This file is indexed.

/usr/share/cain/gui/PlotTimeSeries.py is in cain 1.10+dfsg-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
"""Implements plotting of time series data."""

# If we are running the unit tests.
import sys
if __name__ == '__main__':
    sys.path.insert(1, '..')

import wx
import numpy
from statistics import mean, meanStdDev
from PlotTimeSeriesGrid import PlotTimeSeriesGrid
from PlotOptions import PlotOptions
from state.TrajectoryCalculator import TrajectoryCalculator

from pylab import close, errorbar, figure, plot, draw

def closeAll():
    close('all')

class Configuration(wx.Panel):
    """Pick the species or reactions to plot. If a trajectory calculator is
    specified, then the trajectories record every reaction event. Otherwise
    the trajectories record the state at frames."""
    
    def __init__(self, parent, state, figureNumber):
        wx.Panel.__init__(self, parent, -1)
        self.state = state
        self.figureNumber = figureNumber
        self.outputKeys = []

        sizer = wx.BoxSizer(wx.VERTICAL)

        # Output choice.
        self.outputChoice = wx.Choice(self, size=(400,-1), choices=[])
        self.Bind(wx.EVT_CHOICE, self.onOutput, self.outputChoice)
        sizer.Add(self.outputChoice, 0, wx.EXPAND, 5)

        # Species, cumulative reactions, or binned reactions.
        horizontal = wx.BoxSizer(wx.HORIZONTAL)
        self.species = wx.RadioButton(self, -1, 'Species', style=wx.RB_GROUP)
        self.species.SetValue(True)
        self.Bind(wx.EVT_RADIOBUTTON, self.onSpecies, self.species)
        horizontal.Add(self.species, 0, wx.ALL, 5)
        self.cumulativeReactions = wx.RadioButton(self, -1,
                                                  'Cumulative Reactions')
        self.Bind(wx.EVT_RADIOBUTTON, self.onCumulativeReactions,
                  self.cumulativeReactions)
        horizontal.Add(self.cumulativeReactions, 0, wx.ALL, 5)
        self.binnedReactions = wx.RadioButton(self, -1,
                                              'Binned Reactions')
        self.Bind(wx.EVT_RADIOBUTTON, self.onBinnedReactions,
                  self.binnedReactions)
        horizontal.Add(self.binnedReactions, 0, wx.ALL, 5)
        sizer.Add(horizontal, 0, wx.ALL, 5)

        # Trajectories, mean, or standard deviation.
        horizontal = wx.BoxSizer(wx.HORIZONTAL)
        # Trajectories.
        self.trajectories = wx.RadioButton(self, -1, 'Trajectories',
                                           style=wx.RB_GROUP)
        self.trajectories.SetValue(True)
        self.Bind(wx.EVT_RADIOBUTTON, self.onTrajectories, self.trajectories)
        horizontal.Add(self.trajectories, 0, wx.ALL, 5)
        # Mean.
        self.mean = wx.RadioButton(self, -1, 'Mean')
        self.Bind(wx.EVT_RADIOBUTTON, self.onMean, self.mean)
        horizontal.Add(self.mean, 0, wx.ALL, 5)
        # Standard deviation.
        self.stdDev = wx.RadioButton(self, -1, 'Std. Dev.')
        self.Bind(wx.EVT_RADIOBUTTON, self.onStdDev, self.stdDev)
        horizontal.Add(self.stdDev, 0, wx.ALL, 5)
        sizer.Add(horizontal, 0, wx.ALL, 5)

        # The grid of species or reactions.
        sizer.Add(wx.StaticText(self, -1,
                                'Left or right click on the column labels to '\
                                'manipulate all cells in the column.'))
        self.grid = PlotTimeSeriesGrid(self)
        sizer.Add(self.grid, 1, wx.EXPAND)
        sizer.Add(wx.StaticLine(self), 0, wx.EXPAND|wx.ALL, 5)

        # The plot options.
        self.options = PlotOptions(self)
        sizer.Add(self.options, 0, wx.EXPAND)

        # Plot buttons.
        buttons = wx.BoxSizer(wx.HORIZONTAL)
        b = wx.Button(self, -1, 'Plot')
        self.Bind(wx.EVT_BUTTON, self.onPlot, b)
        buttons.Add(b, 0, wx.ALIGN_RIGHT, 5)
        b = wx.Button(self, -1, 'New plot')
        self.Bind(wx.EVT_BUTTON, self.onNewPlot, b)
        buttons.Add(b, 0, wx.ALIGN_RIGHT, 5)
        sizer.Add(buttons, 0, wx.ALIGN_RIGHT | wx.ALIGN_TOP, 5)

        self.SetSizer(sizer)
        self.refresh()
        #self.Layout()
        self.Fit()

    def onOutput(self, event):
        self.update()
        event.Skip()

    def onTrajectories(self, event):
        self.grid.hideStdDev()
        event.Skip()

    def onMean(self, event):
        self.grid.showStdDev()
        event.Skip()

    def onStdDev(self, event):
        self.grid.hideStdDev()
        event.Skip()

    def onSpecies(self, event):
        self.update()
        event.Skip()

    def onCumulativeReactions(self, event):
        self.update()
        event.Skip()

    def onBinnedReactions(self, event):
        self.update()
        event.Skip()

    def update(self):
        """Update the window for a new output selection. This is called when
        the user selects a new output. It is also called through refresh() 
        when the list of outputs changes."""
        index = self.outputChoice.GetSelection()
        if index == wx.NOT_FOUND:
            # Clear the grid.
            self.grid.setIdentifiers([])
            return
        # Check that the simulation output has not disappeared.
        if not self.outputKeys[index] in self.state.output:
            self.refresh()
            return

        # Update the radio buttons.
        output = self.state.output[self.outputKeys[index]]
        name = output.__class__.__name__
        if name == 'TimeSeriesFrames':
            self.binnedReactions.Enable()
            self.mean.Enable()
            self.stdDev.Enable()
        else:
            # You can't plot binned reaction counts for all-reaction style 
            # trajectories.
            if self.binnedReactions.GetValue():
                self.species.SetValue(True)
            self.binnedReactions.Disable()
            # You can only plot trajectories, not statistics, for all-reaction
            # stlye trajectories.
            self.trajectories.SetValue(True)
            self.mean.Disable()
            self.stdDev.Disable()
        # Update the grid.
        modelId = self.outputKeys[index][0]
        model = self.state.models[modelId]
        if self.species.GetValue():
            identifiers = [model.speciesIdentifiers[_i]
                           for _i in output.recordedSpecies]
        else:
            identifiers = [model.reactions[_i].id
                           for _i in output.recordedReactions]
        self.grid.setIdentifiers(identifiers)

        # Show or hide the standard deviation field.
        if self.mean.GetValue():
            self.grid.showStdDev()
        else:
            self.grid.hideStdDev()


    def refresh(self):
        """This is called when the list of outputs changes in the
        application."""
        # Get the time series outputs.
        self.outputKeys = []
        for key in self.state.output:
            if self.state.output[key].__class__.__name__ in\
                    ('TimeSeriesFrames', 'TimeSeriesAllReactions'):
                self.outputKeys.append(key)
        outputChoices = [x[0] + ', ' + x[1] for x in self.outputKeys]
        selection = self.outputChoice.GetSelection()
        self.outputChoice.Clear()
        for choice in outputChoices:
            self.outputChoice.Append(choice)
        # Set the selection.
        if selection != wx.NOT_FOUND and\
                selection < self.outputChoice.GetCount():
            self.outputChoice.SetSelection(selection)
        else:
            self.outputChoice.SetSelection(0)
        # Updated the species and frame for this output.
        self.update()

    def onPlot(self, event):
        size = self.options.getCustomFigureSize()
        figure(num=self.figureNumber(), figsize=size)
        # Draw the plot.
        self.plot()

    def onNewPlot(self, event):
        # Start a new figure.
        self.figureNumber += 1
        size = self.options.getCustomFigureSize()
        figure(self.figureNumber(), figsize=size)
        # Draw the plot.
        self.plot()

    def _showLegendAndLabels(self, indices):
        # Legend.
        if self.options.legend.IsChecked():
            # Make empty plots to register the labels for the legend.
            for index in indices:
                if self.grid.useMarkers(index):
                    plot([], [], label=self.grid.getLegendLabel(index),
                         **self.grid.getLineAndMarkerStyles(index))
                else:
                    plot([], [], label=self.grid.getLegendLabel(index),
                         **self.grid.getLineStyles(index))
        self.options.showLegendAndLabels()

    def plot(self):
        index = self.outputChoice.GetSelection()
        if index == wx.NOT_FOUND:
            wx.MessageBox('There is no time series simulation output.',
                          'Error!', style=wx.OK|wx.ICON_EXCLAMATION)
            return
        # Save any values being edited in the grid.
        self.grid.saveEditControlValue()
        # Choose the appropriate kind of plot.
        output = self.state.output[self.outputKeys[index]]
        name = output.__class__.__name__
        if name == 'TimeSeriesFrames':
            self.plotFrames(output)
        elif name == 'TimeSeriesAllReactions':
            self.plotAllReactions(output, index)
        else:
            assert(False)

    def plotFrames(self, output):
        # Record the kind of plot to generate.
        isSpeciesSelected = self.species.GetValue()
        isCumulativeReactionsSelected = self.cumulativeReactions.GetValue()
        #isBinnedReactionsSelected = self.binnedReactions.GetValue()
        isTrajectoriesSelected = self.trajectories.GetValue()
        isMeanSelected = self.mean.GetValue()
        #isStdDevSelected = self.stdDev.GetValue()

        # Check that at least one row has been selected.
        if not self.grid.areAnyItemsSelected():
            wx.MessageBox('No rows are selected.', 'Error.')
            return
        # The items to plot.
        indices = self.grid.getCheckedItems()
        if not indices:
            return
        if isTrajectoriesSelected:
            # Plot each trajectory.
            for i in range(len(output.populations)):
                for index in indices:
                    if isSpeciesSelected:
                        p = output.populations[i][:, index]
                        times = output.frameTimes
                    elif isCumulativeReactionsSelected:
                        p = output.reactionCounts[i][:, index]
                        times = output.frameTimes
                    else: # Binned reaction counts.
                        p = output.reactionCounts[i][1:, index] - \
                            output.reactionCounts[i][:-1, index]
                        # Midpoints.
                        times = 0.5 * (output.frameTimes[0:-1] + 
                                       output.frameTimes[1:])
                    if self.grid.useMarkers(index):
                        plot(times, p,
                             **self.grid.getLineAndMarkerStyles(index))
                    else:
                        plot(times, p, **self.grid.getLineStyles(index))
        elif isMeanSelected:
            # Plot the mean and optionally the standard deviation.
            for index in indices:
                if isSpeciesSelected:
                    data = [x[:, index] for x in output.populations]
                    times = output.frameTimes
                elif isCumulativeReactionsSelected:
                    data = [x[:, index] for x in output.reactionCounts]
                    times = output.frameTimes
                else: # Binned reaction counts.
                    data = [x[1:, index] - x[:-1, index] for x in 
                            output.reactionCounts]
                    # Midpoints.
                    times = output.frameTimes
                    times = 0.5 * (times[0:-1] + times[1:])
                # If the standard deviation box is checked.
                if self.grid.GetCellValue(index, 1):
                    y, yerr = meanStdDev(data)
                else:
                    y = mean(data)
                    yerr = None
                if self.grid.useMarkers(index):
                    errorbar(times, y, yerr = yerr, 
                             **self.grid.getLineAndMarkerStyles(index))
                else:
                    errorbar(times, y, yerr=yerr,
                             **self.grid.getLineStyles(index))
        else: # isStdDevSelected
            # Plot the standard deviation.
            for index in indices:
                if isSpeciesSelected:
                    data = [x[:, index] for x in output.populations]
                    times = output.frameTimes
                elif isCumulativeReactionsSelected:
                    data = [x[:, index] for x in output.reactionCounts]
                    times = output.frameTimes
                else: # Binned reaction counts.
                    data = [x[1:, index] - x[:-1, index] for x in 
                            output.reactionCounts]
                    # Midpoints.
                    times = output.frameTimes
                    times = 0.5 * (times[0:-1] + times[1:])
                # If the standard deviation box is checked.
                y, yerr = meanStdDev(data)
                if self.grid.useMarkers(index):
                    plot(times, yerr, **self.grid.getLineAndMarkerStyles(index))
                else:
                    plot(times, yerr, **self.grid.getLineStyles(index))
        self._showLegendAndLabels(indices)
        self.options.setLimits()
        draw()

    def plotAllReactions(self, output, outputIndex):
        # Create the trajectory calculator.
        modelId = self.outputKeys[outputIndex][0]
        model = self.state.models[modelId]
        tc = TrajectoryCalculator(model)

        # Record the kind of plot to generate.
        isSpeciesSelected = self.species.GetValue()
        #isCumulativeReactionsSelected = self.cumulativeReactions.GetValue()

        # Check that at least one row has been selected.
        if not self.grid.areAnyItemsSelected():
            wx.MessageBox('No rows are selected.', 'Error.')
            return
        # The items to plot.
        indices = self.grid.getCheckedItems()
        if not indices:
            return
        # Plot each trajectory.
        for i in range(len(output.indices)):
            # Don't include the start or end times.
            times, populations, reactionCounts =\
                tc.makeFramesAtReactionEvents(output, i, False, False)
            # The times for plotting.
            t = numpy.zeros(2 * len(times) + 2)
            t[0] = output.initialTime
            for n in range(len(times)):
                t[2*n+1] = times[n]
                t[2*n+2] = times[n]
            t[-1] = output.finalTime
            # For each selected item.
            for index in indices:
                # Array for the a species population or reaction count.
                x = numpy.zeros(2 * len(times) + 2)
                if isSpeciesSelected:
                    # Slice to get a species population array.
                    p = populations[:, index]
                    # Initial population.
                    x[0] = output.initialPopulations[i][index]
                    for n in range(len(p)):
                        # Population before reaction.
                        x[2*n+1] = x[2*n]
                        # Population after reaction.
                        x[2*n+2] = p[n]
                    # Final population.
                    x[-1] = x[-2]
                else:
                    # Slice to get a species population array.
                    p = reactionCounts[:, index]
                    # Initial reaction count.
                    x[0] = 0
                    for n in range(len(p)):
                        # Count before reaction.
                        x[2*n+1] = x[2*n]
                        # Count after reaction.
                        x[2*n+2] = p[n]
                    # Final Count.
                    x[-1] = x[-2]
                if self.grid.useMarkers(index):
                    plot(t, x, **self.grid.getLineAndMarkerStyles(index))
                else:
                    plot(t, x, **self.grid.getLineStyles(index))
        self._showLegendAndLabels(indices)
        self.options.setLimits()
        draw()

        
def main():
    from FigureNumber import FigureNumber
    from state.TimeSeriesFrames import TimeSeriesFrames
    from state.TimeSeriesAllReactions import TimeSeriesAllReactions
    from state.State import State
    from state.Model import Model
    from state.Reaction import Reaction
    from state.Species import Species
    from state.SpeciesReference import SpeciesReference

    class TestConfiguration(wx.Frame):
        """Test the Configuration panel."""

        def __init__(self, parent, title, state, figureNumber):
            wx.Frame.__init__(self, parent, -1, title)
            panel = Configuration(self, state, figureNumber)

            bestSize = self.GetBestSize()
            # Add twenty to avoid an unecessary horizontal scroll bar.
            size = (bestSize[0] + 80, min(bestSize[1], 700))
            self.SetSize(size)
            self.Fit()

    app = wx.PySimpleApp()
    figureNumber = FigureNumber()

    # Many species.
    s = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i',
         'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r',
         's', 't', 'u', 'v', 'w', 'x', 'y', 'z']
    r = ['r1', 'r2', 'r3', 'r4']
    t = TimeSeriesFrames()
    t.setFrameTimes([0, 1, 2])
    t.recordedSpecies = range(len(s))
    t.recordedReactions = range(len(r))
    t.appendPopulations([1]*len(s) + [2]*len(s) + [3]*len(s))
    t.appendReactionCounts([0]*len(r) + [2]*len(r) + [4]*len(r))
    t.appendPopulations([2]*len(s) + [3]*len(s) + [5]*len(s))
    t.appendReactionCounts([0]*len(r) + [3]*len(r) + [6]*len(r))
    state = State()
    # Set the species identifiers.
    modelId = state.insertNewModel()
    model = state.models[modelId]
    model.id = modelId
    model.speciesIdentifiers = s
    # Dummy reactions.
    model.reactions = [Reaction(_id, '', [], [], True, '0') for _id in r]
    # Store the trajectories.
    state.output[(modelId, 'method')] = t
    TestConfiguration(None, 'Populations.', state, figureNumber).Show()
    
    s = ['a', 'b', 'c']
    r = ['r1', 'r2', 'r3', 'r4']
    t = TimeSeriesFrames()
    t.setFrameTimes([0, 1, 2])
    t.recordedSpecies = range(len(s))
    t.recordedReactions = range(len(r))
    t.appendPopulations([1]*len(s) + [2]*len(s) + [3]*len(s))
    t.appendReactionCounts([0]*len(r) + [2]*len(r) + [4]*len(r))
    t.appendPopulations([2]*len(s) + [3]*len(s) + [5]*len(s))
    t.appendReactionCounts([0]*len(r) + [3]*len(r) + [6]*len(r))
    state = State()
    # Set the species identifiers.
    modelId = state.insertNewModel()
    model = state.models[modelId]
    model.id = modelId
    model.speciesIdentifiers = s
    # Dummy reactions.
    model.reactions = [Reaction(_id, '', [], [], True, '0') for _id in r]
    # Store the trajectories.
    state.output[(modelId, 'method')] = t
    TestConfiguration(None, 'Populations.', state, figureNumber).Show()

    initialTime = 0.
    finalTime = 1.
    t = TimeSeriesAllReactions([0, 1], [0, 1], initialTime, finalTime)
    t.appendIndices([0])
    t.appendTimes([0.5])
    t.appendInitialPopulations([13, 17])
    state = State()
    # Set the species identifiers.
    modelId = state.insertNewModel()
    model = state.models[modelId]
    model.id = modelId
    model.speciesIdentifiers.append('s1')
    model.species['s1'] = Species('C1', 'species 1', '13')
    model.speciesIdentifiers.append('s2')
    model.species['s2'] = Species('C1', 'species 2', '17')
    model.reactions.append(
        Reaction('r1', 'reaction 1', [SpeciesReference('s1')], 
                 [SpeciesReference('s2')], True, '1.5'))
    model.reactions.append(
        Reaction('r2', 'reaction 2', 
                 [SpeciesReference('s1'), SpeciesReference('s2')], 
                 [SpeciesReference('s1', 2)], True, '2.5'))
    # Store the trajectories.
    state.output[(modelId, 'method')] = t
    TestConfiguration(None, 'Populations.', state, figureNumber).Show()

    app.MainLoop()

if __name__ == '__main__':
    main()