/usr/src/castle-game-engine-5.2.0/base/castleutils_math.inc is in castle-game-engine-src 5.2.0-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 | {
Copyright 2001-2014 Michalis Kamburelis.
This file is part of "Castle Game Engine".
"Castle Game Engine" is free software; see the file COPYING.txt,
included in this distribution, for details about the copyright.
"Castle Game Engine" is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
----------------------------------------------------------------------------
}
{ Very basic operations on numbers.
Also things related to setting 8087 Control Word. }
{$ifdef read_interface}
{ Swap variables values.
@groupBegin }
procedure SwapValues(var a, b: Byte ); overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
procedure SwapValues(var a, b: Int64 ); overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
procedure SwapValues(var a, b: Integer ); overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
procedure SwapValues(var a, b: Cardinal); overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
procedure SwapValues(var a, b: Single ); overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
procedure SwapValues(var a, b: Double ); overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
{$ifndef EXTENDED_EQUALS_DOUBLE}
procedure SwapValues(var a, b: Extended); overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
{$endif}
procedure SwapValues(var a, b: char ); overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
procedure SwapValues(var a, b: Pointer ); overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
{ @groupEnd }
{ Make sure the Smaller value is <= than the Larger value,
by eventually swapping them.
@groupBegin }
procedure OrderUp(var Smaller, Larger: Int64 ); overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
procedure OrderUp(var Smaller, Larger: Integer ); overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
procedure OrderUp(var Smaller, Larger: Cardinal); overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
procedure OrderUp(var Smaller, Larger: Single ); overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
procedure OrderUp(var Smaller, Larger: Double ); overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
{$ifndef EXTENDED_EQUALS_DOUBLE}
procedure OrderUp(var Smaller, Larger: Extended); overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
{$endif}
{ @groupEnd }
{ Assign the smaller value from X, Y to Smaller variable, the other one
to Larger variable.
@groupBegin }
procedure OrderUp(x, y: Integer; var Smaller, Larger: Integer ); overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
procedure OrderUp(x, y: Cardinal; var Smaller, Larger: Cardinal); overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
procedure OrderUp(x, y: Single; var Smaller, Larger: Single ); overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
procedure OrderUp(x, y: Double; var Smaller, Larger: Double ); overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
{$ifndef EXTENDED_EQUALS_DOUBLE}
procedure OrderUp(x, y: Extended; var Smaller, Larger: Extended); overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
{$endif}
{ @groupEnd }
{ Return minimum / maximum from 2 / 3 items.
@groupBegin }
function min(const a, b: Int64 ): Int64 ; overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
function min(const a, b: integer ): integer ; overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
function min(const a, b: cardinal): cardinal; overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
function min(const a, b: Single ): Single ; overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
function min(const a, b: Double ): Double ; overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
{$ifndef EXTENDED_EQUALS_DOUBLE}
function min(const a, b: Extended): Extended; overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
{$endif}
function min(const a, b, c: Int64 ): Int64 ; overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
function min(const a, b, c: integer ): integer ; overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
function min(const a, b, c: cardinal): cardinal; overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
function min(const a, b, c: Single ): Single ; overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
function min(const a, b, c: Double ): Double ; overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
{$ifndef EXTENDED_EQUALS_DOUBLE}
function min(const a, b, c: Extended): Extended; overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
{$endif}
function max(const a, b: Int64 ): Int64 ; overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
function max(const a, b: integer ): integer ; overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
function max(const a, b: cardinal): cardinal; overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
function max(const a, b: Single ): Single ; overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
function max(const a, b: Double ): Double ; overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
{$ifndef EXTENDED_EQUALS_DOUBLE}
function max(const a, b: Extended): Extended; overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
{$endif}
function max(const a, b, c: Int64 ): Int64 ; overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
function max(const a, b, c: integer ): integer ; overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
function max(const a, b, c: cardinal): cardinal; overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
function max(const a, b, c: Single ): Single ; overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
function max(const a, b, c: Double ): Double ; overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
{$ifndef EXTENDED_EQUALS_DOUBLE}
function max(const a, b, c: Extended): Extended; overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
{$endif}
{ @groupEnd }
{ Update value of A to be a minimum of A, B.
Works like @code(A := Min(A, B)), but is marginally faster,
since you don't have to do anything when A is already smaller.
@groupBegin }
procedure MinTo1st(var a: Int64 ; const b: Int64 ); overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
procedure MinTo1st(var a: Integer ; const b: Integer ); overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
procedure MinTo1st(var a: Cardinal; const b: Cardinal); overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
procedure MinTo1st(var a: Single ; const b: Single ); overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
procedure MinTo1st(var a: Double ; const b: Double ); overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
{$ifndef EXTENDED_EQUALS_DOUBLE}
procedure MinTo1st(var a: Extended; const b: Extended); overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
{$endif}
{ @groupEnd }
{ Update value of A to be a maximum of A, B.
Works like @code(A := Max(A, B)), but is marginally faster,
since you don't have to do anything when A is already larger.
@groupBegin }
procedure MaxTo1st(var a: Int64 ; const b: Int64 ); overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
procedure MaxTo1st(var a: Integer ; const b: Integer ); overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
procedure MaxTo1st(var a: Cardinal; const b: Cardinal); overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
procedure MaxTo1st(var a: Single ; const b: Single ); overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
procedure MaxTo1st(var a: Double ; const b: Double ); overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
{$ifndef EXTENDED_EQUALS_DOUBLE}
procedure MaxTo1st(var a: Extended; const b: Extended); overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
{$endif}
{ @groupEnd }
{ Index (0, 1 or 2) of maximum / minimum of 3 numbers.
@groupBegin }
function IndexMax(const a0, a1, a2: Double): Integer; overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
function IndexMin(const a0, a1, a2: Double): Integer; overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
{ @groupEnd }
function Between(const a, vBegin, vEnd: Int64 ): boolean; overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
function Between(const a, vBegin, vEnd: integer ): boolean; overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
function Between(const a, vBegin, vEnd: cardinal): boolean; overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
function Between(const a, vBegin, vEnd: Float ): boolean; overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
function Between(const a, vBegin, vEnd: Char ): boolean; overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
function RoundClamp255(const A: Single): Byte; {$ifdef SUPPORTS_INLINE} inline; {$endif}
function Clamped(const a, vBegin, vEnd: Int64 ): Int64 ; overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
function Clamped(const a, vBegin, vEnd: integer ): integer ; overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
function Clamped(const a, vBegin, vEnd: cardinal): cardinal; overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
function Clamped(const a, vBegin, vEnd: Single ): Single ; overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
function Clamped(const a, vBegin, vEnd: Double ): Double ; overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
{$ifndef EXTENDED_EQUALS_DOUBLE}
function Clamped(const a, vBegin, vEnd: Extended): Extended; overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
{$endif}
procedure Clamp(var a: Int64 ; const vBegin, vEnd: Int64 ); overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
procedure Clamp(var a: integer ; const vBegin, vEnd: integer ); overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
procedure Clamp(var a: cardinal; const vBegin, vEnd: cardinal); overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
procedure Clamp(var a: Single ; const vBegin, vEnd: Single ); overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
procedure Clamp(var a: Double ; const vBegin, vEnd: Double ); overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
{$ifndef EXTENDED_EQUALS_DOUBLE}
procedure Clamp(var a: Extended; const vBegin, vEnd: Extended); overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
{$endif}
{ 3D coordinates (0, 1 or 2) except the given coordinate.
If Coord = 0, then it sets First = 1 and Second = 2.
And so on --- for each Coord value, we set First and Second to the remaining
indexes. }
procedure RestOf3dCoords(coord: integer; out first, second: integer);
{ Increase Value by Change, nicely wrapping in [0..MaxValue], accepting
also negative Change. The final value is always in the [0..MaxValue] range,
even when initial Value was outside. }
function ChangeIntCycle(value, change, maxValue: integer): integer;
{ Linear interpolation between two values. Returns @code((1-A)*L + A*H).
@groupBegin }
function Lerp(const a: Single; const l, h: Integer): Single; overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
function Lerp(const a: Single; const l, h: Cardinal): Single; overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
function Lerp(const a, l, h: Single): Single; overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
function Lerp(const a: Double; const l, h: Integer): Double; overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
function Lerp(const a: Double; const l, h: Cardinal): Double; overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
function Lerp(const a, l, h: Double): Double; overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
{ @groupEnd }
const
enatural = 2.71828182845905;
sqrt2 = 1.4142135623730950488016887242097;
Sqrt3 = 1.7320508075688773;
{ Half of Pi. Taken from FPC sources, file rtl/inc/genmath.inc }
HalfPi = 1.57079632679489661923;
{ Smallest multiple of Multiplicator that is still >= Value. }
function RoundUpToMultiply(value, multiplicator: Integer): Integer;
{ Largest power of 2 still <= Value.
When Value = 0 returns 0. }
function BiggestPowerOf2(Value: Cardinal): Cardinal;
{ Exponent of the largest power of 2 that it's still <= Value.
Like BiggestPowerOf2, except that this returns which power of 2 it is,
while BiggestPowerOf2 just returns exactly this power.
Bigget2Exponent(0) = -1. }
function Biggest2Exponent(Value: Cardinal): integer;
{ Smallest exponent such that 2^this exponent is >= Value.
Smallest2Exponent(0) = -1 (this is different situation than
Smallest2Exponent(1), when we return 0. }
function Smallest2Exponent(Value: Cardinal): Integer;
{ Smallest power of 2 that is >= Value.
Like Smallest2Exponent, except here we return 2^Smallest2Exponent(Value).
Returns 0 when Value = 0. }
function Smallest2Power(Value: Cardinal): Cardinal;
{ Check is Value an exact power of 2. }
function IsPowerOf2(Value: Cardinal): boolean;
function DivRoundUp(Value, Divider: Cardinal): Cardinal; overload;
function DivRoundUp(Value, Divider: Integer): Integer; overload;
{ Linearly map value from a one range to another.
Consider how SourceVal is placed in the [SourceBegin .. SourceEnd]
(it may be outside of this range, it all still works OK).
It has some distance to range start (SourceBegin), and some distance
to range end (SourceEnd).
We want to find another number, that is identically placed in another range
[DestBegin .. DestEnd].
@orderedList(
@item(Such that @italic(Distance(SourceVal,
SourceBegin) / Distance(SourceVal, SourceEnd) =
Distance(Result, DestBegin) / Distance(Result, DestEnd)).)
@item(And such that it's on the same side of the range.
So if SourceVal is beyond SourceEnd (that is,
@code(SourceBegin < SourceEnd < SourceVal) or
@code(SourceBegin > SourceEnd > SourceVal)) then the result
must be similarly beyond DestEnd.
As you can see, this works regardless if one, or both,
of the ranges increase (range end is larger than range begin).)
)
MapRangeClamped additionally at the end clamps the result to be within
[destBegin, destEnd] range (or [destEnd, destBegin] range,
in case destEnd < destBegin).
@groupBegin }
function MapRange(sourceVal, sourceBegin, sourceEnd, destBegin, destEnd: integer): float; overload;
function MapRange(sourceVal, sourceBegin, sourceEnd, destBegin, destEnd: float ): float; overload;
function MapRangeClamped(sourceVal, sourceBegin, sourceEnd, destBegin, destEnd: integer): float; overload;
function MapRangeClamped(sourceVal, sourceBegin, sourceEnd, destBegin, destEnd: float ): float; overload;
{ @groupEnd }
{ Random float value in the given range.
Make sure RangeBegin < RangeEnd. }
function RandomFloatRange(const RangeBegin, RangeEnd: Float): Float;
{ Angle between a 2D line segments and OX axis. Angle 0 means that Y1 = Y2
and X2 > X1, then the angle increases as you rotate CCW. In radians. }
function AngleRadPointToPoint(x1, y1, x2, y2: Single): Single;
{ Calculate power Base to Exponent, knowing both arguments (and so,
also the result) are >= 0. }
function NatNatPower(Base, Exponent: Cardinal): Cardinal;
{ Random -1 or +1. }
function RandomPlusMinus: integer;
{$ifdef FPC}
{ }
function ArcCot(x: Float): Float;
{$endif FPC}
{ Trivial factorial with Int64 result. Beware, the results very quickly
stop to fit inside Int64 range. }
function SmallFactorial(n: Integer): Int64;
{ Better DivMod version, in case Dividend may be < 0.
This fixes lack of DivMod with negative Remainder (for FPC at least
older than 2.2.4, see fpc-devel thread "Math.DivMod results should be signed"
on 2006-03-21, http://www.mail-archive.com/fpc-devel@lists.freepascal.org/msg04565.html).
And workarounds faulty DivMod behavior with FPC 2.4.0,
see http://bugs.freepascal.org/view.php?id=15453 }
procedure CastleDivMod(Dividend: Integer; Divisor: Word;
out Result, Remainder: SmallInt);
{ Like DivMod (return result of integer division and a remainder),
but always return Remainder >= 0.
This is useful in case when Dividend < 0.
Standard DivMod (and Pascal div and mod operators) return then
Result rounded toward zero, and Remainder may be < 0.
This procedure will return Result rounded toward negative infinity,
and Remainder will always be >= 0. }
procedure DivUnsignedMod(Dividend: Integer; Divisor: Word;
out Result: Smallint; out Remainder: Word);
{ Returns Ceil(A / B), but calculated faster and more precisely
(without floating-point help). }
function CeilDiv(const A, B: Cardinal): Cardinal;
{ Calculate integer division and modulo on two float arguments.
Requires that A >= 0 and B > 0, and the Result is always >= 0.
Tries to secure against floating point imprecision.
It's always guaranteed that Remainder >= 0 and <= B (and usually should be
< B, but this cannot be guaranteed). }
procedure FloatDivMod(const A, B: Double;
out DivResult: Int64; out Remainder: Double);
{ Calculate float modulo of division on two float arguments.
Works for any A (lesser than zero too). Assumes that B > 0.
Tries to secure against floating point imprecision.
It's always guaranteed that Remainder >= 0 and <= B (and usually should be
< B, but this cannot be guaranteed). }
function FloatModulo(const A, B: Double): Double;
procedure MinMax(const x0, x1, x2: Double; out min, max: Double); overload;
procedure MinMax(const x0, x1, x2: Single; out min, max: Single); overload;
{ Our version of CoTan, to workaround
http://www.freepascal.org/mantis/view.php?id=9944. }
function CastleCoTan(const Value: Float): Float;
{ Floor from Sqrt(Value). }
function IntSqrt(const Value: Cardinal): Cardinal;
{ Hermite interpolation between two values.
Just like GLSL smoothstep:
http://www.khronos.org/opengles/sdk/docs/manglsl/xhtml/smoothstep.xml }
function SmoothStep(const Edge0, Edge1, X: Single): Single;
{$endif read_interface}
{$ifdef read_implementation}
procedure SwapValues(var a, b: Byte); var Tmp: Byte; begin Tmp := A; A := B; B := Tmp; end;
procedure SwapValues(var a, b: Int64); var Tmp: Int64; begin Tmp := A; A := B; B := Tmp; end;
procedure SwapValues(var a, b: Integer); var Tmp: integer; begin Tmp := A; A := B; B := Tmp; end;
procedure SwapValues(var a, b: Cardinal); var Tmp: Cardinal; begin Tmp := A; A := B; B := Tmp; end;
procedure SwapValues(var a, b: Single); var Tmp: Single; begin Tmp := A; A := B; B := Tmp; end;
procedure SwapValues(var a, b: Double); var Tmp: Double; begin Tmp := A; A := B; B := Tmp; end;
{$ifndef EXTENDED_EQUALS_DOUBLE}
procedure SwapValues(var a, b: Extended); var Tmp: Extended; begin Tmp := A; A := B; B := Tmp; end;
{$endif}
procedure SwapValues(var a, b: char); var Tmp: char; begin Tmp := A; A := B; B := Tmp; end;
procedure SwapValues(var a, b: Pointer); var Tmp: Pointer; begin Tmp := A; A := B; B := Tmp; end;
procedure OrderUp(var Smaller, Larger: Int64); begin if Smaller > Larger then SwapValues(Smaller, Larger); end;
procedure OrderUp(var Smaller, Larger: Integer); begin if Smaller > Larger then SwapValues(Smaller, Larger); end;
procedure OrderUp(var Smaller, Larger: Cardinal); begin if Smaller > Larger then SwapValues(Smaller, Larger); end;
procedure OrderUp(var Smaller, Larger: Single); begin if Smaller > Larger then SwapValues(Smaller, Larger); end;
procedure OrderUp(var Smaller, Larger: Double); begin if Smaller > Larger then SwapValues(Smaller, Larger); end;
{$ifndef EXTENDED_EQUALS_DOUBLE}
procedure OrderUp(var Smaller, Larger: Extended); begin if Smaller > Larger then SwapValues(Smaller, Larger); end;
{$endif}
procedure OrderUp(x, y: Integer; var Smaller, Larger: Integer); begin if X <= Y then begin Smaller := X; Larger := Y end else begin Smaller := Y; Larger := X end; end;
procedure OrderUp(x, y: Cardinal; var Smaller, Larger: Cardinal); begin if X <= Y then begin Smaller := X; Larger := Y end else begin Smaller := Y; Larger := X end; end;
procedure OrderUp(x, y: Single; var Smaller, Larger: Single); begin if X <= Y then begin Smaller := X; Larger := Y end else begin Smaller := Y; Larger := X end; end;
procedure OrderUp(x, y: Double; var Smaller, Larger: Double); begin if X <= Y then begin Smaller := X; Larger := Y end else begin Smaller := Y; Larger := X end; end;
{$ifndef EXTENDED_EQUALS_DOUBLE}
procedure OrderUp(x, y: Extended; var Smaller, Larger: Extended); begin if X <= Y then begin Smaller := X; Larger := Y end else begin Smaller := Y; Larger := X end; end;
{$endif}
function Min(const a, b: Int64): Int64; begin if A < B then Result := A else Result := B end;
function Min(const a, b: integer): integer; begin if A < B then Result := A else Result := B end;
function Min(const a, b: cardinal): cardinal; begin if A < B then Result := A else Result := B end;
function Min(const a, b: Single): Single; begin if A < B then Result := A else Result := B end;
function Min(const a, b: Double): Double; begin if A < B then Result := A else Result := B end;
{$ifndef EXTENDED_EQUALS_DOUBLE}
function Min(const a, b: Extended): Extended; begin if A < B then Result := A else Result := B end;
{$endif}
function Max(const a, b: Int64): Int64; begin if A > B then Result := A else Result := B end;
function Max(const a, b: integer): integer; begin if A > B then Result := A else Result := B end;
function Max(const a, b: cardinal): cardinal; begin if A > B then Result := A else Result := B end;
function Max(const a, b: Single): Single; begin if A > B then Result := A else Result := B end;
function Max(const a, b: Double): Double; begin if A > B then Result := A else Result := B end;
{$ifndef EXTENDED_EQUALS_DOUBLE}
function Max(const a, b: Extended): Extended; begin if A > B then Result := A else Result := B end;
{$endif}
function Min(const a, b, c: Int64): Int64; begin if A < B then begin if C < A then result := C else result := A end else begin if C < B then result := C else result := B end; end;
function Min(const a, b, c: integer): integer; begin if A < B then begin if C < A then result := C else result := A end else begin if C < B then result := C else result := B end; end;
function Min(const a, b, c: cardinal): cardinal; begin if A < B then begin if C < A then result := C else result := A end else begin if C < B then result := C else result := B end; end;
function Min(const a, b, c: Single): Single; begin if A < B then begin if C < A then result := C else result := A end else begin if C < B then result := C else result := B end; end;
function Min(const a, b, c: Double): Double; begin if A < B then begin if C < A then result := C else result := A end else begin if C < B then result := C else result := B end; end;
{$ifndef EXTENDED_EQUALS_DOUBLE}
function Min(const a, b, c: Extended): Extended; begin if A < B then begin if C < A then result := C else result := A end else begin if C < B then result := C else result := B end; end;
{$endif}
function Max(const a, b, c: Int64): Int64; begin if A > B then begin if C > A then Result := C else Result := A end else begin if C > B then Result := C else Result := B end; end;
function Max(const a, b, c: integer): integer; begin if A > B then begin if C > A then Result := C else Result := A end else begin if C > B then Result := C else Result := B end; end;
function Max(const a, b, c: cardinal): cardinal; begin if A > B then begin if C > A then Result := C else Result := A end else begin if C > B then Result := C else Result := B end; end;
function Max(const a, b, c: Single): Single; begin if A > B then begin if C > A then Result := C else Result := A end else begin if C > B then Result := C else Result := B end; end;
function Max(const a, b, c: Double): Double; begin if A > B then begin if C > A then Result := C else Result := A end else begin if C > B then Result := C else Result := B end; end;
{$ifndef EXTENDED_EQUALS_DOUBLE}
function Max(const a, b, c: Extended): Extended; begin if A > B then begin if C > A then Result := C else Result := A end else begin if C > B then Result := C else Result := B end; end;
{$endif}
procedure MinTo1st(var a: Int64 ; const b: Int64 ); begin if B < A then A := B end;
procedure MinTo1st(var a: Integer ; const b: Integer ); begin if B < A then A := B end;
procedure MinTo1st(var a: Cardinal; const b: Cardinal); begin if B < A then A := B end;
procedure MinTo1st(var a: Single ; const b: Single ); begin if B < A then A := B end;
procedure MinTo1st(var a: Double ; const b: Double ); begin if B < A then A := B end;
{$ifndef EXTENDED_EQUALS_DOUBLE}
procedure MinTo1st(var a: Extended; const b: Extended); begin if B < A then A := B end;
{$endif}
procedure MaxTo1st(var a: Int64 ; const b: Int64 ); begin if B > A then A := B end;
procedure MaxTo1st(var a: Integer ; const b: Integer ); begin if B > A then A := B end;
procedure MaxTo1st(var a: Cardinal; const b: Cardinal); begin if B > A then A := B end;
procedure MaxTo1st(var a: Single ; const b: Single ); begin if B > A then A := B end;
procedure MaxTo1st(var a: Double ; const b: Double ); begin if B > A then A := B end;
{$ifndef EXTENDED_EQUALS_DOUBLE}
procedure MaxTo1st(var a: Extended; const b: Extended); begin if B > A then A := B end;
{$endif}
function IndexMax(const a0, a1, a2: Double): Integer;
begin
if a0 > a1 then
begin
if a2 > a0 then result := 2 else result := 0
end else
begin
if a2 > a1 then result := 2 else result := 1
end;
end;
function IndexMin(const a0, a1, a2: Double): Integer;
begin
if a0 < a1 then
begin
if a2 < a0 then result := 2 else result := 0
end else
begin
if a2 < a1 then result := 2 else result := 1
end;
end;
function Between(const a, vBegin, vEnd: Int64): boolean; begin Result := (vBegin <= a) and (a <= vend) end;
function Between(const a, vBegin, vEnd: integer): boolean; begin Result := (vBegin <= a) and (a <= vend) end;
function Between(const a, vBegin, vEnd: cardinal): boolean; begin Result := (vBegin <= a) and (a <= vend) end;
function Between(const a, vBegin, vEnd: Float): boolean; begin Result := (vBegin <= a) and (a <= vend) end;
function Between(const a, vBegin, vEnd: Char): boolean; begin Result := (vBegin <= a) and (a <= vend) end;
function RoundClamp255(const A: Single): Byte;
var
I: Integer;
begin
I := Round(A);
if I < Low(Byte) then
Exit(Low(Byte)) else
if I > High(Byte) then
Exit(High(Byte)) else
Exit(I);
end;
function Clamped(const a, vBegin, vEnd: Int64): Int64;
begin
if a < vBegin then result := vBegin else
if a > vEnd then result := vEnd else
result := a;
end;
function Clamped(const a, vBegin, vEnd: integer): integer;
begin
if a < vBegin then result := vBegin else
if a > vEnd then result := vEnd else
result := a;
end;
function Clamped(const a, vBegin, vEnd: cardinal): cardinal;
begin
if a < vBegin then result := vBegin else
if a > vEnd then result := vEnd else
result := a;
end;
function Clamped(const a, vBegin, vEnd: Single): Single;
begin
if a < vBegin then result := vBegin else
if a > vEnd then result := vEnd else
result := a;
end;
function Clamped(const a, vBegin, vEnd: Double): Double;
begin
if a < vBegin then result := vBegin else
if a > vEnd then result := vEnd else
result := a;
end;
{$ifndef EXTENDED_EQUALS_DOUBLE}
function Clamped(const a, vBegin, vEnd: Extended): Extended;
begin
if a < vBegin then result := vBegin else
if a > vEnd then result := vEnd else
result := a;
end;
{$endif}
procedure Clamp(var a: Int64; const vBegin, vEnd: Int64);
begin
if a < vBegin then a := vBegin else
if a > vEnd then a := vEnd;
end;
procedure Clamp(var a: integer; const vBegin, vEnd: integer);
begin
if a < vBegin then a := vBegin else
if a > vEnd then a := vEnd;
end;
procedure Clamp(var a: cardinal; const vBegin, vEnd: cardinal);
begin
if a < vBegin then a := vBegin else
if a > vEnd then a := vEnd;
end;
procedure Clamp(var a: Single; const vBegin, vEnd: Single);
begin
if a < vBegin then a := vBegin else
if a > vEnd then a := vEnd;
end;
procedure Clamp(var a: Double; const vBegin, vEnd: Double);
begin
if a < vBegin then a := vBegin else
if a > vEnd then a := vEnd;
end;
{$ifndef EXTENDED_EQUALS_DOUBLE}
procedure Clamp(var a: Extended; const vBegin, vEnd: Extended);
begin
if a < vBegin then a := vBegin else
if a > vEnd then a := vEnd;
end;
{$endif}
procedure RestOf3dCoords(coord: integer; out first, second: integer);
begin
if coord = 0 then first := 1 else first := 0;
if coord = 2 then second := 1 else second := 2;
end;
function ChangeIntCycle(value, change, maxValue: integer): integer;
begin
Inc(maxValue);
result := (value+change) mod maxValue;
{teraz wynik jest w zakresie -maxValue..maxValue gdzie maxValue to jest to
oryginalne maxValue jakie dostalismy}
if result < 0 then result := result+maxValue;
end;
{ Lerp : l + (h-l) * a = l + a*h - a*l = (1-a) *l + a*h }
function Lerp(const a: Single; const l, h: Integer): Single; begin result := l + (h-l) * a; end;
function Lerp(const a: Single; const l, h: Cardinal): Single; begin result := l + (h-l) * a; end;
function Lerp(const a, l, h: Single): Single; begin result := l + (h-l) * a; end;
function Lerp(const a: Double; const l, h: Integer): Double; begin result := l + (h-l) * a; end;
function Lerp(const a: Double; const l, h: Cardinal): Double; begin result := l + (h-l) * a; end;
function Lerp(const a, l, h: Double): Double; begin result := l + (h-l) * a; end;
function RoundUpToMultiply(value, multiplicator: Integer): Integer;
begin
if value mod multiplicator = 0 then
result := value else
result := ((value div multiplicator)+1)*multiplicator;
end;
function BiggestPowerOf2(Value: Cardinal): Cardinal;
begin
{ szukamy najwiekszej potegi dwojki <= Value.
To proste na bitach : znajdz pierwszy od lewej (najstarszy) bit rowny 1.
Reszte bitow na prawo wyzeruj i zwroc calosc jako result. }
result := Cardinal(1 shl (SizeOf(Cardinal)*8-1));
while (result <> 0) and ((result and Value) = 0) do result := result shr 1;
end;
function Biggest2Exponent(Value: Cardinal): integer;
begin
result := -1;
while Value <> 0 do
begin Inc(result); Value := Value shr 1 end;
end;
function Smallest2Exponent(Value: Cardinal): Integer;
begin
if Value = 0 then begin result := -1; Exit end;
for result := SizeOf(Value)*8-1 downto 0 do
if ((LongWord(1) shl result) and Value) <> 0 then Break;
{ Wiemy ze Value <> 0 wiec zawsze z powyzszego for'a wyjdziemy breakiem.
Teraz result okresla pozycje najbardziej znaczacej 1-ki w liczbie Value.
Jezeli wszystkie pozostale bity sa rowne 0 (czyli Value = 1 shl result)
to result juz jest dobry. Wpp. zeby 2^result bylo >= Value musimy
zwiekszyc result o 1.}
if Value <> Cardinal(1) shl result then Inc(result);
end;
function Smallest2Power(Value: Cardinal): Cardinal;
var Exp: Integer;
begin
Exp := Smallest2Exponent(Value);
if Exp = -1 then
result := 0 else
result := 1 shl Exp;
end;
function IsPowerOf2(Value: Cardinal): boolean;
var i: Cardinal;
begin
i := Cardinal(1 shl (SizeOf(Cardinal)*8-1));
while (i <> 0) do
begin
if i = Value then begin result := true; exit end;
i := i shr 1;
end;
result := false;
end;
function DivRoundUp(Value, Divider: Cardinal): Cardinal;
begin
Result := (Value + Divider - 1) div Divider;
end;
function DivRoundUp(Value, Divider: Integer): Integer;
begin
Result := (Value + Divider - 1) div Divider;
end;
function MapRange(sourceVal, sourceBegin, sourceEnd, destBegin, destEnd: integer): float;
begin
{ Map range SourceBegin .. SourceEnd to 0..1, and express SourceVal there. }
Result := (sourceVal - sourceBegin) / (sourceEnd - sourceBegin);
{ Map range 0..1 to DestBegin .. DestEnd }
Result := Result * (destEnd - destBegin) + destBegin;
end;
function MapRange(sourceVal, sourceBegin, sourceEnd, destBegin, destEnd: float ): float;
begin
{ Map range SourceBegin .. SourceEnd to 0..1, and express SourceVal there. }
Result := (sourceVal - sourceBegin) / (sourceEnd - sourceBegin);
{ Map range 0..1 to DestBegin .. DestEnd }
Result := Result * (destEnd - destBegin) + destBegin;
end;
function MapRangeClamped(sourceVal, sourceBegin, sourceEnd, destBegin, destEnd: integer): float;
begin
Result := MapRange(sourceVal, sourceBegin, sourceEnd, destBegin, destEnd);
if destEnd < destBegin then
SwapValues(destBegin, destEnd);
Result := Clamped(Result, destBegin, destEnd);
end;
function MapRangeClamped(sourceVal, sourceBegin, sourceEnd, destBegin, destEnd: float ): float;
begin
Result := MapRange(sourceVal, sourceBegin, sourceEnd, destBegin, destEnd);
if destEnd < destBegin then
SwapValues(destBegin, destEnd);
Result := Clamped(Result, destBegin, destEnd);
end;
function RandomFloatRange(const RangeBegin, RangeEnd: Float): Float;
begin
result := Random*(RangeEnd-RangeBegin) + RangeBegin;
end;
function AngleRadPointToPoint(x1, y1, x2, y2: Single): Single;
begin
if y2 > y1 then
begin
if SameValue(x1, x2) then
result := Pi/2 else
begin
result := ArcTan( (y2-y1) / (x2-x1) );
if result < 0 then result := result +Pi;
end;
end else
if y1 > y2 then
begin
if SameValue(x1, x2) then
result := Pi*3/2 else
begin
result := ArcTan( (y2-y1) / (x2-x1) );
if result < 0 then result := result +Pi;
result := result +Pi;
end;
end else
if x2 > x1 then result := 0 else result := Pi;
end;
function NatNatPower(Base, Exponent: Cardinal): Cardinal;
var i : Cardinal;
begin
result := 1;
i := Exponent;
while i > 0 do
begin
while not Odd(i) do
begin
i := i shr 1;
base := sqr(base);
end;
i := i-1;
result := result*base;
end;
end;
function RandomPlusMinus: integer;
const PlusMinus: array[0..1]of integer = (-1,+1);
begin
result := PlusMinus[Random(2)];
end;
{$ifdef FPC}
function ArcCot(x: Float): Float;
begin
result := ArcTan(1/x);
end;
{$endif FPC}
function SmallFactorial(n: Integer): Int64;
begin
Result := 1;
while n > 1 do begin Result := Result * n; Dec(n) end;
end;
procedure CastleDivMod(Dividend: Integer; Divisor: Word;
out Result, Remainder: SmallInt);
{$ifdef VER2_4_0}
{ Workaround http://bugs.freepascal.org/view.php?id=15453.
DivMod overload with SmallInt params already exist in Math unit,
so this is not our concern. }
begin
if Dividend < 0 then
begin
{ Use DivMod with >=0 dividend }
DivMod(-Dividend, Divisor, Result, Remainder);
{ The documented behavior of Pascal's div/mod operators and DivMod
on negative dividends is to return Result closer to zero and
a negative Remainder. Which means that we can just negate both
Result and Remainder, and all it's Ok. }
Result := -Result;
Remainder := -Remainder;
end else
DivMod(Dividend, Divisor, Result, Remainder);
{$else}
{ Workaround lack of DivMod overload with signed (SmallInt) params.
This is needed only for old FPC (at least older than 2.2.4). }
var
UnsignedResult: Word absolute Result;
UnsignedRemainder: Word absolute Remainder;
begin
DivMod(Dividend, Divisor, UnsignedResult, UnsignedRemainder);
{$endif}
end;
procedure DivUnsignedMod(Dividend: Integer; Divisor: Word;
out Result: Smallint; out Remainder: Word);
var
SignedRemainder: SmallInt;
begin
CastleDivMod(Dividend, Divisor, Result, SignedRemainder);
if SignedRemainder < 0 then
begin
Dec(Result);
Remainder := Divisor + SignedRemainder;
end else
Remainder := SignedRemainder;
end;
function CeilDiv(const A, B: Cardinal): Cardinal;
var
DivResult, ModResult: Cardinal;
begin
{ I would like to use DivMod, but it's limited to 16-bit values.
DivMod(A, B, DivResult, ModResult); }
DivResult := A div B;
ModResult := A mod B;
if ModResult = 0 then
Result := DivResult else
Result := DivResult + 1;
end;
procedure FloatDivMod(const A, B: Double;
out DivResult: Int64; out Remainder: Double);
begin
DivResult := Trunc(A / B);
Remainder := A - B * DivResult;
{ Now the tricks to make this (somewhat) more numerically stable,
i.e. resistant to tricky cases without unprecise floating-point
calculation. }
if Remainder < 0 then
Remainder := 0 else
if Remainder >= B then
begin
Remainder -= B;
Inc(DivResult);
{ Mathematically, we could do above two lines in a loop
"while Remainder >= A", but this could loop (practically)
forever for very small (or zero) B.
Instead we just clamp Remainder to [0, B] once again, the hard way. }
Clamp(Remainder, 0, B);
end;
end;
function FloatModulo(const A, B: Double): Double;
var
DivResult: Int64;
begin
if A < 0 then
begin
{ FloatDivMod requires that 1st param be >= 0. }
FloatDivMod(-A, B, DivResult, Result);
Result := Clamped(B - Result, 0, B);
end else
FloatDivMod(A, B, DivResult, Result);
end;
procedure MinMax(const x0, x1, x2: Double; out min, max: Double);
begin
min := x0;
max := x0;
if x1 < min then min := x1 else
if x1 > max then max := x1;
if x2 < min then min := x2 else
if x2 > max then max := x2;
end;
procedure MinMax(const x0, x1, x2: Single; out min, max: Single);
begin
min := x0;
max := x0;
if x1 < min then min := x1 else
if x1 > max then max := x1;
if x2 < min then min := x2 else
if x2 > max then max := x2;
end;
function CastleCoTan(const Value: Float): Float;
var
ASin, ACos: Float;
begin
SinCos(Value, ASin, ACos);
Result := Acos / ASin;
end;
function IntSqrt(const Value: Cardinal): Cardinal;
{ See http://en.wikipedia.org/wiki/Integer_square_root.
This isn't nice impl, as it uses floating-point numbers to calculate
integer function... However, doing it on ints, doesn't make this
process terminate nicely. Hacks like in primes.cpp from
http://freespace.virgin.net/hugo.elias/models/m_perlin.htm
don't calculate floor sqrt properly (e.g. for 8 return 3).
So for now, calculate on floats. Autotests check it's Ok.
Actually, when calculating on floats, I can just use Trunc(Sqrt())...
So this is quite pointless exercise. }
(*
var
Old, New: Float;
begin
if Value = 0 then Exit(0); { to not fail by division by zero }
New := Value;
repeat
Old := New;
New := (Old + Value / Old) / 2;
until Abs(Old - New) < 0.5;
Result := Trunc(New);
end;
*)
begin
Result := Trunc(Sqrt(Value));
end;
function SmoothStep(const Edge0, Edge1, X: Single): Single;
begin
Result := Clamped((X - Edge0) / (Edge1 - Edge0), 0.0, 1.0);
Result := Result * Result * (3.0 - 2.0 * Result);
end;
{$endif read_implementation}
|