0, 0), (0, 0, 0), (0, 0, 0));

  ZeroMatrix4Single: TMatrix4Single =   ((0, 0, 0, 0), (0, 0, 0, 0), (0, 0, 0, 0), (0, 0, 0, 0));
  ZeroMatrix4Double: TMatrix4Double =   ((0, 0, 0, 0), (0, 0, 0, 0), (0, 0, 0, 0), (0, 0, 0, 0));
  ZeroMatrix4Longint: TMatrix4Longint = ((0, 0, 0, 0), (0, 0, 0, 0), (0, 0, 0, 0), (0, 0, 0, 0));

  IdentityMatrix2Single: TMatrix2Single =   ((1, 0), (0, 1));
  IdentityMatrix2Double: TMatrix2Double =   ((1, 0), (0, 1));
  IdentityMatrix2Longint: TMatrix2Longint = ((1, 0), (0, 1));

  IdentityMatrix3Single: TMatrix3Single =   ((1, 0, 0), (0, 1, 0), (0, 0, 1));
  IdentityMatrix3Double: TMatrix3Double =   ((1, 0, 0), (0, 1, 0), (0, 0, 1));
  IdentityMatrix3Longint: TMatrix3Longint = ((1, 0, 0), (0, 1, 0), (0, 0, 1));

  IdentityMatrix4Single: TMatrix4Single =   ((1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1));
  IdentityMatrix4Double: TMatrix4Double =   ((1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1));
  IdentityMatrix4Longint: TMatrix4Longint = ((1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1));

  UnitVector3Single: array[0..2]of TVector3Single = ((1, 0, 0), (0, 1, 0), (0, 0, 1));
  UnitVector3Double: array[0..2]of TVector3Double = ((1, 0, 0), (0, 1, 0), (0, 0, 1));
  UnitVector4Single: array[0..3]of TVector4Single = ((1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1));
  UnitVector4Double: array[0..3]of TVector4Double = ((1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1));

{ ---------------------------------------------------------------------------- }
{ @section(FloatsEqual and related things) }

var
  { Values that differ less than given *EqualityEpsilon are assumed
    as equal by FloatsEqual (and so by all other routines in this unit).

    Note that initial *EqualityEpsilon values are quite large,
    if you compare them with the epsilons used by CastleUtils.SameValue
    or Math.SameValue. Well, unfortunately they have to be so large,
    to always detect collisions.

    You can change the variables below (but always keep them >= 0).

    Exact 0 always means that exact comparison will be used.

    @groupBegin }
    SingleEqualityEpsilon: Single   = 1e-7;
    DoubleEqualityEpsilon: Double   = 1e-12;
  ExtendedEqualityEpsilon: Extended = 1e-16;
  { @groupEnd }

{ Compare two float values, with some epsilon.
  When two float values differ by less than given epsilon, they are
  considered equal.

  @groupBegin }
function FloatsEqual(const f1, f2: Single): boolean; overload;
function FloatsEqual(const f1, f2: Double): boolean; overload;
{$ifndef EXTENDED_EQUALS_DOUBLE}
function FloatsEqual(const f1, f2: Extended): boolean; overload;
{$endif}
function FloatsEqual(const f1, f2, EqEpsilon: Single): boolean; overload;
function FloatsEqual(const f1, f2, EqEpsilon: Double): boolean; overload;
{$ifndef EXTENDED_EQUALS_DOUBLE}
function FloatsEqual(const f1, f2, EqEpsilon: Extended): boolean; overload;
{$endif}
{ @groupEnd }

{ Compare float value with zero, with some epsilon.
  This is somewhat optimized version of doing FloatsEqual(F1, 0).

  This is named Zero, not IsZero --- to not collide with IsZero function
  in Math unit (that has the same purpose, but uses different epsilons
  by default).

  @groupBegin }
function Zero(const f1: Single): boolean; overload;
function Zero(const f1: Double): boolean; overload;
{$ifndef EXTENDED_EQUALS_DOUBLE}
function Zero(const f1: Extended): boolean; overload;
{$endif}
function Zero(const f1, EqEpsilon: Single  ): boolean; overload;
function Zero(const f1, EqEpsilon: Double  ): boolean; overload;
{$ifndef EXTENDED_EQUALS_DOUBLE}
function Zero(const f1, EqEpsilon: Extended): boolean; overload;
{$endif}

{ Construct and convert vectors and other types ------------------------------ }

{ }
function Vector2Cardinal(const x, y: Cardinal): TVector2Cardinal;
function Vector2Integer(const x, y: Integer): TVector2Integer;
function Vector2LongInt(const x, y: Longint): TVector2LongInt;
function Vector2SmallInt(const x, y: SmallInt): TVector2SmallInt;

function Vector2Single(const x, y: Single): TVector2Single; overload;
function Vector2Single(const V: TVector2Double): TVector2Single; overload;

function Vector2Double(const x, y: Double): TVector2Double;

function Vector3Single(const x, y: Single; const z: Single = 0.0): TVector3Single; overload;
function Vector3Single(const v3: TVector3Double): TVector3Single; overload;
function Vector3Single(const v3: TVector3Byte): TVector3Single; overload;
function Vector3Single(const v2: TVector2Single; const z: Single = 0.0): TVector3Single; overload;

function Vector3Longint(const p0, p1, p2: Longint): TVector3Longint;

function Vector3Double(const x, y: Double; const z: Double = 0.0): TVector3Double; overload;
function Vector3Double(const v: TVector3Single): TVector3Double; overload;

function Vector4Single(const x, y: Single;
  const z: Single = 0; const w: Single = 1): TVector4Single; overload;
function Vector4Single(const v3: TVector3Single;
  const w: Single = 1): TVector4Single; overload;
function Vector4Single(const v2: TVector2Single;
  const z: Single = 0; const w: Single = 1): TVector4Single; overload;
function Vector4Single(const ub: TVector4Byte): TVector4Single; overload;
function Vector4Single(const V3: TVector3Byte; const W: Byte): TVector4Single; overload;
function Vector4Single(const v: TVector4Double): TVector4Single; overload;

function Vector4Double(const x, y, z ,w: Double): TVector4Double; overload;
function Vector4Double(const v: TVector4Single): TVector4Double; overload;

function Vector3Byte(x, y, z: Byte): TVector3Byte; overload;

{ Convert float vectors into byte vectors.
  Each float component is converted such that float 0.0 (or less) results in
  0 byte, 1.0 (or more) results in byte 255 (note: not 256).
  Values between 0.0 and 1.0 are appropriately (linearly) converted
  into the byte range.
  @groupBegin }
function Vector3Byte(const v: TVector3Single): TVector3Byte; overload;
function Vector3Byte(const v: TVector3Double): TVector3Byte; overload;
function Vector4Byte(const f4: TVector4Single): TVector4Byte; overload;
{ @groupEnd }

function Vector4Byte(const x, y, z: Byte; const w: Byte = 255): TVector4Byte; overload;
function Vector4Byte(const f3: TVector3Byte; w: Byte): TVector4Byte; overload;

function Vector4Integer(const X, Y, Z, W: Integer): TVector4Integer;

{ Convert a point in homogeneous coordinates into normal 3D point.
  In other words, convert 4D @code((x, y, z, w)) into
  @code((x/w, y/w, z/w)). Make sure the 4th vector component <> 0. }
function Vector3SinglePoint(const v: TVector4Single): TVector3Single;

{ Convert 4D vector into 3D by simply discarding (ignoring) the 4th vector
  component. }
function Vector3SingleCut(const v: TVector4Single): TVector3Single;
function Vector3ByteCut(const v: TVector4Byte): TVector3Byte;

{ Construct and normalize 3D vector value. }
function Normal3Single(const x, y: Single; const z: Single = 0.0): TVector3Single; overload;

{ Convert string to vector. Each component is simply parsed by StrToFloat,
  and components must be separated by whitespace (see @link(WhiteSpaces) constant).
  @raises(EConvertError In case of problems during convertion (invalid float
    or unexpected string end or expected but missed string end).)
  @groupBegin }
function Vector3SingleFromStr(const s: string): TVector3Single;
function Vector3DoubleFromStr(const s: string): TVector3Double;
function Vector3ExtendedFromStr(const s: string): TVector3Extended;
function Vector4SingleFromStr(const s: string): TVector4Single;
{ @groupEnd }

{ Convert between single and double precision matrices.
  @groupBegin }
function Matrix2Double(const M: TMatrix2Single): TMatrix2Double;
function Matrix2Single(const M: TMatrix2Double): TMatrix2Single;
function Matrix3Double(const M: TMatrix3Single): TMatrix3Double;
function Matrix3Single(const M: TMatrix3Double): TMatrix3Single;
function Matrix4Double(const M: TMatrix4Single): TMatrix4Double;
function Matrix4Single(const M: TMatrix4Double): TMatrix4Single;
{ @groupEnd }

{ Overload := operator to allow convertion between
  Matrix unit objects and this unit's arrays easy. }
operator := (const V: TVector2_Single): TVector2Single;
operator := (const V: TVector3_Single): TVector3Single;
operator := (const V: TVector4_Single): TVector4Single;
operator := (const V: TVector2Single): TVector2_Single;
operator := (const V: TVector3Single): TVector3_Single;
operator := (const V: TVector4Single): TVector4_Single;

{ Simple vectors operations  ------------------------------------------------- }

{ }
procedure SwapValues(var V1, V2: TVector2Single); overload;
procedure SwapValues(var V1, V2: TVector2Double); overload;
procedure SwapValues(var V1, V2: TVector3Single); overload;
procedure SwapValues(var V1, V2: TVector3Double); overload;
procedure SwapValues(var V1, V2: TVector4Single); overload;
procedure SwapValues(var V1, V2: TVector4Double); overload;

function VectorAverage(const V: TVector3Single): Single; overload;
function VectorAverage(const V: TVector3Double): Double; overload;

{ Linear interpolation between two vector values.
  Returns (1-A) * V1 + A * V2 (well, calculated a little differently for speed).
  So A = 0 gives V1, A = 1 gives V2, and values between and around are
  interpolated.

  @groupBegin }
function Lerp(const a: Single; const V1, V2: TVector2Byte): TVector2Byte; overload;
function Lerp(const a: Single; const V1, V2: TVector3Byte): TVector3Byte; overload;
function Lerp(const a: Single; const V1, V2: TVector4Byte): TVector4Byte; overload;
function Lerp(const a: Single; const V1, V2: TVector2Integer): TVector2Single; overload;
function Lerp(const a: Single; const V1, V2: TVector2Single): TVector2Single; overload;
function Lerp(const a: Single; const V1, V2: TVector3Single): TVector3Single; overload;
function Lerp(const a: Single; const V1, V2: TVector4Single): TVector4Single; overload;
function Lerp(const a: Double; const V1, V2: TVector2Double): TVector2Double; overload;
function Lerp(const a: Double; const V1, V2: TVector3Double): TVector3Double; overload;
function Lerp(const a: Double; const V1, V2: TVector4Double): TVector4Double; overload;
function Lerp(const a: Single; const M1, M2: TMatrix3Single): TMatrix3Single; overload;
function Lerp(const a: Single; const M1, M2: TMatrix4Single): TMatrix4Single; overload;
function Lerp(const a: Double; const M1, M2: TMatrix3Double): TMatrix3Double; overload;
function Lerp(const a: Double; const M1, M2: TMatrix4Double): TMatrix4Double; overload;
{ @groupEnd }

function Vector_Init_Lerp(const A: Single; const V1, V2: TVector3_Single): TVector3_Single; overload;
function Vector_Init_Lerp(const A: Single; const V1, V2: TVector4_Single): TVector4_Single; overload;
function Vector_Init_Lerp(const A: Double; const V1, V2: TVector3_Double): TVector3_Double; overload;
function Vector_Init_Lerp(const A: Double; const V1, V2: TVector4_Double): TVector4_Double; overload;

{ Normalize the first 3 vector components. For zero vectors, does nothing.
  @groupBegin }
procedure NormalizeTo1st3Singlev(vv: PVector3Single);
procedure NormalizeTo1st3Bytev(vv: PVector3Byte);
{ @groupEnd }

procedure NormalizeTo1st(var v: TVector2Single); overload;
procedure NormalizeTo1st(var v: TVector2Double); overload;
procedure NormalizeTo1st(var v: TVector3Single); overload;
procedure NormalizeTo1st(var v: TVector3Double); overload;

function Normalized(const v: TVector2Single): TVector2Single; overload;
function Normalized(const v: TVector2Double): TVector2Double; overload;
function Normalized(const v: TVector3Single): TVector3Single; overload;
function Normalized(const v: TVector3Double): TVector3Double; overload;

function Vector_Get_Normalized(const V: TVector3_Single): TVector3_Single; overload;
function Vector_Get_Normalized(const V: TVector3_Double): TVector3_Double; overload;

procedure Vector_Normalize(var V: TVector3_Single); overload;
procedure Vector_Normalize(var V: TVector3_Double); overload;

{ This normalizes Plane by scaling all @italic(four) coordinates of Plane
  so that length of plane vector (taken from 1st @italic(three) coordinates)
  is one.

  Also, contrary to normal NormalizeTo1st on 3-component vectors,
  this will fail with some awful error (like floating point overflow)
  in case length of plane vector is zero. That's because we know
  that plane vector @italic(must) be always non-zero. }
procedure NormalizePlaneTo1st(var v: TVector4Single); overload;
procedure NormalizePlaneTo1st(var v: TVector4Double); overload;

function ZeroVector(const v: TVector3Single): boolean; overload;
function ZeroVector(const v: TVector3Double): boolean; overload;
function ZeroVector(const v: TVector4Single): boolean; overload;
function ZeroVector(const v: TVector4Double): boolean; overload;

function ZeroVector(const v: TVector3Single; const EqualityEpsilon: Single): boolean; overload;
function ZeroVector(const v: TVector3Double; const EqualityEpsilon: Double): boolean; overload;
function ZeroVector(const v: TVector4Single; const EqualityEpsilon: Single): boolean; overload;
function ZeroVector(const v: TVector4Double; const EqualityEpsilon: Double): boolean; overload;

function ZeroVector(const v: TVector4Cardinal): boolean; overload;

function PerfectlyZeroVector(const v: TVector2Single): boolean; overload;
function PerfectlyZeroVector(const v: TVector2Double): boolean; overload;
function PerfectlyZeroVector(const v: TVector3Single): boolean; overload;
function PerfectlyZeroVector(const v: TVector3Double): boolean; overload;
function PerfectlyZeroVector(const v: TVector4Single): boolean; overload;
function PerfectlyZeroVector(const v: TVector4Double): boolean; overload;

{ Subtract two vectors.

  Versions *To1st place result back into the 1st vector,
  like "-=" operator. Are @italic(very very slightly) faster.

  @groupBegin }
function VectorSubtract(const V1, V2: TVector2Single): TVector2Single; overload;
function VectorSubtract(const V1, V2: TVector2Double): TVector2Double; overload;
function VectorSubtract(const V1, V2: TVector3Single): TVector3Single; overload;
function VectorSubtract(const V1, V2: TVector3Double): TVector3Double; overload;
function VectorSubtract(const V1, V2: TVector4Single): TVector4Single; overload;
function VectorSubtract(const V1, V2: TVector4Double): TVector4Double; overload;
procedure VectorSubtractTo1st(var v1: TVector2Single; const v2: TVector2Single); overload;
procedure VectorSubtractTo1st(var v1: TVector2Double; const v2: TVector2Double); overload;
procedure VectorSubtractTo1st(var v1: TVector3Single; const v2: TVector3Single); overload;
procedure VectorSubtractTo1st(var v1: TVector3Double; const v2: TVector3Double); overload;
procedure VectorSubtractTo1st(var v1: TVector4Single; const v2: TVector4Single); overload;
procedure VectorSubtractTo1st(var v1: TVector4Double; const v2: TVector4Double); overload;
{ @groupEnd }

{ Add two vectors.

  Versions *To1st place result back into the 1st vector,
  like "+=" operator. Are @italic(very very slightly) faster.

  @groupBegin }
function VectorAdd(const V1, V2: TVector2Single): TVector2Single; overload;
function VectorAdd(const V1, V2: TVector2Double): TVector2Double; overload;
function VectorAdd(const V1, V2: TVector3Single): TVector3Single; overload;
function VectorAdd(const V1, V2: TVector3Double): TVector3Double; overload;
function VectorAdd(const V1, V2: TVector4Single): TVector4Single; overload;
function VectorAdd(const V1, V2: TVector4Double): TVector4Double; overload;
procedure VectorAddTo1st(var v1: TVector2Single; const v2: TVector2Single); overload;
procedure VectorAddTo1st(var v1: TVector2Double; const v2: TVector2Double); overload;
procedure VectorAddTo1st(var v1: TVector3Single; const v2: TVector3Single); overload;
procedure VectorAddTo1st(var v1: TVector3Double; const v2: TVector3Double); overload;
procedure VectorAddTo1st(var v1: TVector4Single; const v2: TVector4Single); overload;
procedure VectorAddTo1st(var v1: TVector4Double; const v2: TVector4Double); overload;
{ @groupEnd }

{ Scale vector (aka multiply by scalar).

  Versions *To1st scale place result back into the 1st vector,
  like "*=" operator. Are @italic(very very slightly) faster.

  @groupBegin }
function VectorScale(const v1: TVector2Single; const Scalar: Single): TVector2Single; overload;
function VectorScale(const v1: TVector2Double; const Scalar: Double): TVector2Double; overload;
function VectorScale(const v1: TVector3Single; const Scalar: Single): TVector3Single; overload;
function VectorScale(const v1: TVector3Double; const Scalar: Double): TVector3Double; overload;
function VectorScale(const v1: TVector4Single; const Scalar: Single): TVector4Single; overload;
function VectorScale(const v1: TVector4Double; const Scalar: Double): TVector4Double; overload;
procedure VectorScaleTo1st(var v1: TVector2Single; const Scalar: Single); overload;
procedure VectorScaleTo1st(var v1: TVector2Double; const Scalar: Double); overload;
procedure VectorScaleTo1st(var v1: TVector3Single; const Scalar: Single); overload;
procedure VectorScaleTo1st(var v1: TVector3Double; const Scalar: Double); overload;
procedure VectorScaleTo1st(var v1: TVector4Single; const Scalar: Single); overload;
procedure VectorScaleTo1st(var v1: TVector4Double; const Scalar: Double); overload;
{ @groupEnd }

{ Negate vector (return -V).

  Versions *To1st scale place result back into the 1st vector.
  Are @italic(very very slightly) faster.

  @groupBegin }
function VectorNegate(const v: TVector2Single): TVector2Single; overload;
function VectorNegate(const v: TVector2Double): TVector2Double; overload;
function VectorNegate(const v: TVector3Single): TVector3Single; overload;
function VectorNegate(const v: TVector3Double): TVector3Double; overload;
function VectorNegate(const v: TVector4Single): TVector4Single; overload;
function VectorNegate(const v: TVector4Double): TVector4Double; overload;
procedure VectorNegateTo1st(var v: TVector2Single); overload;
procedure VectorNegateTo1st(var v: TVector2Double); overload;
procedure VectorNegateTo1st(var v: TVector3Single); overload;
procedure VectorNegateTo1st(var v: TVector3Double); overload;
procedure VectorNegateTo1st(var v: TVector4Single); overload;
procedure VectorNegateTo1st(var v: TVector4Double); overload;
{ @groupEnd }

{ Scale vector such that it has given length (VecLen).
  Given VecLen may be negative, then we'll additionally negate the vector.
  @groupBegin }
function VectorAdjustToLength(const v: TVector3Single; VecLen: Single): TVector3Single; overload;
function VectorAdjustToLength(const v: TVector3Double; VecLen: Double): TVector3Double; overload;
procedure VectorAdjustToLengthTo1st(var v: TVector3Single; VecLen: Single); overload;
procedure VectorAdjustToLengthTo1st(var v: TVector3Double; VecLen: Double); overload;
{ @groupEnd }

{ Vector length.
  @groupBegin }
function VectorLen(const v: TVector2Single): Single; overload;
function VectorLen(const v: TVector2Double): Double; overload;
function VectorLen(const v: TVector3Single): Single; overload;
function VectorLen(const v: TVector3Double): Double; overload;
function VectorLen(const v: TVector3Byte): Single; overload;
function VectorLen(const v: TVector4Single): Single; overload;
function VectorLen(const v: TVector4Double): Double; overload;
{ @groupEnd }

{ Vector length squared.

  This is slightly faster than calculating actual vector length,
  as it avoids doing expensive Sqrt. In many cases, you can
  operate on such squared vector length, and thus you gain some speed.
  For example, to check if vector is longer than 10,
  check @code(VectorLenSqr(V) > 100) instead of @code(VectorLen(V) > 10).

  Also note that when you have a vector with discrete values
  (like TVector3Byte), VectorLenSqr returns a precide integer
  value, while VectorLen must return floating-point value. }
function VectorLenSqr(const v: TVector2Single): Single; overload;
function VectorLenSqr(const v: TVector2Double): Double; overload;
function VectorLenSqr(const v: TVector3Single): Single; overload;
function VectorLenSqr(const v: TVector3Double): Double; overload;
function VectorLenSqr(const v: TVector3Byte): Integer; overload;
function VectorLenSqr(const v: TVector4Single): Single; overload;
function VectorLenSqr(const v: TVector4Double): Double; overload;

{ Vector cross product.

  This is a vector orthogonal to both given vectors.
  Generally there are two such vectors, this function returns
  the one following right-hand rule. More precisely, V1, V2 and
  VectorProduct(V1, V2) are in the same relation as basic X, Y, Z
  axes. Reverse the order of arguments to get negated result.

  If you use this to calculate a normal vector of a triangle
  (P0, P1, P2): note that @code(VectorProduct(P1 - P0, P1 - P2))
  points out from CCW triangle side in right-handed coordinate system.

  When V1 and V2 are parallel (that is, when V1 = V2 multiplied by some scalar),
  and this includes the case when one of them is zero,
  then result is a zero vector.

  See http://en.wikipedia.org/wiki/Cross_product
  @groupBegin }
function VectorProduct(const V1, V2: TVector3Double): TVector3Double; overload;
function VectorProduct(const V1, V2: TVector3Single): TVector3Single; overload;
{ @groupEnd }

{ Dot product (aka scalar product) of two vectors.

  Overloaded versions that take as one argument 3-component vector and
  as the second argument 4-component vector: they simply behave like
  the missing 4th component would be equal 1.0. This is useful when
  V1 is a 3D point and V2 is something like plane equation.

  @groupBegin }
function VectorDotProduct(const V1, V2: TVector2Single): Single; overload;
function VectorDotProduct(const V1, V2: TVector2Double): Double; overload;

function VectorDotProduct(const V1, V2: TVector3Single): Single; overload;
function VectorDotProduct(const V1, V2: TVector3Double): Double; overload;

function VectorDotProduct(const V1, V2: TVector4Single): Single; overload;
function VectorDotProduct(const V1, V2: TVector4Double): Double; overload;

function VectorDotProduct(const v1: TVector3Single; const v2: TVector4Single): Single; overload;
function VectorDotProduct(const v1: TVector3Double; const v2: TVector4Double): Double; overload;
{ @groupEnd }

{ Multiply two vectors component-wise.
  That is, Result[I] := V1[I] * V2[I] for each I.

  @groupBegin }
function VectorMultiplyComponents(const V1, V2: TVector3Single): TVector3Single; overload;
function VectorMultiplyComponents(const V1, V2: TVector3Double): TVector3Double; overload;
procedure VectorMultiplyComponentsTo1st(var v1: TVector3Single; const v2: TVector3Single); overload;
procedure VectorMultiplyComponentsTo1st(var v1: TVector3Double; const v2: TVector3Double); overload;
{ @groupEnd }

{ Change each vector component into Power(component, Exp).
  @raises(EInvalidArgument When some component is < 0 and Exp <> 0.
    Version VectorPowerComponentsTo1st leaves the V in undefined state
    in case of such exception.) }
function VectorPowerComponents(const v: TVector3Single; const Exp: Single): TVector3Single; overload;
function VectorPowerComponents(const v: TVector3Double; const Exp: Double): TVector3Double; overload;
procedure VectorPowerComponentsTo1st(var v: TVector3Single; const Exp: Single); overload;
procedure VectorPowerComponentsTo1st(var v: TVector3Double; const Exp: Double); overload;

{ Cosinus of angle between two vectors.

  CosAngleBetweenNormals is a little faster, but must receive
  normalized (length 1) vectors. This avoids expensive Sqrt
  inside CosAngleBetweenVectors.

  @raises EVectorInvalidOp If V1 or V2 is zero.
  @groupBegin }
function CosAngleBetweenVectors(const V1, V2: TVector3Single): Single; overload;
function CosAngleBetweenVectors(const V1, V2: TVector3Double): Double; overload;
function CosAngleBetweenNormals(const V1, V2: TVector3Single): Single; overload;
function CosAngleBetweenNormals(const V1, V2: TVector3Double): Double; overload;
{ @groupEnd }

{ Angle between two vectors, in radians.
  Returns always positive angle, between 0 and Pi.

  AngleRadBetweenNormals is a little faster, but must receive
  normalized (length 1) vectors. This avoids expensive Sqrt.
  See also CosAngleBetweenVectors and CosAngleBetweenNormals
  to avoid expensive ArcCos.

  @raises EVectorInvalidOp If V1 or V2 is zero.
  @groupBegin }
function AngleRadBetweenVectors(const V1, V2: TVector3Single): Single; overload;
function AngleRadBetweenVectors(const V1, V2: TVector3Double): Double; overload;
function AngleRadBetweenNormals(const V1, V2: TVector3Single): Single; overload;
function AngleRadBetweenNormals(const V1, V2: TVector3Double): Double; overload;
{ @groupEnd }

{ Signed angle between two vectors, in radians.
  As opposed to AngleRadBetweenNormals, this returns a signed angle,
  between -Pi and Pi. This is guaranteed to be such angle that rotating
  V1 around vector cross product (V1 x V2) will produce V2.
  As you see, the order or arguments is important (just like it's important
  for vector cross).

  Overloaded versions with Cross argument assume the rotation is done around
  given Cross vector, which @italic(must) be a cross product or it's negation
  (in other words, it must be orthogonal to both vectors).

  @raises EVectorInvalidOp If V1 or V2 is zero.
  @groupBegin }
function RotationAngleRadBetweenVectors(const V1, V2: TVector3Single): Single; overload;
function RotationAngleRadBetweenVectors(const V1, V2: TVector3Double): Double; overload;
function RotationAngleRadBetweenVectors(const V1, V2, Cross: TVector3Single): Single; overload;
function RotationAngleRadBetweenVectors(const V1, V2, Cross: TVector3Double): Double; overload;
{ @groupEnd }

{ Rotate point Point around the Axis by given Angle.
  Axis cannot be zero.

  Note that this is equivalent to constructing a rotation matrix
  and then using it, like

@longCode(#
  M := RotationMatrixDeg(Angle, Axis);
  Result := MatrixMultPoint(M, Point);
#)

  Except this will be a little faster. So rotations are done in the
  same direction as RotationMatrixDeg, and as OpenGL.
  @groupBegin }
function RotatePointAroundAxisDeg(Angle: Single; const Point: TVector3Single; const Axis: TVector3Single): TVector3Single; overload;
function RotatePointAroundAxisDeg(Angle: Double; const Point: TVector3Double; const Axis: TVector3Double): TVector3Double; overload;
function RotatePointAroundAxisRad(Angle: Single; const Point: TVector3Single; const Axis: TVector3Single): TVector3Single; overload;
function RotatePointAroundAxisRad(Angle: Double; const Point: TVector3Double; const Axis: TVector3Double): TVector3Double; overload;
{ @groupEnd }

{ Which coordinate (0, 1, 2, and eventually 3 for 4D versions) is the largest.
  When the vector components are equal, the first one "wins", for example
  if V[0] = V[1] (and are larger than other vector component) we return 0.
  MaxAbsVectorCoord compares the absolute value of components.
  @groupBegin }
function MaxVectorCoord(const v: TVector3Single): integer; overload;
function MaxVectorCoord(const v: TVector3Double): integer; overload;
function MaxVectorCoord(const v: TVector4Single): integer; overload;
function MaxVectorCoord(const v: TVector4Double): integer; overload;
function MaxAbsVectorCoord(const v: TVector2Single): integer; overload;
function MaxAbsVectorCoord(const v: TVector2Double): integer; overload;
function MaxAbsVectorCoord(const v: TVector3Single): integer; overload;
function MaxAbsVectorCoord(const v: TVector3Double): integer; overload;
{ @groupEnd }

function VectorAbs(const V: TVector2Single): TVector2Single;
function VectorAbs(const V: TVector2Double): TVector2Double;
function VectorAbs(const V: TVector3Single): TVector3Single;
function VectorAbs(const V: TVector3Double): TVector3Double;
function VectorAbs(const V: TVector4Single): TVector4Single;
function VectorAbs(const V: TVector4Double): TVector4Double;

function MinVectorCoord(const v: TVector3Single): integer; overload;
function MinVectorCoord(const v: TVector3Double): integer; overload;

procedure SortAbsVectorCoord(const v: TVector3Single; out Max, Middle, Min: Integer); overload;
procedure SortAbsVectorCoord(const v: TVector3Double; out Max, Middle, Min: Integer); overload;

{ Vector orthogonal to plane and pointing in the given direction.

  Given a plane equation (or just the first 3 components of this equation),
  we have vector orthogonal to the plane (just the first 3 components of plane
  equation). This returns either this vector, or it's negation.
  It chooses the one that points in the same 3D half-space as given Direction.

  When given Direction is paralell to Plane, returns original
  plane direction, not it's negation.

  This really simply returns the first 3 components of plane equation.
  possibly negated. So e.g. if the plane direction was normalized, result
  is normalized too.

  PlaneDirNotInDirection chooses the direction opposite to given Direction
  parameter. So it's like @code(PlaneDirInDirection(Plane, -Direction)).

  @groupBegin }
function PlaneDirInDirection(const Plane: TVector4Single; const Direction: TVector3Single): TVector3Single; overload;
function PlaneDirInDirection(const PlaneDir, Direction: TVector3Single): TVector3Single; overload;
function PlaneDirInDirection(const Plane: TVector4Double; const Direction: TVector3Double): TVector3Double; overload;
function PlaneDirInDirection(const PlaneDir, Direction: TVector3Double): TVector3Double; overload;
function PlaneDirNotInDirection(const Plane: TVector4Single; const Direction: TVector3Single): TVector3Single; overload;
function PlaneDirNotInDirection(const PlaneDir, Direction: TVector3Single): TVector3Single; overload;
function PlaneDirNotInDirection(const Plane: TVector4Double; const Direction: TVector3Double): TVector3Double; overload;
function PlaneDirNotInDirection(const PlaneDir, Direction: TVector3Double): TVector3Double; overload;
{ @groupEnd }

type
  EPlanesParallel = class(Exception);

{ Intersection of two 3D planes.
  @raises EPlanesParallel If planes are parallel.
  @groupBegin }
procedure TwoPlanesIntersectionLine(const Plane0, Plane1: TVector4Single;
  out Line0, LineVector: TVector3Single); overload;
procedure TwoPlanesIntersectionLine(const Plane0, Plane1: TVector4Double;
  out Line0, LineVector: TVector3Double); overload;
{ @groupEnd }

type
  ELinesParallel = class(Exception);

{ Intersection of two 2D lines.
  2D lines are expressed here as a vector of three values (A,B,C),
  such that Ax+By+C=0 is true for points on the line.
  @raises ELinesParallel if lines parallel
  @groupBegin }
function Lines2DIntersection(const Line0, Line1: TVector3Single): TVector2Single; overload;
function Lines2DIntersection(const Line0, Line1: TVector3Double): TVector2Double; overload;
{ @groupEnd }

{ Intersection of three 3D planes, results in a single 3D point.
  If the intersection is not a single 3D point, result is undefined,
  so don't try to use this.
  @groupBegin }
function ThreePlanesIntersectionPoint(
  const Plane0, Plane1, Plane2: TVector4Single): TVector3Single; overload;
function ThreePlanesIntersectionPoint(
  const Plane0, Plane1, Plane2: TVector4Double): TVector3Double; overload;
{ @groupEnd }

{ Move a plane by a specifed vector.
  The first three plane numbers (plane normal vector) don't change
  (so, in particular, if you used the plane to define the half-space,
  the half-space gets moved as it should).

  PlaneAntiMove work like PlaneMove, but they translate by negated Move
  So it's like PlaneAntiMove(Plane, V) := PlaneMove(Plane, -V),
  but (very slightly) faster.

  This works Ok with invalid planes (1st three components = 0),
  that is after the move the plane remains invalid (1st three components
  remain = 0).

  @groupBegin }
function PlaneMove(const Plane: TVector4Single;
  const Move: TVector3Single): TVector4Single; overload;
function PlaneMove(const Plane: TVector4Double;
  const Move: TVector3Double): TVector4Double; overload;

procedure PlaneMoveTo1st(var Plane: TVector4Single; const Move: TVector3Single); overload;
procedure PlaneMoveTo1st(var Plane: TVector4Double; const Move: TVector3Double); overload;

function PlaneAntiMove(const Plane: TVector4Single;
  const Move: TVector3Single): TVector4Single; overload;
function PlaneAntiMove(const Plane: TVector4Double;
  const Move: TVector3Double): TVector4Double; overload;
{ @groupEnd }

{ Check if both directions indicate the same side of given 3D plane.
  If one direction is parallel to the plane, also returns @true.
  You can specify only the first 3 components of plane equation (PlaneDir),
  since the 4th component would be ignored anyway.
  @groupBegin }
function VectorsSamePlaneDirections(const V1, V2: TVector3Single; const Plane: TVector4Single): boolean; overload;
function VectorsSamePlaneDirections(const V1, V2: TVector3Double; const Plane: TVector4Double): boolean; overload;
function VectorsSamePlaneDirections(const V1, V2: TVector3Single; const PlaneDir: TVector3Single): boolean; overload;
function VectorsSamePlaneDirections(const V1, V2: TVector3Double; const PlaneDir: TVector3Double): boolean; overload;
{ @groupEnd }

{ Check if both points are on the same side of given 3D plane.
  If one of the points is exactly on the plane, also returns @true.
  @groupBegin }
function PointsSamePlaneSides(const p1, p2: TVector3Single; const Plane: TVector4Single): boolean; overload;
function PointsSamePlaneSides(const p1, p2: TVector3Double; const Plane: TVector4Double): boolean; overload;
{ @groupEnd }

function PointsDistance(const V1, V2: TVector2Single): Single; overload;
function PointsDistance(const V1, V2: TVector2Double): Double; overload;
function PointsDistance(const V1, V2: TVector3Single): Single; overload;
function PointsDistance(const V1, V2: TVector3Double): Double; overload;
function PointsDistanceSqr(const V1, V2: TVector3Single): Single; overload;
function PointsDistanceSqr(const V1, V2: TVector3Double): Double; overload;
function PointsDistanceSqr(const V1, V2: TVector2Single): Single; overload;
function PointsDistanceSqr(const V1, V2: TVector2Double): Double; overload;

{ Distance between points projected on the 2D plane.
  Projection is done by rejecting IgnoreIndex coordinate (must be 0, 1 or 2).
  @groupBegin }
function PointsDistance2DSqr(const V1, V2: TVector3Single; const IgnoreIndex: Integer): Single; overload;
function PointsDistance2DSqr(const V1, V2: TVector3Double; const IgnoreIndex: Integer): Double; overload;
{ @groupEnd }

{ Compare two vectors, with epsilon to tolerate slightly different floats.
  Uses singleEqualityEpsilon, DoubleEqualityEpsilon just like FloatsEqual.

  Note that the case when EqualityEpsilon (or SingleEqualityEpsilon
  or DoubleEqualityEpsilon) is exactly 0 is optimized here,
  just like VectorsPerfectlyEqual.

  @seealso VectorsPerfectlyEqual

  @groupBegin }
function VectorsEqual(const V1, V2: TVector2Single): boolean; overload;
function VectorsEqual(const V1, V2: TVector2Double): boolean; overload;
function VectorsEqual(const V1, V2: TVector2Single; const EqualityEpsilon: Single): boolean; overload;
function VectorsEqual(const V1, V2: TVector2Double; const EqualityEpsilon: Double): boolean; overload;
function VectorsEqual(const V1, V2: TVector3Single): boolean; overload;
function VectorsEqual(const V1, V2: TVector3Double): boolean; overload;
function VectorsEqual(const V1, V2: TVector3Single; const EqualityEpsilon: Single): boolean; overload;
function VectorsEqual(const V1, V2: TVector3Double; const EqualityEpsilon: Double): boolean; overload;
function VectorsEqual(const V1, V2: TVector4Single): boolean; overload;
function VectorsEqual(const V1, V2: TVector4Double): boolean; overload;
function VectorsEqual(const V1, V2: TVector4Single; const EqualityEpsilon: Single): boolean; overload;
function VectorsEqual(const V1, V2: TVector4Double; const EqualityEpsilon: Double): boolean; overload;
{ @groupEnd }

{ Compare two vectors using perfect comparison, that is using the "=" operator
  to compare floats.
  @seealso VectorsEqual
  @groupBegin }
function VectorsPerfectlyEqual(const V1, V2: TVector2Single): boolean; overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
function VectorsPerfectlyEqual(const V1, V2: TVector2Double): boolean; overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
function VectorsPerfectlyEqual(const V1, V2: TVector3Single): boolean; overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
function VectorsPerfectlyEqual(const V1, V2: TVector3Double): boolean; overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
function VectorsPerfectlyEqual(const V1, V2: TVector4Single): boolean; overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
function VectorsPerfectlyEqual(const V1, V2: TVector4Double): boolean; overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
function VectorsPerfectlyEqual(const V1, V2: TVector3Byte  ): boolean; overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
{ @groupEnd }

function MatricesEqual(const M1, M2: TMatrix3Single; const EqualityEpsilon: Single): boolean; overload;
function MatricesEqual(const M1, M2: TMatrix3Double; const EqualityEpsilon: Double): boolean; overload;
function MatricesEqual(const M1, M2: TMatrix4Single; const EqualityEpsilon: Single): boolean; overload;
function MatricesEqual(const M1, M2: TMatrix4Double; const EqualityEpsilon: Double): boolean; overload;

function MatricesPerfectlyEqual(const M1, M2: TMatrix3Single): boolean; overload;
function MatricesPerfectlyEqual(const M1, M2: TMatrix3Double): boolean; overload;
function MatricesPerfectlyEqual(const M1, M2: TMatrix4Single): boolean; overload;
function MatricesPerfectlyEqual(const M1, M2: TMatrix4Double): boolean; overload;

function VectorsPerp(const V1, V2: TVector3Single): boolean; overload;
function VectorsPerp(const V1, V2: TVector3Double): boolean; overload;

{ Are the two vectors parallel (one is a scaled version of another).
  In particular, if one of the vectors is zero, then this is @true.
  @groupBegin }
function VectorsParallel(const V1, V2: TVector3Single): boolean; overload;
function VectorsParallel(const V1, V2: TVector3Double): boolean; overload;
{ @groupEnd }

{ Adjust the V1 vector to force given angle between V1 and V2.
  Vector V1 will be adjusted, such that it has the same length
  and the 3D plane defined by V1, V2 and (0, 0, 0) is the same.

  When vectors are parallel (this includes the case when one of them is zero),
  we set V1 to ResultWhenParallel.

  We make it such that V1 rotated around axis VectorProduct(V1, V2) by given
  angle will result in V2. Note that this means that
  @code(MakeVectorsAngleRadOnTheirPlane(V1, V2, Angle, ...))
  results in the same (not reversed) relation between vectors as
  @code(MakeVectorsAngleRadOnTheirPlane(V2, V1, Angle, ...)).
  That's because you change the arguments order, but also VectorProduct
  sign changes.
  @groupBegin }
procedure MakeVectorsAngleRadOnTheirPlane(var v1: TVector3Single;
  const v2: TVector3Single; const AngleRad: Single;
  const ResultWhenParallel: TVector3Single); overload;
procedure MakeVectorsAngleRadOnTheirPlane(var v1: TVector3Double;
  const v2: TVector3Double; const AngleRad: Double;
  const ResultWhenParallel: TVector3Double); overload;
{ @groupEnd }

{ Adjust the V1 vector to force V1 and V2 to be orthogonal.
  When vectors are parallel, we set V1 to be AnyOrthogonalVector(V2). }
procedure MakeVectorsOrthoOnTheirPlane(var v1: TVector3Single;
  const v2: TVector3Single); overload;
procedure MakeVectorsOrthoOnTheirPlane(var v1: TVector3Double;
  const v2: TVector3Double); overload;

{ Return, deterministically, some vector orthogonal to V.
  When V is non-zero, then the result is non-zero.

  This uses a simple trick to make an orthogonal vector:
  if you take @code(Result := (V[1], -V[0], 0)) then the dot product
  between the Result and V is zero, so they are orthogonal.
  There's also a small check needed to use a similar but different version
  when the only non-zero component of V is V[2].

  @groupBegin }
function AnyOrthogonalVector(const v: TVector3Single): TVector3Single; overload;
function AnyOrthogonalVector(const v: TVector3Double): TVector3Double; overload;
{ @groupEnd }

function IsLineParallelToPlane(const lineVector: TVector3Single; const plane: TVector4Single): boolean; overload;
function IsLineParallelToPlane(const lineVector: TVector3Double; const plane: TVector4Double): boolean; overload;

function IsLineParallelToSimplePlane(const lineVector: TVector3Single;
  const PlaneConstCoord: integer): boolean; overload;
function IsLineParallelToSimplePlane(const lineVector: TVector3Double;
  const PlaneConstCoord: integer): boolean; overload;

{ Assuming that Vector1 and Vector2 are parallel,
  check do they point in the same direction.

  This assumes that both vectors are non-zero.
  If one of the vectors is zero, the result is undefined --- false or true.
  (but the function will surely not raise some floating point error etc.) }
function AreParallelVectorsSameDirection(
  const Vector1, Vector2: TVector3Single): boolean; overload;
function AreParallelVectorsSameDirection(
  const Vector1, Vector2: TVector3Double): boolean; overload;

{ Orthogonally project a point on a plane, that is find a closest
  point to Point lying on a Plane.
  @groupBegin }
function PointOnPlaneClosestToPoint(const plane: TVector4Single; const point: TVector3Single): TVector3Single; overload;
function PointOnPlaneClosestToPoint(const plane: TVector4Double; const point: TVector3Double): TVector3Double; overload;
{ @groupEnd }

function PointToPlaneDistanceSqr(const Point: TVector3Single;
  const Plane: TVector4Single): Single; overload;
function PointToPlaneDistanceSqr(const Point: TVector3Double;
  const Plane: TVector4Double): Double; overload;

{ Distance from a point to a plane (with already normalized direction).

  Note: distance of the plane from origin point (0,0,0) may be simply
  obtained by Abs(Plane[3]) when Plane is Normalized.
  @groupBegin }
function PointToNormalizedPlaneDistance(const Point: TVector3Single;
  const Plane: TVector4Single): Single; overload;
function PointToNormalizedPlaneDistance(const Point: TVector3Double;
  const Plane: TVector4Double): Double; overload;
{ @groupEnd }

{ Distance from a point to a plane.

  Note that calculating this costs you one Sqrt
  (contrary to PointToPlaneDistanceSqr or
  PointToNormalizedPlaneDistance).

  @groupBegin }
function PointToPlaneDistance(const Point: TVector3Single;
  const Plane: TVector4Single): Single; overload;
function PointToPlaneDistance(const Point: TVector3Double;
  const Plane: TVector4Double): Double; overload;
{ @groupEnd }

function PointToSimplePlaneDistance(const point: TVector3Single;
  const PlaneConstCoord: integer; const PlaneConstValue: Single): Single; overload;
function PointToSimplePlaneDistance(const point: TVector3Double;
  const PlaneConstCoord: integer; const PlaneConstValue: Double): Double; overload;

function PointOnLineClosestToPoint(const line0, lineVector, point: TVector3Single): TVector3Single; overload;
function PointOnLineClosestToPoint(const line0, lineVector, point: TVector3Double): TVector3Double; overload;

function PointToLineDistanceSqr(const point, line0, lineVector: TVector3Single): Single; overload;
function PointToLineDistanceSqr(const point, line0, lineVector: TVector3Double): Double; overload;

{ Plane and line intersection.

  Returns @false and doesn't modify Intersection or T when
  the line is parallel to the plane (this includes the case when
  the line @italic(lies on a plane), so theoretically the whole
  line is an intersection).

  Otherwise, returns @true, and calculates 3D intersection point,
  or calculates T such that @code(3D intersection = Line0 + LineVector * T).
  @groupBegin }
function TryPlaneLineIntersection(out intersection: TVector3Single;
  const plane: TVector4Single; const line0, lineVector: TVector3Single): boolean; overload;
function TryPlaneLineIntersection(out intersection: TVector3Double;
  const plane: TVector4Double; const line0, lineVector: TVector3Double): boolean; overload;
function TryPlaneLineIntersection(out t: Single;
  const plane: TVector4Single; const line0, lineVector: TVector3Single): boolean; overload;
function TryPlaneLineIntersection(out t: Double;
  const plane: TVector4Double; const line0, lineVector: TVector3Double): boolean; overload;
{ @groupEnd }

{ Plane and ray intersection.

  Returns @false and doesn't modify Intersection or T when
  the ray is parallel to the plane (this includes the case when
  the ray @italic(lies on a plane). Also returns @false when the ray would
  have to point in the opposite direction to hit the plane.

  Otherwise, returns @true, and calculates 3D intersection point,
  or calculates T such that @code(3D intersection = RayOrigin + RayDirection * T).
  @groupBegin }
function TrySimplePlaneRayIntersection(out Intersection: TVector3Single;
  const PlaneConstCoord: integer; const PlaneConstValue: Single;
  const RayOrigin, RayDirection: TVector3Single): boolean; overload;
function TrySimplePlaneRayIntersection(out Intersection: TVector3Double;
  const PlaneConstCoord: integer; const PlaneConstValue: Double;
  const RayOrigin, RayDirection: TVector3Double): boolean; overload;
function TrySimplePlaneRayIntersection(out Intersection: TVector3Single; out T: Single;
  const PlaneConstCoord: integer; const PlaneConstValue: Single;
  const RayOrigin, RayDirection: TVector3Single): boolean; overload;
function TrySimplePlaneRayIntersection(out Intersection: TVector3Double; out T: Double;
  const PlaneConstCoord: integer; const PlaneConstValue: Double;
  const RayOrigin, RayDirection: TVector3Double): boolean; overload;
function TrySimplePlaneRayIntersection(out T: Single;
  const PlaneConstCoord: integer; const PlaneConstValue: Single;
  const RayOrigin, RayDirection: TVector3Single): boolean; overload;
function TrySimplePlaneRayIntersection(out T: Double;
  const PlaneConstCoord: integer; const PlaneConstValue: Double;
  const RayOrigin, RayDirection: TVector3Double): boolean; overload;

function TryPlaneRayIntersection(out Intersection: TVector3Single;
  const Plane: TVector4Single; const RayOrigin, RayDirection: TVector3Single): boolean; overload;
function TryPlaneRayIntersection(out Intersection: TVector3Double;
  const Plane: TVector4Double; const RayOrigin, RayDirection: TVector3Double): boolean; overload;
function TryPlaneRayIntersection(out Intersection: TVector3Single; out T: Single;
  const Plane: TVector4Single; const RayOrigin, RayDirection: TVector3Single): boolean; overload;
function TryPlaneRayIntersection(out Intersection: TVector3Double; out T: Double;
  const Plane: TVector4Double; const RayOrigin, RayDirection: TVector3Double): boolean; overload;
{ @groupEnd }

{ Plane and line segment intersection.

  Returns @false and doesn't modify Intersection or T when
  the segment is parallel to the plane (this includes the case when
  the segment @italic(lies on a plane). Also returns @false when the segment
  would have to be longer to hit the plane.

  Otherwise, returns @true, and calculates 3D intersection point,
  or calculates T such that @code(3D intersection = RayOrigin + RayDirection * T).
  @groupBegin }
function TrySimplePlaneSegmentDirIntersection(var Intersection: TVector3Single;
  const PlaneConstCoord: integer; const PlaneConstValue: Single;
  const Segment0, SegmentVector: TVector3Single): boolean; overload;
function TrySimplePlaneSegmentDirIntersection(var Intersection: TVector3Double;
  const PlaneConstCoord: integer; const PlaneConstValue: Double;
  const Segment0, SegmentVector: TVector3Double): boolean; overload;
function TrySimplePlaneSegmentDirIntersection(var Intersection: TVector3Single; var T: Single;
  const PlaneConstCoord: integer; const PlaneConstValue: Single;
  const Segment0, SegmentVector: TVector3Single): boolean; overload;
function TrySimplePlaneSegmentDirIntersection(var Intersection: TVector3Double; var T: Double;
  const PlaneConstCoord: integer; const PlaneConstValue: Double;
  const Segment0, SegmentVector: TVector3Double): boolean; overload;
function TrySimplePlaneSegmentDirIntersection(var T: Single;
  const PlaneConstCoord: integer; const PlaneConstValue: Single;
  const Segment0, SegmentVector: TVector3Single): boolean; overload;
function TrySimplePlaneSegmentDirIntersection(var T: Double;
  const PlaneConstCoord: integer; const PlaneConstValue: Double;
  const Segment0, SegmentVector: TVector3Double): boolean; overload;

function TrySimplePlaneSegmentIntersection(
  out Intersection: TVector3Single;
  const PlaneConstCoord: integer; const PlaneConstValue: Single;
  const Pos1, Pos2: TVector3Single): boolean; overload;
function TrySimplePlaneSegmentIntersection(
  out Intersection: TVector3Double;
  const PlaneConstCoord: integer; const PlaneConstValue: Double;
  const Pos1, Pos2: TVector3Double): boolean; overload;
function TrySimplePlaneSegmentIntersection(
  out Intersection: TVector3Single; out T: Single;
  const PlaneConstCoord: integer; const PlaneConstValue: Single;
  const Pos1, Pos2: TVector3Single): boolean; overload;
function TrySimplePlaneSegmentIntersection(
  out Intersection: TVector3Double; out T: Double;
  const PlaneConstCoord: integer; const PlaneConstValue: Double;
  const Pos1, Pos2: TVector3Double): boolean; overload;
function TrySimplePlaneSegmentIntersection(
  out T: Single;
  const PlaneConstCoord: integer; const PlaneConstValue: Single;
  const Pos1, Pos2: TVector3Single): boolean; overload;
function TrySimplePlaneSegmentIntersection(
  out T: Double;
  const PlaneConstCoord: integer; const PlaneConstValue: Double;
  const Pos1, Pos2: TVector3Double): boolean; overload;

function TryPlaneSegmentDirIntersection(out Intersection: TVector3Single;
  const Plane: TVector4Single; const Segment0, SegmentVector: TVector3Single): boolean; overload;
function TryPlaneSegmentDirIntersection(out Intersection: TVector3Double;
  const Plane: TVector4Double; const Segment0, SegmentVector: TVector3Double): boolean; overload;
function TryPlaneSegmentDirIntersection(out Intersection: TVector3Single; out T: Single;
  const Plane: TVector4Single; const Segment0, SegmentVector: TVector3Single): boolean; overload;
function TryPlaneSegmentDirIntersection(out Intersection: TVector3Double; out T: Double;
  const Plane: TVector4Double; const Segment0, SegmentVector: TVector3Double): boolean; overload;
{ @groupEnd }

function IsPointOnSegmentLineWithinSegment(const intersection, pos1, pos2: TVector3Single): boolean; overload;
function IsPointOnSegmentLineWithinSegment(const intersection, pos1, pos2: TVector3Double): boolean; overload;

{ Line passing through two @italic(different) points.
  When the points are equal, undefined.
  @groupBegin }
function LineOfTwoDifferentPoints2d(const p1, p2: TVector2Single): TVector3Single; overload;
function LineOfTwoDifferentPoints2d(const p1, p2: TVector2Double): TVector3Double; overload;
{ @groupEnd }

function PointToSegmentDistanceSqr(const point, pos1, pos2: TVector3Single): Single; overload;
function PointToSegmentDistanceSqr(const point, pos1, pos2: TVector3Double): Double; overload;

{ Transform plane by a matrix.

  @raises(ETransformedResultInvalid Raised when matrix
  will transform some point to a direction, or direction to point,
  in homogeneous coordinates.)

  @groupBegin }
function PlaneTransform(const Plane: TVector4Single; const Matrix: TMatrix4Single): TVector4Single;
function PlaneTransform(const Plane: TVector4Double; const Matrix: TMatrix4Double): TVector4Double;
{ @groupEnd }

function IsTunnelSphereCollision(const Tunnel1, Tunnel2: TVector3Single;
  const TunnelRadius: Single; const SphereCenter: TVector3Single;
  const SphereRadius: Single): boolean; overload;
function IsTunnelSphereCollision(const Tunnel1, Tunnel2: TVector3Double;
  const TunnelRadius: Double; const SphereCenter: TVector3Double;
  const SphereRadius: Double): boolean; overload;

function IsSpheresCollision(const Sphere1Center: TVector3Single; const Sphere1Radius: Single;
  const Sphere2Center: TVector3Single; const Sphere2Radius: Single): boolean; overload;
function IsSpheresCollision(const Sphere1Center: TVector3Double; const Sphere1Radius: Double;
  const Sphere2Center: TVector3Double; const Sphere2Radius: Double): boolean; overload;

function IsSegmentSphereCollision(const pos1, pos2, SphereCenter: TVector3Single;
  const SphereRadius: Single): boolean; overload;
function IsSegmentSphereCollision(const pos1, pos2, SphereCenter: TVector3Double;
  const SphereRadius: Double): boolean; overload;

function TrySphereRayIntersection(out Intersection: TVector3Single;
  const SphereCenter: TVector3Single; const SphereRadius: Single;
  const RayOrigin, RayDirection: TVector3Single): boolean; overload;
function TrySphereRayIntersection(out Intersection: TVector3Double;
  const SphereCenter: TVector3Double; const SphereRadius: Double;
  const RayOrigin, RayDirection: TVector3Double): boolean; overload;

{ Intersection between an (infinitely tall) cylinder and a ray.
  @groupBegin }
function TryCylinderRayIntersection(out Intersection: TVector3Single;
  const CylinderAxisOrigin, CylinderAxis: TVector3Single;
  const CylinderRadius: Single;
  const RayOrigin, RayDirection: TVector3Single): boolean; overload;
function TryCylinderRayIntersection(out Intersection: TVector3Double;
  const CylinderAxisOrigin, CylinderAxis: TVector3Double;
  const CylinderRadius: Double;
  const RayOrigin, RayDirection: TVector3Double): boolean; overload;
{ @groupEnd }

{ Converting stuff to string ---------------------------------------------------

  Functions named ToNiceStr use FloatToNiceStr that in turn uses
  Format('%' + FloatNiceFormat, [f]). In effect, the floating-point value
  is by default displayed nicely for human, and moreover you can control
  the output by global FloatNiceFormat value.

  Also, functions named ToNiceStr sometimes add some decoration (like
  "[ ]" characters around matrix rows) to make the result look nice
  and readable.

  Functions that take a LineIndent parameter (may) output a multiline-string.
  In such case, the last line is @italic(never) terminated with newline
  character(s).

  Functions named ToRawStr output the precise floating-point value,
  using the ugly exponential (scientific) notation if needed.
  They are suitable for storing the floating-point value in a file,
  with a best precision possible.

  Also, functions named ToRawStr do not add any decoration when outputting
  vectors / matrices. They simply spit a sequence of floating-point values
  separated by spaces.
}

{ }
var
  FloatNiceFormat: string = 'f';

function FloatToNiceStr(f: Single): string; overload;
function FloatToNiceStr(f: Double): string; overload;
function VectorToNiceStr(const v: array of Byte): string; overload;
function VectorToNiceStr(const v: array of Single): string; overload;
function VectorToNiceStr(const v: array of Double): string; overload;
function VectorToNiceStr(const v: array of Integer): string; overload;
function MatrixToNiceStr(const v: TMatrix4Single; const LineIndent: string): string; overload;
function MatrixToNiceStr(const v: TMatrix4Double; const LineIndent: string): string; overload;

function FloatToRawStr(f: Single): string; overload;
function FloatToRawStr(f: Double): string; overload;
function VectorToRawStr(const v: array of Single): string; overload;
function VectorToRawStr(const v: array of Double): string; overload;
function MatrixToRawStr(const v: TMatrix4Single; const LineIndent: string): string; overload;
function MatrixToRawStr(const v: TMatrix4Double; const LineIndent: string): string; overload;

{ Matrix operations ---------------------------------------------------------- }

{ }
function MatrixAdd(const m1, m2: TMatrix3Single): TMatrix3Single; overload;
function MatrixAdd(const m1, m2: TMatrix4Single): TMatrix4Single; overload;
function MatrixAdd(const m1, m2: TMatrix3Double): TMatrix3Double; overload;
function MatrixAdd(const m1, m2: TMatrix4Double): TMatrix4Double; overload;

procedure MatrixAddTo1st(var m1: TMatrix3Single; const m2: TMatrix3Single); overload;
procedure MatrixAddTo1st(var m1: TMatrix4Single; const m2: TMatrix4Single); overload;
procedure MatrixAddTo1st(var m1: TMatrix3Double; const m2: TMatrix3Double); overload;
procedure MatrixAddTo1st(var m1: TMatrix4Double; const m2: TMatrix4Double); overload;

function MatrixSubtract(const m1, m2: TMatrix3Single): TMatrix3Single; overload;
function MatrixSubtract(const m1, m2: TMatrix4Single): TMatrix4Single; overload;
function MatrixSubtract(const m1, m2: TMatrix3Double): TMatrix3Double; overload;
function MatrixSubtract(const m1, m2: TMatrix4Double): TMatrix4Double; overload;

procedure MatrixSubtractTo1st(var m1: TMatrix3Single; const m2: TMatrix3Single); overload;
procedure MatrixSubtractTo1st(var m1: TMatrix4Single; const m2: TMatrix4Single); overload;
procedure MatrixSubtractTo1st(var m1: TMatrix3Double; const m2: TMatrix3Double); overload;
procedure MatrixSubtractTo1st(var m1: TMatrix4Double; const m2: TMatrix4Double); overload;

function MatrixNegate(const m1: TMatrix3Single): TMatrix3Single; overload;
function MatrixNegate(const m1: TMatrix4Single): TMatrix4Single; overload;
function MatrixNegate(const m1: TMatrix3Double): TMatrix3Double; overload;
function MatrixNegate(const m1: TMatrix4Double): TMatrix4Double; overload;

function MatrixMultScalar(const m: TMatrix3Single; const s: Single): TMatrix3Single; overload;
function MatrixMultScalar(const m: TMatrix4Single; const s: Single): TMatrix4Single; overload;
function MatrixMultScalar(const m: TMatrix3Double; const s: Double): TMatrix3Double; overload;
function MatrixMultScalar(const m: TMatrix4Double; const s: Double): TMatrix4Double; overload;

type
  ETransformedResultInvalid = class(EVectorInvalidOp);

{ Transform a 3D point with 4x4 matrix.

  This works by temporarily converting point to 4-component vector
  (4th component is 1). After multiplying matrix * vector we divide
  by 4th component. So this works Ok for all matrices,
  even with last row different than identity (0, 0, 0, 1).
  E.g. this works for projection matrices too.

  @raises(ETransformedResultInvalid This is raised when matrix
  will transform point to a direction (vector with 4th component
  equal zero). In this case we just cannot interpret the result as a 3D point.)

  @groupBegin }
function MatrixMultPoint(const m: TMatrix4Single; const pt: TVector3Single): TVector3Single; overload;
function MatrixMultPoint(const m: TMatrix4Double; const pt: TVector3Double): TVector3Double; overload;
{ @groupEnd }

{ Transform a 3D direction with 4x4 matrix.

  This works by temporarily converting direction to 4-component vector
  (4th component is 0). After multiplying matrix * vector we check
  is the 4th component still 0 (eventually raising ETransformedResultInvalid).

  @raises(ETransformedResultInvalid This is raised when matrix
  will transform direction to a point (vector with 4th component
  nonzero). In this case we just cannot interpret the result as a 3D direction.)

  @groupBegin }
function MatrixMultDirection(const m: TMatrix4Single;
  const Dir: TVector3Single): TVector3Single; overload;
function MatrixMultDirection(const m: TMatrix4Double;
  const Dir: TVector3Double): TVector3Double; overload;
{ @groupEnd }

function MatrixMultVector(const m: TMatrix2Single; const v: TVector2Single): TVector2Single; overload;
function MatrixMultVector(const m: TMatrix3Single; const v: TVector3Single): TVector3Single; overload;
function MatrixMultVector(const m: TMatrix4Single; const v: TVector4Single): TVector4Single; overload;
function MatrixMultVector(const m: TMatrix2Double; const v: TVector2Double): TVector2Double; overload;
function MatrixMultVector(const m: TMatrix3Double; const v: TVector3Double): TVector3Double; overload;
function MatrixMultVector(const m: TMatrix4Double; const v: TVector4Double): TVector4Double; overload;

function MatrixMult(const m1, m2: TMatrix2Single): TMatrix2Single; overload;
function MatrixMult(const m1, m2: TMatrix3Single): TMatrix3Single; overload;
function MatrixMult(const m1, m2: TMatrix4Single): TMatrix4Single; overload;
function MatrixMult(const m1, m2: TMatrix2Double): TMatrix2Double; overload;
function MatrixMult(const m1, m2: TMatrix3Double): TMatrix3Double; overload;
function MatrixMult(const m1, m2: TMatrix4Double): TMatrix4Double; overload;

function MatrixRow(const m: TMatrix2Single; const Row: Integer): TVector2Single; overload;
function MatrixRow(const m: TMatrix3Single; const Row: Integer): TVector3Single; overload;
function MatrixRow(const m: TMatrix4Single; const Row: Integer): TVector4Single; overload;
function MatrixRow(const m: TMatrix2Double; const Row: Integer): TVector2Double; overload;
function MatrixRow(const m: TMatrix3Double; const Row: Integer): TVector3Double; overload;
function MatrixRow(const m: TMatrix4Double; const Row: Integer): TVector4Double; overload;

function MatrixDeterminant(const M: TMatrix2Single): Single; overload;
function MatrixDeterminant(const M: TMatrix2Double): Double; overload;
function MatrixDeterminant(const M: TMatrix3Single): Single; overload;
function MatrixDeterminant(const M: TMatrix3Double): Double; overload;
function MatrixDeterminant(const M: TMatrix4Single): Single; overload;
function MatrixDeterminant(const M: TMatrix4Double): Double; overload;

{ Inverse the matrix.

  They do division by Determinant internally, so will raise exception
  from this float division if the matrix is not reversible.

  @groupBegin }
function MatrixInverse(const M: TMatrix2Single; const Determinant: Single): TMatrix2Single; overload;
function MatrixInverse(const M: TMatrix2Double; const Determinant: Double): TMatrix2Double; overload;
function MatrixInverse(const M: TMatrix3Single; const Determinant: Single): TMatrix3Single; overload;
function MatrixInverse(const M: TMatrix3Double; const Determinant: Double): TMatrix3Double; overload;
function MatrixInverse(const M: TMatrix4Single; const Determinant: Single): TMatrix4Single; overload;
function MatrixInverse(const M: TMatrix4Double; const Determinant: Double): TMatrix4Double; overload;
{ @groupEnd }

{ Transpose the matrix.
  @groupBegin }
procedure MatrixTransposeTo1st(var M: TMatrix3Single); overload;
procedure MatrixTransposeTo1st(var M: TMatrix3Double); overload;

function MatrixTranspose(const M: TMatrix3Single): TMatrix3Single; overload;
function MatrixTranspose(const M: TMatrix3Double): TMatrix3Double; overload;
function MatrixTranspose(const M: TMatrix4Single): TMatrix4Single; overload;
function MatrixTranspose(const M: TMatrix4Double): TMatrix4Double; overload;
{ @groupEnd }

{ Inverse the matrix, trying harder (but possibly slower).

  Basically, they internally calculate determinant and then calculate
  inverse using this determinant. Return @false if the determinant is zero.

  The main feature is that Single precision versions actually internally
  calculate everything (determinant and inverse) in Double precision.
  This gives better accuracy, and safety from matrices with very very small
  (but not zero) determinants.

  This is quite important for many matrices. For example, a 4x4 matrix
  with scaling = 1/200 (which can be easily found in practice,
  see e.g. castle/data/levels/gate/gate_processed.wrl) already
  has determinant = 1/8 000 000, which will not pass Zero test
  (with SingleEqualityEpsilon). But it's possible to calculate it
  (even on Single precision, although safer in Double precision).

  @groupBegin }
function TryMatrixInverse(const M: TMatrix2Single; out MInverse: TMatrix2Single): boolean; overload;
function TryMatrixInverse(const M: TMatrix2Double; out MInverse: TMatrix2Double): boolean; overload;
function TryMatrixInverse(const M: TMatrix3Single; out MInverse: TMatrix3Single): boolean; overload;
function TryMatrixInverse(const M: TMatrix3Double; out MInverse: TMatrix3Double): boolean; overload;
function TryMatrixInverse(const M: TMatrix4Single; out MInverse: TMatrix4Single): boolean; overload;
function TryMatrixInverse(const M: TMatrix4Double; out MInverse: TMatrix4Double): boolean; overload;
{ @groupEnd }

{ Convert ModelView matrix to a Normal matrix, just like 3D graphic libraries do.
  See e.g. http://www.lighthouse3d.com/tutorials/glsl-tutorial/the-normal-matrix/
  for explanation why this is necessary, and how it's done. }
function ModelViewToNormalMatrix(const M: TMatrix4Single): TMatrix3Single;

{ Multiply vector by a transposition of the same vector.
  For 3d vectors, this results in a 3x3 matrix.
  To put this inside a 4x4 matrix,
  we fill the last row and column just like for an identity matrix.

  This is useful for calculating rotation matrix. }
function VectorMultTransposedSameVector(const v: TVector3Single): TMatrix4Single;

const
  { Special value that you can pass to FrustumProjMatrix and
    PerspectiveProjMatrix as ZFar, with intention to set far plane at infinity.

    If would be "cooler" to define ZFarInfinity as Math.Infinity,
    but operating on Math.Infinity requires unnecessary turning
    off of compiler checks. The point was only to have some special ZFar
    value, so 0 is as good as Infinity. }
  ZFarInfinity = 0.0;

{ Functions to create common 4x4 matrices used in 3D graphics.

  These functions generate the same matrices that are made by corresponding
  OpenGL (gl or glu) functions. So rotations will be generated in the same
  fashion, etc. For exact specification of what matrices they create see
  OpenGL specification for routines glTranslate, glScale, glRotate,
  glOrtho, glFrustum, gluPerspective.

  For frustum and pespective projection matrices, we have a special bonus
  here: you can pass as ZFar the special value ZFarInfinity.
  Then you get perspective projection matrix withour far clipping plane,
  which is very useful for z-fail shadow volumes technique.

  Functions named Matrices below generate both normal and inverted matrices.
  For example, function RotationMatrices returns two matrices that you
  could calculate separately by

@longCode(#
        Matrix: = RotationMatrix( Angle, Axis);
InvertedMatrix: = RotationMatrix(-Angle, Axis);
#)

  This is useful sometimes, and generating them both at the same time
  allows for some speedup (for example, calling RotationMatrix twice will
  calculate sincos of Angle twice).

  Note that inverse of scaling matrix will not exist if the
  ScaleFactor has one of the components zero !
  Depending on InvertedMatrixIdentityIfNotExists, this will
  (if @false) raise division by zero exception or (if @true) cause
  the matrix to be set to identity.

  Note that rotation matrix (both normal and inverse) is always defined,
  for Axis = zero both normal and inverse matrices are set to identity.

  @groupBegin }
function TranslationMatrix(const X, Y, Z: Single): TMatrix4Single; overload;
function TranslationMatrix(const X, Y, Z: Double): TMatrix4Single; overload;
function TranslationMatrix(const Transl: TVector3Single): TMatrix4Single; overload;
function TranslationMatrix(const Transl: TVector3Double): TMatrix4Single; overload;

procedure TranslationMatrices(const X, Y, Z: Single; out Matrix, InvertedMatrix: TMatrix4Single); overload;
procedure TranslationMatrices(const X, Y, Z: Double; out Matrix, InvertedMatrix: TMatrix4Single); overload;
procedure TranslationMatrices(const Transl: TVector3Single; out Matrix, InvertedMatrix: TMatrix4Single); overload;
procedure TranslationMatrices(const Transl: TVector3Double; out Matrix, InvertedMatrix: TMatrix4Single); overload;

function ScalingMatrix(const ScaleFactor: TVector3Single): TMatrix4Single;

procedure ScalingMatrices(const ScaleFactor: TVector3Single;
  InvertedMatrixIdentityIfNotExists: boolean;
  out Matrix, InvertedMatrix: TMatrix4Single);

function RotationMatrixRad(const AngleRad: Single; const Axis: TVector3Single): TMatrix4Single; overload;
function RotationMatrixDeg(const AngleDeg: Single; const Axis: TVector3Single): TMatrix4Single; overload;
function RotationMatrixRad(const AngleRad: Single; const AxisX, AxisY, AxisZ: Single): TMatrix4Single; overload;
function RotationMatrixDeg(const AngleDeg: Single; const AxisX, AxisY, AxisZ: Single): TMatrix4Single; overload;

procedure RotationMatricesRad(const AngleRad: Single; const Axis: TVector3Single;
  out Matrix, InvertedMatrix: TMatrix4Single);
procedure RotationMatricesRad(const AxisAngle: TVector4Single;
  out Matrix, InvertedMatrix: TMatrix4Single);

function OrthoProjMatrix(const left, right, bottom, top, zNear, zFar: Single): TMatrix4Single;
function Ortho2dProjMatrix(const left, right, bottom, top: Single): TMatrix4Single;
function FrustumProjMatrix(const left, right, bottom, top, zNear, zFar: Single): TMatrix4Single;
function PerspectiveProjMatrixDeg(const fovyDeg, aspect, zNear, zFar: Single): TMatrix4Single;
function PerspectiveProjMatrixRad(const fovyRad, aspect, zNear, zFar: Single): TMatrix4Single;
{ @groupEnd }

{ Multiply matrix M by translation matrix.

  This is equivalent to M := MatrixMult(M, TranslationMatrix(Transl)),
  but it works much faster since TranslationMatrix is a very simple matrix
  and multiplication by it may be much optimized.

  An additional speedup comes from the fact that the result is placed
  back in M (so on places where M doesn't change (and there's a lot
  of them for multiplication with translation matrix) there's no useless
  copying).

  MultMatricesTranslation is analogous to calculating both
  TranslationMatrix(Transl) and it's inverse, and then
@longCode(#
  M := MatrixMult(M, translation);
  MInvert := MatrixMult(inverted translation, MInvert);
#)

  The idea is that if M represented some translation, and MInvert it's
  inverse, then after MultMatricesTranslation this will still hold.

  @groupBegin }
procedure MultMatrixTranslation(var M: TMatrix4Single; const Transl: TVector3Single); overload;
procedure MultMatrixTranslation(var M: TMatrix4Double; const Transl: TVector3Double); overload;
procedure MultMatricesTranslation(var M, MInvert: TMatrix4Single; const Transl: TVector3Single); overload;
procedure MultMatricesTranslation(var M, MInvert: TMatrix4Double; const Transl: TVector3Double); overload;
{ @groupEnd }

function MatrixDet4x4(const mat: TMatrix4Single): Single;
function MatrixDet3x3(const a1, a2, a3, b1, b2, b3, c1, c2, c3: Single): Single;
function MatrixDet2x2(const a, b, c, d: Single): Single;

{ Transform coordinates to / from a coordinate system.
  Stuff multiplied by this matrix is supplied in other coordinate system.

  The "new" coordinate system (you specify it explicitly for
  TransformToCoordsMatrix) is the coordinate system in which your 3D stuff
  is defined. That is, when you supply the points (that will later be
  multiplied by TransformToCoordsMatrix) you think in the "new" coordinate
  system. The "old" coordinate system
  (you specify it explicitly for TransformFromCoordsMatrix)
  is the coordinate system of stuff @italic(after)
  it's multiplied by this matrix.

  This may get confusing, so to be more precise:

  @unorderedList(

    @item(
      TransformToCoordsMatrix says how the new coords system looks
      from the point of view of the old coords system.
      A stuff lying at (0, 0, 0) in new coord system will be seen
      at NewOrigin after the transformation (in the old coordinate system).
      Similarly, direction (0, 1, 0) will be seen as NewY after
      the transformation.)

    @item(
      TransformFromCoordsMatrix is the inverse: how the old system
      is seen from the new one. If before the transformation you are
      at OldOrigin, then after the transformation you are at (0, 0, 0).
      This is natural way to implement LookAtMatrix, LookDirMatrix.)
  )

  The lengths of directions (New or Old X, Y, Z vectors) are meaningful.
  These vectors correspond to unit vectors (1, 0, 0), (0, 1, 0) and (0, 0, 1)
  in the other coordinate system. Supplying here non-normalized vectors
  will result in scaling.

  You can use the "NoScale" versions to have the vectors automatically
  normalized, thus you waste a little time (on normalizing) but you
  avoid the scaling.

  Overloaded versions without OldOrigin / NewOrigin parameters
  work like the old/new origin is zero. IOW, the origin of the coordinate
  system doesn't change in this case.

  @groupBegin }
function TransformToCoordsMatrix(const
  NewX, NewY, NewZ: TVector3Single): TMatrix4Single; overload;
function TransformToCoordsMatrix(const
  NewX, NewY, NewZ: TVector3Double): TMatrix4Single; overload;
function TransformToCoordsMatrix(const NewOrigin,
  NewX, NewY, NewZ: TVector3Single): TMatrix4Single; overload;
function TransformToCoordsMatrix(const NewOrigin,
  NewX, NewY, NewZ: TVector3Double): TMatrix4Single; overload;
function TransformToCoordsNoScaleMatrix(const NewOrigin,
  NewX, NewY, NewZ: TVector3Single): TMatrix4Single; overload;
function TransformToCoordsNoScaleMatrix(const NewOrigin,
  NewX, NewY, NewZ: TVector3Double): TMatrix4Single; overload;

function TransformFromCoordsMatrix(const
  OldX, OldY, OldZ: TVector3Single): TMatrix4Single; overload;
function TransformFromCoordsMatrix(const
  OldX, OldY, OldZ: TVector3Double): TMatrix4Single; overload;
function TransformFromCoordsMatrix(const OldOrigin,
  OldX, OldY, OldZ: TVector3Single): TMatrix4Single; overload;
function TransformFromCoordsMatrix(const OldOrigin,
  OldX, OldY, OldZ: TVector3Double): TMatrix4Single; overload;
function TransformFromCoordsNoScaleMatrix(const OldOrigin,
  OldX, OldY, OldZ: TVector3Single): TMatrix4Single; overload;
function TransformFromCoordsNoScaleMatrix(const OldOrigin,
  OldX, OldY, OldZ: TVector3Double): TMatrix4Single; overload;
{ @groupEnd }

{ Calculate matrix to convert to given coordinate system
  (like TransformToCoordsMatrix) and it's inverse
  (like TransformFromCoordsMatrix).

  @groupBegin }
procedure TransformCoordsMatrices(const NewX, NewY, NewZ: TVector3Single;
  out ToCoords, FromCoords: TMatrix4Single); overload;
procedure TransformCoordsMatrices(const NewX, NewY, NewZ: TVector3Double;
  out ToCoords, FromCoords: TMatrix4Single); overload;
{ @groupEnd }

{ Transform vector into new coordinate space.

  Equivalent to @code(MatrixMultPoint(TransformToCoordsMatrix(ZeroVector3Single,
  NewX, NewY, NewZ))). So the origin of new coordinate system is at the same
  place. You should pass NewX, NewY, NewZ vectors normalized if you want to
  preserve vector length.
  @groupBegin }
function TransformToCoords(const V, NewX, NewY, NewZ: TVector3Single): TVector3Single;
function TransformToCoords(const V, NewX, NewY, NewZ: TVector3Double): TVector3Double;
{ @groupEnd }

{ Camera matrix to look at the specified point (or along the specified direction).
  Work according to right-handed coordinate system.

  When applied to the scene, they transform it, such that a camera standing
  at (0, 0, 0) (with dir (0, 0, -1) and up vector (0, 1, 0)),
  was seeing the same view as if it was standing at Eye
  (with given Dir and Up vectors).

  For LookAtMatrix, looking direction is implicitly given as @code(Center - Eye).
  Just like gluLookAt.

  Dir and Up do not have to normalized (we'll normalize them if needed).
  So the lengths of Dir and Up do not affect the result
  (just as the distance between Center and Eye points for LookAtMatrix).

  Also, Dir and Up do not have to be perfectly orthogonal
  (we will eventually adjust Up internally to make it orthogonal to Up).
  But make sure they are not parallel.

  @groupBegin }
function LookAtMatrix(const Eye, Center, Up: TVector3Single): TMatrix4Single; overload;
function LookAtMatrix(const Eye, Center, Up: TVector3Double): TMatrix4Single; overload;
function LookDirMatrix(const Eye, Dir, Up: TVector3Single): TMatrix4Single; overload;
function LookDirMatrix(const Eye, Dir, Up: TVector3Double): TMatrix4Single; overload;
{ @groupEnd }

{ Calculate LookDirMatrix (or it's inverse), fast.

  Has some assumptions that make it run fast:
  @unorderedList(
    @item(It assumes camera position is zero.)
    @item(It assumes that Dir and Up are already normalized and orthogonal.)
  )

  @groupBegin
}
function FastLookDirMatrix(const Direction, Up: TVector3Single): TMatrix4Single;
function FastLookDirMatrix(const Direction, Up: TVector3Double): TMatrix4Single;
function InverseFastLookDirMatrix(const Direction, Up: TVector3Single): TMatrix4Single;
function InverseFastLookDirMatrix(const Direction, Up: TVector3Double): TMatrix4Single;
{ @groupEnd }

{$I castlevectors_operators.inc}

{$undef read_interface}

implementation

uses Math, CastleStringUtils, CastleColors;

{$define read_implementation}

{$I castlevectors_operators.inc}

{ Separated from PointsDistance2DSqr, to not slowdown it by implicit
  try/finally section because we use string. }
procedure PointsDistance2DSqr_InvalidIgnoreIndex;
begin
  raise EInternalError.Create('Invalid IgnoreIndex for PointsDistance2DSqr');
end;

{ include castlevectors_dualimplementation.inc ---------------------------------- }

{$define TScalar := Single}
{$define TVector2 := TVector2Single}
{$define TVector3 := TVector3Single}
{$define TVector4 := TVector4Single}
{$define PVector2 := PVector2Single}
{$define PVector3 := PVector3Single}
{$define PVector4 := PVector4Single}
{$define TMatrix2 := TMatrix2Single}
{$define TMatrix3 := TMatrix3Single}
{$define TMatrix4 := TMatrix4Single}
{$define ScalarEqualityEpsilon := SingleEqualityEpsilon}
{$define UnitVector3 := UnitVector3Single}
{$define ZeroVector3 := ZeroVector3Single}
{$define IdentityMatrix4 := IdentityMatrix4Single}
{$define TMatrix2_ := TMatrix2_Single}
{$define TMatrix3_ := TMatrix3_Single}
{$define TMatrix4_ := TMatrix4_Single}
{$define TVector2_ := TVector2_Single}
{$define TVector3_ := TVector3_Single}
{$define TVector4_ := TVector4_Single}
{$I castlevectors_dualimplementation.inc}

{$define TScalar := Double}
{$define TVector2 := TVector2Double}
{$define TVector3 := TVector3Double}
{$define TVector4 := TVector4Double}
{$define PVector2 := PVector2Double}
{$define PVector3 := PVector3Double}
{$define PVector4 := PVector4Double}
{$define TMatrix2 := TMatrix2Double}
{$define TMatrix3 := TMatrix3Double}
{$define TMatrix4 := TMatrix4Double}
{$define ScalarEqualityEpsilon := DoubleEqualityEpsilon}
{$define UnitVector3 := UnitVector3Double}
{$define ZeroVector3 := ZeroVector3Double}
{$define IdentityMatrix4 := IdentityMatrix4Double}
{$define TMatrix2_ := TMatrix2_Double}
{$define TMatrix3_ := TMatrix3_Double}
{$define TMatrix4_ := TMatrix4_Double}
{$define TVector2_ := TVector2_Double}
{$define TVector3_ := TVector3_Double}
{$define TVector4_ := TVector4_Double}
{$I castlevectors_dualimplementation.inc}

{ TVector3SingleList ----------------------------------------------------- }

procedure TVector3SingleList.AssignNegated(Source: TVector3SingleList);
begin
  Assign(Source);
  Negate;
end;

procedure TVector3SingleList.Negate;
var
  I: Integer;
begin
  for I := 0 to Count - 1 do
    VectorNegateTo1st(L[I]);
end;

procedure TVector3SingleList.Normalize;
var
  I: Integer;
begin
  for I := 0 to Count - 1 do
    NormalizeTo1st(L[I]);
end;

procedure TVector3SingleList.MultiplyComponents(const V: TVector3Single);
var
  I: Integer;
begin
  for I := 0 to Count - 1 do
    VectorMultiplyComponentsTo1st(L[I], V);
end;

procedure TVector3SingleList.AssignLerp(const Fraction: Single;
  V1, V2: TVector3SingleList; Index1, Index2, ACount: Integer);
var
  I: Integer;
begin
  Count := ACount;
  for I := 0 to Count - 1 do
    L[I] := Lerp(Fraction, V1.L[Index1 + I], V2.L[Index2 + I]);
end;

procedure TVector3SingleList.AssignLerpNormalize(const Fraction: Single;
  V1, V2: TVector3SingleList; Index1, Index2, ACount: Integer);
var
  I: Integer;
begin
  Count := ACount;
  for I := 0 to Count - 1 do
  begin
    L[I] := Lerp(Fraction, V1.L[Index1 + I], V2.L[Index2 + I]);
    NormalizeTo1st(L[I]);
  end;
end;

procedure TVector3SingleList.AssignLerpRgbInHsv(const Fraction: Single;
  V1, V2: TVector3SingleList; Index1, Index2, ACount: Integer);
var
  I: Integer;
begin
  Count := ACount;
  for I := 0 to Count - 1 do
    L[I] := LerpRgbInHsv(Fraction, V1.L[Index1 + I], V2.L[Index2 + I]);
end;

function TVector3SingleList.ToVector4Single(const W: Single): TVector4SingleList;
var
  I: Integer;
begin
  Result := TVector4SingleList.Create;
  Result.Count := Count;
  for I := 0 to Count - 1 do
    Result.L[I] := Vector4Single(L[I], W);
end;

function TVector3SingleList.MergeCloseVertexes(MergeDistance: Single): Cardinal;
var
  V1, V2: PVector3Single;
  I, J: Integer;
begin
  MergeDistance := Sqr(MergeDistance);
  Result := 0;

  V1 := PVector3Single(List);
  for I := 0 to Count - 1 do
  begin
    { Find vertexes closer to L[I], and merge them.

      Note that this is not optimal: we could avoid processing
      here L[I] that were detected previously (and possibly merged)
      as being equal to some previous items. But in practice this seems
      not needed, as there are not many merged vertices in typical situation,
      so time saving would be minimal (and small temporary memory cost
      introduced). }

    V2 := Addr(L[I + 1]);
    for J := I + 1 to Count - 1 do
    begin
      if PointsDistanceSqr(V1^, V2^) < MergeDistance then
        { We do the VectorsPerfectlyEqual comparison only to get nice Result.
          But this *is* an important value for the user, so it's worth it. }
        if not VectorsPerfectlyEqual(V1^, V2^) then
        begin
          V2^ := V1^;
          Inc(Result);
        end;
      Inc(V2);
    end;

    Inc(V1);
  end;
end;

procedure TVector3SingleList.AddList(Source: TVector3SingleList);
var
  OldCount: Integer;
begin
  OldCount := Count;
  Count := Count + Source.Count;
  if Source.Count <> 0 then
    System.Move(Source.L[0], L[OldCount], SizeOf(TVector3Single) * Source.Count);
end;

procedure TVector3SingleList.AddListRange(Source: TVector3SingleList; Index, AddCount: Integer);
var
  OldCount: Integer;
begin
  OldCount := Count;
  Count := Count + AddCount;
  if Source.Count <> 0 then
    System.Move(Source.L[Index], L[OldCount], SizeOf(TVector3Single) * AddCount);
end;

procedure TVector3SingleList.AddArray(const A: array of TVector3Single);
var
  OldCount: Integer;
begin
  OldCount := Count;
  Count := Count + High(A) + 1;
  if High(A) <> -1 then
    System.Move(A[0], L[OldCount], SizeOf(TVector3Single) * (High(A) + 1));
end;

procedure TVector3SingleList.AssignArray(const A: array of TVector3Single);
begin
  Clear;
  AddArray(A);
end;

{ TVector2SingleList ----------------------------------------------------- }

function TVector2SingleList.MinMax(out Min, Max: TVector2Single): boolean;
var
  I: Integer;
begin
  Result := Count > 0;
  if Result then
  begin
    Min := L[0];
    Max := L[0];
    for I := 1 to Count - 1 do
    begin
      if L[I][0] < Min[0] then Min[0] := L[I][0] else
      if L[I][0] > Max[0] then Max[0] := L[I][0];

      if L[I][1] < Min[1] then Min[1] := L[I][1] else
      if L[I][1] > Max[1] then Max[1] := L[I][1];
    end;
  end;
end;

procedure TVector2SingleList.AssignLerp(const Fraction: Single;
  V1, V2: TVector2SingleList; Index1, Index2, ACount: Integer);
var
  I: Integer;
begin
  Count := ACount;
  for I := 0 to Count - 1 do
    L[I] := Lerp(Fraction, V1.L[Index1 + I], V2.L[Index2 + I]);
end;

procedure TVector2SingleList.AddList(Source: TVector2SingleList);
var
  OldCount: Integer;
begin
  OldCount := Count;
  Count := Count + Source.Count;
  if Source.Count <> 0 then
    System.Move(Source.L[0], L[OldCount], SizeOf(TVector2Single) * Source.Count);
end;

procedure TVector2SingleList.AddListRange(Source: TVector2SingleList; Index, AddCount: Integer);
var
  OldCount: Integer;
begin
  OldCount := Count;
  Count := Count + AddCount;
  if Source.Count <> 0 then
    System.Move(Source.L[Index], L[OldCount], SizeOf(TVector2Single) * AddCount);
end;

procedure TVector2SingleList.AddArray(const A: array of TVector2Single);
var
  OldCount: Integer;
begin
  OldCount := Count;
  Count := Count + High(A) + 1;
  if High(A) <> -1 then
    System.Move(A[0], L[OldCount], SizeOf(TVector2Single) * (High(A) + 1));
end;

procedure TVector2SingleList.AssignArray(const A: array of TVector2Single);
begin
  Clear;
  AddArray(A);
end;

{ TVector4SingleList ----------------------------------------------------- }

procedure TVector4SingleList.AddList(Source: TVector4SingleList);
var
  OldCount: Integer;
begin
  OldCount := Count;
  Count := Count + Source.Count;
  if Source.Count <> 0 then
    System.Move(Source.L[0], L[OldCount], SizeOf(TVector4Single) * Source.Count);
end;

procedure TVector4SingleList.AddListRange(Source: TVector4SingleList; Index, AddCount: Integer);
var
  OldCount: Integer;
begin
  OldCount := Count;
  Count := Count + AddCount;
  if Source.Count <> 0 then
    System.Move(Source.L[Index], L[OldCount], SizeOf(TVector4Single) * AddCount);
end;

procedure TVector4SingleList.AddArray(const A: array of TVector4Single);
var
  OldCount: Integer;
begin
  OldCount := Count;
  Count := Count + High(A) + 1;
  if High(A) <> -1 then
    System.Move(A[0], L[OldCount], SizeOf(TVector4Single) * (High(A) + 1));
end;

procedure TVector4SingleList.AssignArray(const A: array of TVector4Single);
begin
  Clear;
  AddArray(A);
end;

{ TVector2DoubleList ----------------------------------------------------- }

function TVector2DoubleList.ToVector2Single: TVector2SingleList;
var
  I: Integer;
  Source: PDouble;
  Dest: PSingle;
begin
  Result := TVector2SingleList.Create;
  Result.Count := Count;
  Source := PDouble(List);
  Dest := PSingle(Result.List);
  for I := 0 to Count * 2 - 1 do
  begin
    Dest^ := Source^;
    Inc(Source);
    Inc(Dest);
  end;
end;

procedure TVector2DoubleList.AddList(Source: TVector2DoubleList);
var
  OldCount: Integer;
begin
  OldCount := Count;
  Count := Count + Source.Count;
  if Source.Count <> 0 then
    System.Move(Source.L[0], L[OldCount], SizeOf(TVector2Double) * Source.Count);
end;

procedure TVector2DoubleList.AddArray(const A: array of TVector2Double);
var
  OldCount: Integer;
begin
  OldCount := Count;
  Count := Count + High(A) + 1;
  if High(A) <> -1 then
    System.Move(A[0], L[OldCount], SizeOf(TVector2Double) * (High(A) + 1));
end;

{ TVector3DoubleList ----------------------------------------------------- }

function TVector3DoubleList.ToVector3Single: TVector3SingleList;
var
  I: Integer;
  Source: PDouble;
  Dest: PSingle;
begin
  Result := TVector3SingleList.Create;
  Result.Count := Count;
  Source := PDouble(List);
  Dest := PSingle(Result.List);
  for I := 0 to Count * 3 - 1 do
  begin
    Dest^ := Source^;
    Inc(Source);
    Inc(Dest);
  end;
end;

procedure TVector3DoubleList.AddList(Source: TVector3DoubleList);
var
  OldCount: Integer;
begin
  OldCount := Count;
  Count := Count + Source.Count;
  if Source.Count <> 0 then
    System.Move(Source.L[0], L[OldCount], SizeOf(TVector3Double) * Source.Count);
end;

procedure TVector3DoubleList.AddArray(const A: array of TVector3Double);
var
  OldCount: Integer;
begin
  OldCount := Count;
  Count := Count + High(A) + 1;
  if High(A) <> -1 then
    System.Move(A[0], L[OldCount], SizeOf(TVector3Double) * (High(A) + 1));
end;

{ TVector4DoubleList ----------------------------------------------------- }

function TVector4DoubleList.ToVector4Single: TVector4SingleList;
var
  I: Integer;
  Source: PDouble;
  Dest: PSingle;
begin
  Result := TVector4SingleList.Create;
  Result.Count := Count;
  Source := PDouble(List);
  Dest := PSingle(Result.List);
  for I := 0 to Count * 4 - 1 do
  begin
    Dest^ := Source^;
    Inc(Source);
    Inc(Dest);
  end;
end;

procedure TVector4DoubleList.AddList(Source: TVector4DoubleList);
var
  OldCount: Integer;
begin
  OldCount := Count;
  Count := Count + Source.Count;
  if Source.Count <> 0 then
    System.Move(Source.L[0], L[OldCount], SizeOf(TVector4Double) * Source.Count);
end;

procedure TVector4DoubleList.AddArray(const A: array of TVector4Double);
var
  OldCount: Integer;
begin
  OldCount := Count;
  Count := Count + High(A) + 1;
  if High(A) <> -1 then
    System.Move(A[0], L[OldCount], SizeOf(TVector4Double) * (High(A) + 1));
end;

{ TMatrix3SingleList ----------------------------------------------------- }

procedure TMatrix3SingleList.AddList(Source: TMatrix3SingleList);
var
  OldCount: Integer;
begin
  OldCount := Count;
  Count := Count + Source.Count;
  if Source.Count <> 0 then
    System.Move(Source.L[0], L[OldCount], SizeOf(TMatrix3Single) * Source.Count);
end;

procedure TMatrix3SingleList.AddArray(const A: array of TMatrix3Single);
var
  OldCount: Integer;
begin
  OldCount := Count;
  Count := Count + High(A) + 1;
  if High(A) <> -1 then
    System.Move(A[0], L[OldCount], SizeOf(TMatrix3Single) * (High(A) + 1));
end;

{ TMatrix4SingleList ----------------------------------------------------- }

procedure TMatrix4SingleList.AddList(Source: TMatrix4SingleList);
var
  OldCount: Integer;
begin
  OldCount := Count;
  Count := Count + Source.Count;
  if Source.Count <> 0 then
    System.Move(Source.L[0], L[OldCount], SizeOf(TMatrix4Single) * Source.Count);
end;

procedure TMatrix4SingleList.AddArray(const A: array of TMatrix4Single);
var
  OldCount: Integer;
begin
  OldCount := Count;
  Count := Count + High(A) + 1;
  if High(A) <> -1 then
    System.Move(A[0], L[OldCount], SizeOf(TMatrix4Single) * (High(A) + 1));
end;

{ TMatrix3DoubleList ----------------------------------------------------- }

function TMatrix3DoubleList.ToMatrix3Single: TMatrix3SingleList;
var
  I: Integer;
  Source: PDouble;
  Dest: PSingle;
begin
  Result := TMatrix3SingleList.Create;
  Result.Count := Count;
  Source := PDouble(List);
  Dest := PSingle(Result.List);
  for I := 0 to Count * 3 * 3 - 1 do
  begin
    Dest^ := Source^;
    Inc(Source);
    Inc(Dest);
  end;
end;

procedure TMatrix3DoubleList.AddList(Source: TMatrix3DoubleList);
var
  OldCount: Integer;
begin
  OldCount := Count;
  Count := Count + Source.Count;
  if Source.Count <> 0 then
    System.Move(Source.L[0], L[OldCount], SizeOf(TMatrix3Double) * Source.Count);
end;

procedure TMatrix3DoubleList.AddArray(const A: array of TMatrix3Double);
var
  OldCount: Integer;
begin
  OldCount := Count;
  Count := Count + High(A) + 1;
  if High(A) <> -1 then
    System.Move(A[0], L[OldCount], SizeOf(TMatrix3Double) * (High(A) + 1));
end;

{ TMatrix4DoubleList ----------------------------------------------------- }

function TMatrix4DoubleList.ToMatrix4Single: TMatrix4SingleList;
var
  I: Integer;
  Source: PDouble;
  Dest: PSingle;
begin
  Result := TMatrix4SingleList.Create;
  Result.Count := Count;
  Source := PDouble(List);
  Dest := PSingle(Result.List);
  for I := 0 to Count * 4 * 4 - 1 do
  begin
    Dest^ := Source^;
    Inc(Source);
    Inc(Dest);
  end;
end;

procedure TMatrix4DoubleList.AddList(Source: TMatrix4DoubleList);
var
  OldCount: Integer;
begin
  OldCount := Count;
  Count := Count + Source.Count;
  if Source.Count <> 0 then
    System.Move(Source.L[0], L[OldCount], SizeOf(TMatrix4Double) * Source.Count);
end;

procedure TMatrix4DoubleList.AddArray(const A: array of TMatrix4Double);
var
  OldCount: Integer;
begin
  OldCount := Count;
  Count := Count + High(A) + 1;
  if High(A) <> -1 then
    System.Move(A[0], L[OldCount], SizeOf(TMatrix4Double) * (High(A) + 1));
end;

{ FloatsEqual ------------------------------------------------------------- }

function FloatsEqual(const f1, f2: Single): boolean;
begin
  if SingleEqualityEpsilon = 0 then
    Result := f1 = f2 else
    Result := Abs(f1-f2) < SingleEqualityEpsilon;
end;

function FloatsEqual(const f1, f2: Double): boolean;
begin
  if DoubleEqualityEpsilon = 0 then
    Result := f1 = f2 else
    Result := Abs(f1-f2) < DoubleEqualityEpsilon;
end;

{$ifndef EXTENDED_EQUALS_DOUBLE}
function FloatsEqual(const f1, f2: Extended): boolean;
begin
  if ExtendedEqualityEpsilon = 0 then
    Result := f1 = f2 else
    Result := Abs(f1-f2) < ExtendedEqualityEpsilon
end;
{$endif}

function FloatsEqual(const f1, f2, EqEpsilon: Single): boolean;
begin
  if EqEpsilon = 0 then
    Result := f1 = f2 else
    Result := Abs(f1-f2) < EqEpsilon
end;

function FloatsEqual(const f1, f2, EqEpsilon: Double): boolean;
begin
  if EqEpsilon = 0 then
    Result := f1 = f2 else
    Result := Abs(f1-f2) < EqEpsilon
end;

{$ifndef EXTENDED_EQUALS_DOUBLE}
function FloatsEqual(const f1, f2, EqEpsilon: Extended): boolean;
begin
  if EqEpsilon = 0 then
    Result := f1 = f2 else
    Result := Abs(f1-f2) < EqEpsilon
end;
{$endif}

function Zero(const f1: Single  ): boolean;
begin
  if SingleEqualityEpsilon = 0 then
    Result := f1 = 0 else
    Result := Abs(f1)<  SingleEqualityEpsilon
end;

function Zero(const f1: Double  ): boolean;
begin
  if DoubleEqualityEpsilon = 0 then
    Result := f1 = 0 else
    Result := Abs(f1)<  DoubleEqualityEpsilon
end;

{$ifndef EXTENDED_EQUALS_DOUBLE}
function Zero(const f1: Extended): boolean;
begin
  if ExtendedEqualityEpsilon = 0 then
    Result := f1 = 0 else
    Result := Abs(f1) < ExtendedEqualityEpsilon
end;
{$endif}

function Zero(const f1, EqEpsilon: Single  ): boolean;
begin
  if EqEpsilon = 0 then
    Result := f1 = 0 else
    result := Abs(f1) < EqEpsilon
end;

function Zero(const f1, EqEpsilon: Double  ): boolean;
begin
  if EqEpsilon = 0 then
    Result := f1 = 0 else
    Result := Abs(f1) < EqEpsilon
end;

{$ifndef EXTENDED_EQUALS_DOUBLE}
function Zero(const f1, EqEpsilon: Extended): boolean;
begin
  if EqEpsilon = 0 then
    Result := f1 = 0 else
    Result := Abs(f1) < EqEpsilon
end;
{$endif}

{ type constructors ---------------------------------------------------------- }

function Vector2Integer(const x, y: Integer): TVector2Integer;
begin
  result[0] := x; result[1] := y;
end;

function Vector2LongInt(const x, y: Longint): TVector2LongInt;
begin
  result[0] := x; result[1] := y;
end;

function Vector2SmallInt(const x, y: SmallInt): TVector2SmallInt;
begin
  result[0] := x; result[1] := y;
end;

function Vector2Cardinal(const x, y: Cardinal): TVector2Cardinal;
begin
  result[0] := x; result[1] := y;
end;

function Vector2Single(const x, y: Single): TVector2Single;
begin
  result[0] := x; result[1] := y;
end;

function Vector2Single(const V: TVector2Double): TVector2Single;
begin
  Result[0] := V[0];
  Result[1] := V[1];
end;

function Vector2Double(const x, y: Double): TVector2Double;
begin
  result[0] := x; result[1] := y;
end;

function Vector4Single(const x, y: Single; const z: Single{=0}; const w: Single{=1}): TVector4Single;
begin
  result[0] := x; result[1] := y; result[2] := z; result[3] := w;
end;

function Vector4Single(const v3: TVector3Single; const w: Single{=1}): TVector4Single;
begin
  move(v3, result, SizeOf(TVector3Single));
  result[3] := w;
end;

function Vector4Single(const v2: TVector2Single;
  const z: Single = 0; const w: Single = 1): TVector4Single;
begin
  Move(V2, Result, SizeOf(TVector2Single));
  Result[2] := Z;
  Result[3] := W;
end;

function Vector4Single(const ub: TVector4Byte): TVector4Single;
begin
  result[0] := ub[0]/255;
  result[1] := ub[1]/255;
  result[2] := ub[2]/255;
  result[3] := ub[3]/255;
end;

function Vector4Single(const V3: TVector3Byte; const W: Byte): TVector4Single;
begin
  result[0] := V3[0] / 255;
  result[1] := V3[1] / 255;
  result[2] := V3[2] / 255;
  result[3] := W;
end;

function Vector4Single(const v: TVector4Double): TVector4Single;
begin
  result[0] := v[0];
  result[1] := v[1];
  result[2] := v[2];
  result[3] := v[3];
end;

function Vector4Double(const x, y, z, w: Double): TVector4Double;
begin
  result[0] := x;
  result[1] := y;
  result[2] := z;
  result[3] := w;
end;

function Vector4Double(const v: TVector4Single): TVector4Double;
begin
  result[0] := v[0];
  result[1] := v[1];
  result[2] := v[2];
  result[3] := v[3];
end;

function Vector3Single(const x, y: Single; const z: Single{=0.0}): TVector3Single;
begin
  result[0] := x; result[1] := y; result[2] := z;
end;

function Vector3Double(const x, y: Double; const z: Double{=0.0}): TVector3Double;
begin
  result[0] := x; result[1] := y; result[2] := z;
end;

function Vector3Single(const v3: TVector3Double): TVector3Single;
begin
  result[0] := v3[0]; result[1] := v3[1]; result[2] := v3[2];
end;

function Vector3Single(const v3: TVector3Byte): TVector3Single;
begin
  result[0] := v3[0]/255;
  result[1] := v3[1]/255;
  result[2] := v3[2]/255;
end;

function Vector3Single(const v2: TVector2Single; const z: Single): TVector3Single;
begin
  move(v2, result, SizeOf(v2));
  result[2] := z;
end;

function Vector3Double(const v: TVector3Single): TVector3Double;
begin
  result[0] := v[0]; result[1] := v[1]; result[2] := v[2];
end;

function Vector3Byte(x, y, z: Byte): TVector3Byte;
begin
  result[0] := x; result[1] := y; result[2] := z;
end;

function Vector3Byte(const v: TVector3Single): TVector3Byte;
begin
  result[0] := Clamped(Round(v[0] * 255), Low(Byte), High(Byte));
  result[1] := Clamped(Round(v[1] * 255), Low(Byte), High(Byte));
  result[2] := Clamped(Round(v[2] * 255), Low(Byte), High(Byte));
end;

function Vector3Byte(const v: TVector3Double): TVector3Byte;
begin
  result[0] := Clamped(Round(v[0] * 255), Low(Byte), High(Byte));
  result[1] := Clamped(Round(v[1] * 255), Low(Byte), High(Byte));
  result[2] := Clamped(Round(v[2] * 255), Low(Byte), High(Byte));
end;

function Vector3Longint(const p0, p1, p2: Longint): TVector3Longint;
begin
  result[0] := p0;
  result[1] := p1;
  result[2] := p2;
end;

function Vector4Byte(const x, y, z, w: Byte): TVector4Byte;
begin
  result[0] := x; result[1] := y; result[2] := z; result[3] := w;
end;

function Vector4Byte(const f4: TVector4Single): TVector4Byte;
begin
  result[0] := Round(f4[0] * 255);
  result[1] := Round(f4[1] * 255);
  result[2] := Round(f4[2] * 255);
  result[3] := Round(f4[3] * 255);
end;

function Vector4Byte(const f3: TVector3Byte; w: Byte): TVector4Byte;
begin
  result[0] := f3[0];
  result[1] := f3[1];
  result[2] := f3[2];
  result[3] := w;
end;

function Vector4Integer(const X, Y, Z, W: Integer): TVector4Integer;
begin
  Result[0] := X;
  Result[1] := Y;
  Result[2] := Z;
  Result[3] := W;
end;

function Vector3SinglePoint(const v: TVector4Single): TVector3Single;
begin
  result[0] := v[0]/v[3];
  result[1] := v[1]/v[3];
  result[2] := v[2]/v[3];
end;

function Vector3SingleCut(const v: TVector4Single): TVector3Single;
begin
  Move(v, Result, SizeOf(Result));
end;

function Vector3ByteCut(const v: TVector4Byte): TVector3Byte;
begin
  Move(v, Result, SizeOf(Result));
end;

function Normal3Single(const x, y: Single; const z: Single{=0}): TVector3Single;
begin
  result[0] := x; result[1] := y; result[2] := z;
  NormalizeTo1st3Singlev(@result);
end;

function Vector3SingleFromStr(const s: string): TVector3Single; {$I castlevectors_vector3fromstr.inc}
function Vector3DoubleFromStr(const s: string): TVector3Double; {$I castlevectors_vector3fromstr.inc}
function Vector3ExtendedFromStr(const s: string): TVector3Extended; {$I castlevectors_vector3fromstr.inc}

function Vector4SingleFromStr(const S: string): TVector4Single;
var
  SPosition: Integer;
begin
  SPosition := 1;
  Result[0] := StrToFloat(NextToken(S, SPosition));
  Result[1] := StrToFloat(NextToken(S, SPosition));
  Result[2] := StrToFloat(NextToken(S, SPosition));
  Result[3] := StrToFloat(NextToken(S, SPosition));
  if NextToken(s, SPosition) <> '' then
    raise EConvertError.Create('Expected end of data when reading vector from string');
end;

function Matrix2Double(const M: TMatrix2Single): TMatrix2Double;
begin
  Result[0][0] := M[0][0];
  Result[0][1] := M[0][1];

  Result[1][0] := M[1][0];
  Result[1][1] := M[1][1];
end;

function Matrix2Single(const M: TMatrix2Double): TMatrix2Single;
begin
  Result[0][0] := M[0][0];
  Result[0][1] := M[0][1];

  Result[1][0] := M[1][0];
  Result[1][1] := M[1][1];
end;

function Matrix3Double(const M: TMatrix3Single): TMatrix3Double;
begin
  Result[0][0] := M[0][0];
  Result[0][1] := M[0][1];
  Result[0][2] := M[0][2];

  Result[1][0] := M[1][0];
  Result[1][1] := M[1][1];
  Result[1][2] := M[1][2];

  Result[2][0] := M[2][0];
  Result[2][1] := M[2][1];
  Result[2][2] := M[2][2];
end;

function Matrix3Single(const M: TMatrix3Double): TMatrix3Single;
begin
  Result[0][0] := M[0][0];
  Result[0][1] := M[0][1];
  Result[0][2] := M[0][2];

  Result[1][0] := M[1][0];
  Result[1][1] := M[1][1];
  Result[1][2] := M[1][2];

  Result[2][0] := M[2][0];
  Result[2][1] := M[2][1];
  Result[2][2] := M[2][2];
end;

function Matrix4Double(const M: TMatrix4Single): TMatrix4Double;
begin
  Result[0][0] := M[0][0];
  Result[0][1] := M[0][1];
  Result[0][2] := M[0][2];
  Result[0][3] := M[0][3];

  Result[1][0] := M[1][0];
  Result[1][1] := M[1][1];
  Result[1][2] := M[1][2];
  Result[1][3] := M[1][3];

  Result[2][0] := M[2][0];
  Result[2][1] := M[2][1];
  Result[2][2] := M[2][2];
  Result[2][3] := M[2][3];

  Result[3][0] := M[3][0];
  Result[3][1] := M[3][1];
  Result[3][2] := M[3][2];
  Result[3][3] := M[3][3];
end;

function Matrix4Single(const M: TMatrix4Double): TMatrix4Single;
begin
  Result[0][0] := M[0][0];
  Result[0][1] := M[0][1];
  Result[0][2] := M[0][2];
  Result[0][3] := M[0][3];

  Result[1][0] := M[1][0];
  Result[1][1] := M[1][1];
  Result[1][2] := M[1][2];
  Result[1][3] := M[1][3];

  Result[2][0] := M[2][0];
  Result[2][1] := M[2][1];
  Result[2][2] := M[2][2];
  Result[2][3] := M[2][3];

  Result[3][0] := M[3][0];
  Result[3][1] := M[3][1];
  Result[3][2] := M[3][2];
  Result[3][3] := M[3][3];
end;

{ some math on vectors ------------------------------------------------------- }

function VectorsPerfectlyEqual(const V1, V2: TVector3Byte): boolean;
begin
  Result := (V1[0] = V2[0]) and
            (V1[1] = V2[1]) and
            (V1[2] = V2[2]);
end;

function Lerp(const a: Single; const V1, V2: TVector2Byte): TVector2Byte;
begin
  Result[0] := Clamped(Round(V1[0] + A * (V2[0] - V1[0])), 0, High(Byte));
  Result[1] := Clamped(Round(V1[1] + A * (V2[1] - V1[1])), 0, High(Byte));
end;

function Lerp(const a: Single; const V1, V2: TVector3Byte): TVector3Byte;
begin
  Result[0] := Clamped(Round(V1[0] + A * (V2[0] - V1[0])), 0, High(Byte));
  Result[1] := Clamped(Round(V1[1] + A * (V2[1] - V1[1])), 0, High(Byte));
  Result[2] := Clamped(Round(V1[2] + A * (V2[2] - V1[2])), 0, High(Byte));
end;

function Lerp(const a: Single; const V1, V2: TVector4Byte): TVector4Byte;
begin
  Result[0] := Clamped(Round(V1[0] + A * (V2[0] - V1[0])), 0, High(Byte));
  Result[1] := Clamped(Round(V1[1] + A * (V2[1] - V1[1])), 0, High(Byte));
  Result[2] := Clamped(Round(V1[2] + A * (V2[2] - V1[2])), 0, High(Byte));
  Result[3] := Clamped(Round(V1[3] + A * (V2[3] - V1[3])), 0, High(Byte));
end;

function Lerp(const a: Single; const V1, V2: TVector2Integer): TVector2Single;
begin
 result[0] := V1[0] + a*(V2[0]-V1[0]);
 result[1] := V1[1] + a*(V2[1]-V1[1]);
end;

function Lerp(const a: Single; const V1, V2: TVector2Single): TVector2Single;
begin
 result[0] := V1[0] + a*(V2[0]-V1[0]);
 result[1] := V1[1] + a*(V2[1]-V1[1]);
end;

function Lerp(const a: Single; const V1, V2: TVector3Single): TVector3Single;
begin
 result[0] := V1[0] + a*(V2[0]-V1[0]);
 result[1] := V1[1] + a*(V2[1]-V1[1]);
 result[2] := V1[2] + a*(V2[2]-V1[2]);
end;

function Lerp(const a: Single; const V1, V2: TVector4Single): TVector4Single;
begin
 result[0] := V1[0] + a*(V2[0]-V1[0]);
 result[1] := V1[1] + a*(V2[1]-V1[1]);
 result[2] := V1[2] + a*(V2[2]-V1[2]);
 result[3] := V1[3] + a*(V2[3]-V1[3]);
end;

function Lerp(const a: Double; const V1, V2: TVector2Double): TVector2Double;
begin
 result[0] := V1[0] + a*(V2[0]-V1[0]);
 result[1] := V1[1] + a*(V2[1]-V1[1]);
end;

function Lerp(const a: Double; const V1, V2: TVector3Double): TVector3Double;
begin
 result[0] := V1[0] + a*(V2[0]-V1[0]);
 result[1] := V1[1] + a*(V2[1]-V1[1]);
 result[2] := V1[2] + a*(V2[2]-V1[2]);
end;

function Lerp(const a: Double; const V1, V2: TVector4Double): TVector4Double;
begin
 result[0] := V1[0] + a*(V2[0]-V1[0]);
 result[1] := V1[1] + a*(V2[1]-V1[1]);
 result[2] := V1[2] + a*(V2[2]-V1[2]);
 result[3] := V1[3] + a*(V2[3]-V1[3]);
end;

function Vector_Init_Lerp(const A: Single; const V1, V2: TVector3_Single): TVector3_Single;
begin
  Result.Data[0] := V1.Data[0] + A * (V2.Data[0] - V1.Data[0]);
  Result.Data[1] := V1.Data[1] + A * (V2.Data[1] - V1.Data[1]);
  Result.Data[2] := V1.Data[2] + A * (V2.Data[2] - V1.Data[2]);
end;

function Vector_Init_Lerp(const A: Single; const V1, V2: TVector4_Single): TVector4_Single;
begin
  Result.Data[0] := V1.Data[0] + A * (V2.Data[0] - V1.Data[0]);
  Result.Data[1] := V1.Data[1] + A * (V2.Data[1] - V1.Data[1]);
  Result.Data[2] := V1.Data[2] + A * (V2.Data[2] - V1.Data[2]);
  Result.Data[3] := V1.Data[3] + A * (V2.Data[3] - V1.Data[3]);
end;

function Vector_Init_Lerp(const A: Double; const V1, V2: TVector3_Double): TVector3_Double;
begin
  Result.Data[0] := V1.Data[0] + A * (V2.Data[0] - V1.Data[0]);
  Result.Data[1] := V1.Data[1] + A * (V2.Data[1] - V1.Data[1]);
  Result.Data[2] := V1.Data[2] + A * (V2.Data[2] - V1.Data[2]);
end;

function Vector_Init_Lerp(const A: Double; const V1, V2: TVector4_Double): TVector4_Double;
begin
  Result.Data[0] := V1.Data[0] + A * (V2.Data[0] - V1.Data[0]);
  Result.Data[1] := V1.Data[1] + A * (V2.Data[1] - V1.Data[1]);
  Result.Data[2] := V1.Data[2] + A * (V2.Data[2] - V1.Data[2]);
  Result.Data[3] := V1.Data[3] + A * (V2.Data[3] - V1.Data[3]);
end;

procedure NormalizeTo1st3Singlev(vv: PVector3Single);
var
  Len: Single;
begin
  Len := Sqrt(
    Sqr(vv^[0]) +
    Sqr(vv^[1]) +
    Sqr(vv^[2]));
  if Len = 0 then exit;
  vv^[0] := vv^[0] / Len;
  vv^[1] := vv^[1] / Len;
  vv^[2] := vv^[2] / Len;
end;

procedure NormalizeTo1st3Bytev(vv: PVector3Byte);
var
  Len: integer;
begin
  Len := Round( Sqrt(
    Sqr(Integer(vv^[0])) +
    Sqr(Integer(vv^[1])) +
    Sqr(Integer(vv^[2]))) );
  if Len = 0 then exit;
  vv^[0] := vv^[0] div Len;
  vv^[1] := vv^[1] div Len;
  vv^[2] := vv^[2] div Len;
end;

function ZeroVector(const v: TVector4Cardinal): boolean;
begin
  result := IsMemCharFilled(v, SizeOf(v), #0);
end;

function VectorLen(const v: TVector3Byte): Single;
begin
  result := Sqrt(VectorLenSqr(v))
end;

function VectorLenSqr(const v: TVector3Byte): Integer;
begin
  result := Sqr(Integer(v[0])) + Sqr(Integer(v[1])) + Sqr(Integer(v[2]));
end;

function VectorToNiceStr(const v: array of Byte): string; overload;
var
  i: Integer;
begin
  result := '(';
  for i := 0 to High(v)-1 do result := result +IntToStr(v[i]) +', ';
  if High(v) >= 0 then result := result +IntToStr(v[High(v)]) +')';
end;

function VectorToNiceStr(const v: array of Integer): string; overload;
var
  i: Integer;
begin
  result := '(';
  for i := 0 to High(v)-1 do result := result +IntToStr(v[i]) +', ';
  if High(v) >= 0 then result := result +IntToStr(v[High(v)]) +')';
end;

{ math with matrices ---------------------------------------------------------- }

function VectorMultTransposedSameVector(const v: TVector3Single): TMatrix4Single;
begin
  (* Naive version:

  for i := 0 to 2 do { i = column, j = row }
    for j := 0 to 2 do
      result[i, j] := v[i]*v[j];

  Expanded and optimized version below. *)

  result[0, 0] := sqr(v[0]);
  result[1, 1] := sqr(v[1]);
  result[2, 2] := sqr(v[2]);

  result[0, 1] := v[0]*v[1]; result[1, 0] := result[0, 1];
  result[0, 2] := v[0]*v[2]; result[2, 0] := result[0, 2];
  result[1, 2] := v[1]*v[2]; result[2, 1] := result[1, 2];

  { Fill the last row and column like an identity matrix }
  Result[3, 0] := 0;
  Result[3, 1] := 0;
  Result[3, 2] := 0;

  Result[0, 3] := 0;
  Result[1, 3] := 0;
  Result[2, 3] := 0;

  Result[3, 3] := 1;
end;

function ScalingMatrix(const ScaleFactor: TVector3Single): TMatrix4Single;
begin
  result := IdentityMatrix4Single;
  result[0, 0] := ScaleFactor[0];
  result[1, 1] := ScaleFactor[1];
  result[2, 2] := ScaleFactor[2];
end;

procedure ScalingMatrices(const ScaleFactor: TVector3Single;
  InvertedMatrixIdentityIfNotExists: boolean;
  out Matrix, InvertedMatrix: TMatrix4Single);
begin
  Matrix := IdentityMatrix4Single;
  Matrix[0, 0] := ScaleFactor[0];
  Matrix[1, 1] := ScaleFactor[1];
  Matrix[2, 2] := ScaleFactor[2];

  InvertedMatrix := IdentityMatrix4Single;
  if not
    (InvertedMatrixIdentityIfNotExists and
      ( Zero(ScaleFactor[0]) or
        Zero(ScaleFactor[1]) or
        Zero(ScaleFactor[2]) )) then
  begin
    InvertedMatrix[0, 0] := 1 / ScaleFactor[0];
    InvertedMatrix[1, 1] := 1 / ScaleFactor[1];
    InvertedMatrix[2, 2] := 1 / ScaleFactor[2];
  end;
end;

function RotationMatrixRad(const AngleRad: Single;
  const Axis: TVector3Single): TMatrix4Single;
var
  NormAxis: TVector3Single;
  AngleSin, AngleCos: Float;
  S, C: Single;
begin
  NormAxis := Normalized(Axis);

  SinCos(AngleRad, AngleSin, AngleCos);
  { convert Float to Single once }
  S := AngleSin;
  C := AngleCos;

  Result := VectorMultTransposedSameVector(NormAxis);

  { We do not touch the last column and row of Result in the following code,
    treating Result like a 3x3 matrix. The last column and row are already Ok. }

  { Expanded Result := Result + (IdentityMatrix3Single - Result) * AngleCos; }
  Result[0, 0] += (1 - Result[0, 0]) * C;
  Result[1, 0] +=    - Result[1, 0]  * C;
  Result[2, 0] +=    - Result[2, 0]  * C;

  Result[0, 1] +=    - Result[0, 1]  * C;
  Result[1, 1] += (1 - Result[1, 1]) * C;
  Result[2, 1] +=    - Result[2, 1]  * C;

  Result[0, 2] +=    - Result[0, 2]  * C;
  Result[1, 2] +=    - Result[1, 2]  * C;
  Result[2, 2] += (1 - Result[2, 2]) * C;

  NormAxis[0] *= S;
  NormAxis[1] *= S;
  NormAxis[2] *= S;

  { Add M3 (from OpenGL matrix equations) }
  Result[1, 0] += -NormAxis[2];
  Result[2, 0] +=  NormAxis[1];

  Result[0, 1] +=  NormAxis[2];
  Result[2, 1] += -NormAxis[0];

  Result[0, 2] += -NormAxis[1];
  Result[1, 2] +=  NormAxis[0];
end;

procedure RotationMatricesRad(const AxisAngle: TVector4Single;
  out Matrix, InvertedMatrix: TMatrix4Single);
var
  Axis: TVector3Single absolute AxisAngle;
begin
  RotationMatricesRad(AxisAngle[3], Axis, Matrix, InvertedMatrix);
end;

procedure RotationMatricesRad(const AngleRad: Single;
  const Axis: TVector3Single;
  out Matrix, InvertedMatrix: TMatrix4Single);
var
  NormAxis: TVector3Single;
  V: Single;
  AngleSin, AngleCos: Float;
  S, C: Single;
begin
  NormAxis := Normalized(Axis);

  SinCos(AngleRad, AngleSin, AngleCos);
  { convert Float to Single once }
  S := AngleSin;
  C := AngleCos;

  Matrix := VectorMultTransposedSameVector(NormAxis);

  { We do not touch the last column and row of Matrix in the following code,
    treating Matrix like a 3x3 matrix. The last column and row are already Ok. }

  { Expanded Matrix := Matrix + (IdentityMatrix3Single - Matrix) * AngleCos; }
  Matrix[0, 0] += (1 - Matrix[0, 0]) * C;
  Matrix[1, 0] +=    - Matrix[1, 0]  * C;
  Matrix[2, 0] +=    - Matrix[2, 0]  * C;

  Matrix[0, 1] +=    - Matrix[0, 1]  * C;
  Matrix[1, 1] += (1 - Matrix[1, 1]) * C;
  Matrix[2, 1] +=    - Matrix[2, 1]  * C;

  Matrix[0, 2] +=    - Matrix[0, 2]  * C;
  Matrix[1, 2] +=    - Matrix[1, 2]  * C;
  Matrix[2, 2] += (1 - Matrix[2, 2]) * C;

  { Up to this point, calculated Matrix is also good for InvertedMatrix }
  InvertedMatrix := Matrix;

  NormAxis[0] *= S;
  NormAxis[1] *= S;
  NormAxis[2] *= S;

  { Now add M3 to Matrix, and subtract M3 from InvertedMatrix.
    That's because for the inverted rotation, AngleSin is negated,
    so the M3 should be subtracted. }
  V := -NormAxis[2]; Matrix[1, 0] += V; InvertedMatrix[1, 0] -= V;
  V :=  NormAxis[1]; Matrix[2, 0] += V; InvertedMatrix[2, 0] -= V;

  V :=  NormAxis[2]; Matrix[0, 1] += V; InvertedMatrix[0, 1] -= V;
  V := -NormAxis[0]; Matrix[2, 1] += V; InvertedMatrix[2, 1] -= V;

  V := -NormAxis[1]; Matrix[0, 2] += V; InvertedMatrix[0, 2] -= V;
  V :=  NormAxis[0]; Matrix[1, 2] += V; InvertedMatrix[1, 2] -= V;
end;

function RotationMatrixDeg(const AngleDeg: Single; const Axis: TVector3Single): TMatrix4Single;
begin
  result := RotationMatrixRad(DegToRad(AngleDeg), Axis);
end;

function RotationMatrixDeg(const AngleDeg: Single;
  const AxisX, AxisY, AxisZ: Single): TMatrix4Single;
begin
  result := RotationMatrixRad(DegToRad(AngleDeg), Vector3Single(AxisX, AxisY, AxisZ));
end;

function RotationMatrixRad(const AngleRad: Single;
  const AxisX, AxisY, AxisZ: Single): TMatrix4Single;
begin
  result := RotationMatrixRad(AngleRad, Vector3Single(AxisX, AxisY, AxisZ));
end;

function OrthoProjMatrix(const Left, Right, Bottom, Top, ZNear, ZFar: Single): TMatrix4Single;
var
  Width, Height, Depth: Single;
begin
  Width := Right - Left;
  Height := Top - Bottom;
  Depth := ZFar - ZNear;

  result := ZeroMatrix4Single;
  result[0, 0] := 2 / Width;
  result[1, 1] := 2 / Height;
  result[2, 2] := - 2 / Depth; { tutaj - bo nasze Z-y sa ujemne w glab ekranu }
  result[3, 0] := - (Right + Left) / Width;
  result[3, 1] := - (Top + Bottom) / Height;
  result[3, 2] := - (ZFar + ZNear) / Depth;
  result[3, 3] := 1;
end;

function Ortho2dProjMatrix(const Left, Right, Bottom, Top: Single): TMatrix4Single;
var
  Width, Height: Single;
begin
  {wersja prosta : result := OrthoProjMatrix(Left, Right, Bottom, Top, -1, 1);}
  {wersja zoptymalizowana :}
  Width := Right - Left;
  Height := Top - Bottom;
  {Depth := ZFar - ZNear = (1 - (-1)) = 2}

  Result := ZeroMatrix4Single;
  Result[0, 0] := 2 / Width;
  Result[1, 1] := 2 / Height;
  Result[2, 2] := {-2 / Depth = -2 / 2} -1;
  Result[3, 0] := - (Right + Left) / Width;
  Result[3, 1] := - (Top + Bottom) / Height;
  Result[3, 2] := {- (ZFar + ZNear) / Depth = 0 / 2} 0;
  Result[3, 3] := 1;
end;

function FrustumProjMatrix(const Left, Right, Bottom, Top, ZNear, ZFar: Single): TMatrix4Single;

{ This is of course based on "OpenGL Programming Guide",
  Appendix G "... and Transformation Matrices".
  ZFarInfinity version based on various sources, pretty much every
  article about shadow volumes mentions z-fail and this trick. }

var
  Width, Height, Depth, ZNear2: Single;
begin
  Width := Right - Left;
  Height := Top - Bottom;
  ZNear2 := ZNear * 2;

  Result := ZeroMatrix4Single;
  Result[0, 0] := ZNear2         / Width;
  Result[2, 0] := (Right + Left) / Width;
  Result[1, 1] := ZNear2         / Height;
  Result[2, 1] := (Top + Bottom) / Height;
  if ZFar <> ZFarInfinity then
  begin
    Depth := ZFar - ZNear;
    Result[2, 2] := - (ZFar + ZNear) / Depth;
    Result[3, 2] := - ZNear2 * ZFar  / Depth;
  end else
  begin
    Result[2, 2] := -1;
    Result[3, 2] := -ZNear2;
  end;
  Result[2, 3] := -1;
end;

function PerspectiveProjMatrixDeg(const FovyDeg, Aspect, ZNear, ZFar: Single): TMatrix4Single;
begin
  Result := PerspectiveProjMatrixRad(DegToRad(FovyDeg), Aspect, ZNear, ZFar);
end;

function PerspectiveProjMatrixRad(const FovyRad, Aspect, ZNear, ZFar: Single): TMatrix4Single;
{ Based on various sources, e.g. sample implementation of
  glu by SGI in Mesa3d sources. }
var
  Depth, ZNear2, Cotangent: Single;
begin
  ZNear2 := ZNear * 2;
  Cotangent := CastleCoTan(FovyRad / 2);

  Result := ZeroMatrix4Single;
  Result[0, 0] := Cotangent / Aspect;
  Result[1, 1] := Cotangent;
  if ZFar <> ZFarInfinity then
  begin
    Depth := ZFar - ZNear;
    Result[2, 2] := - (ZFar + ZNear) / Depth;
    Result[3, 2] := - ZNear2 * ZFar  / Depth;
  end else
  begin
    Result[2, 2] := -1;
    Result[3, 2] := -ZNear2;
  end;

  Result[2, 3] := -1;
end;

{ kod dla MatrixDet* przerobiony z vect.c z mgflib }

function MatrixDet4x4(const mat: TMatrix4Single): Single;
var
  a1, a2, a3, a4, b1, b2, b3, b4, c1, c2, c3, c4, d1, d2, d3, d4: Single;
begin
  a1 := mat[0][0]; b1 := mat[0][1];
  c1 := mat[0][2]; d1 := mat[0][3];

  a2 := mat[1][0]; b2 := mat[1][1];
  c2 := mat[1][2]; d2 := mat[1][3];

  a3 := mat[2][0]; b3 := mat[2][1];
  c3 := mat[2][2]; d3 := mat[2][3];

  a4 := mat[3][0]; b4 := mat[3][1];
  c4 := mat[3][2]; d4 := mat[3][3];

  result := a1 * MatrixDet3x3 (b2, b3, b4, c2, c3, c4, d2, d3, d4) -
            b1 * MatrixDet3x3 (a2, a3, a4, c2, c3, c4, d2, d3, d4) +
            c1 * MatrixDet3x3 (a2, a3, a4, b2, b3, b4, d2, d3, d4) -
            d1 * MatrixDet3x3 (a2, a3, a4, b2, b3, b4, c2, c3, c4);
end;


function MatrixDet3x3(const a1, a2, a3, b1, b2, b3, c1, c2, c3: Single): Single;
begin
  result := a1 * MatrixDet2x2 (b2, b3, c2, c3)
          - b1 * MatrixDet2x2 (a2, a3, c2, c3)
          + c1 * MatrixDet2x2 (a2, a3, b2, b3);
end;

function MatrixDet2x2(const a, b, c, d: Single): Single;
begin
  result := a * d - b * c;
end;

function TryMatrixInverse(const M: TMatrix2Single; out MInverse: TMatrix2Single): boolean;
var
  D: Double;
  MD, MDInverse: TMatrix2Double;
begin
  MD := Matrix2Double(M);
  D := MatrixDeterminant(MD);
  Result := not Zero(D);
  if Result then
  begin
    MDInverse := MatrixInverse(MD, D);
    MInverse := Matrix2Single(MDInverse);
  end;
end;

function TryMatrixInverse(const M: TMatrix2Double; out MInverse: TMatrix2Double): boolean;
var
  D: Double;
begin
  D := MatrixDeterminant(M);
  Result := not Zero(D);
  if Result then
    MInverse := MatrixInverse(M, D);
end;

function TryMatrixInverse(const M: TMatrix3Single; out MInverse: TMatrix3Single): boolean;
var
  D: Double;
  MD, MDInverse: TMatrix3Double;
begin
  MD := Matrix3Double(M);
  D := MatrixDeterminant(MD);
  Result := not Zero(D);
  if Result then
  begin
    MDInverse := MatrixInverse(MD, D);
    MInverse := Matrix3Single(MDInverse);
  end;
end;

function TryMatrixInverse(const M: TMatrix3Double; out MInverse: TMatrix3Double): boolean;
var
  D: Double;
begin
  D := MatrixDeterminant(M);
  Result := not Zero(D);
  if Result then
    MInverse := MatrixInverse(M, D);
end;

function TryMatrixInverse(const M: TMatrix4Single; out MInverse: TMatrix4Single): boolean;
var
  D: Double;
  MD, MDInverse: TMatrix4Double;
begin
  MD := Matrix4Double(M);
  D := MatrixDeterminant(MD);
  Result := not Zero(D);
  if Result then
  begin
    MDInverse := MatrixInverse(MD, D);
    MInverse := Matrix4Single(MDInverse);
  end;
end;

function TryMatrixInverse(const M: TMatrix4Double; out MInverse: TMatrix4Double): boolean;
var
  D: Double;
begin
  D := MatrixDeterminant(M);
  Result := not Zero(D);
  if Result then
    MInverse := MatrixInverse(M, D);
end;

function ModelViewToNormalMatrix(const M: TMatrix4Single): TMatrix3Single;
var
  D: Single;
  M3: TMatrix3Single;
begin
  Move(M[0], M3[0], SizeOf(TVector3Single));
  Move(M[1], M3[1], SizeOf(TVector3Single));
  Move(M[2], M3[2], SizeOf(TVector3Single));
  D := MatrixDeterminant(M3);
  if Zero(D) then
    { modelview not invertible, nothing good to do but we have to continue
      without errors, since this can happen with arbitrary 3D scenes. }
    Result := M3 else
  begin
    Result := MatrixInverse(M3, D);
    MatrixTransposeTo1st(Result);
  end;
end;

end.