This file is indexed.

/usr/share/games/bouncy/astar.py is in bouncy 0.6.20071104-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
# taken from http://arainyday.se/projects/python/AStar/ with thanks!

# Revamped to use much saner data structures

import sets, time
import collide, objects, euclid

class Path:
    def __init__(self,nodes):
        self.nodes = nodes

    def getNodes(self): 
        return self.nodes    

    def __repr__(self):
        return repr([n.l for n in self.nodes])

    def __nonzero__(self):
        return bool(self.nodes)

class Node:
    parent = None
    score = 0
    def __init__(self, l):
        self.l = l           # where is this node located

    def __eq__(self, n):
        return n.l == self.l

    def __repr__(self):
        return '<Node 0x%X %r>'%(id(self), self.l)

class AStar:

    def __init__(self,maphandler):
        self.mh = maphandler
                
    def _getBestOpenNode(self):
        bestNode = None        
        for nid in self.on:
            n = self.on[nid]
            if not bestNode:
                bestNode = n
            elif n.score <= bestNode.score:
                bestNode = n
        return bestNode

    def _tracePath(self, n):
        nodes = []
        p = n.parent
        nodes.append(n)       
        while  p.parent is not None:
            nodes.append(p)
            p = p.parent
        return Path(nodes)

    def _handleNode(self, node, end):        
        del self.on[node.l]
        self.c.add(node.l)

        for n in self.mh.getAdjacentNodes(node, end, self.c):
            if n.l == end:
                # reached the destination
                return n
            elif n.l in self.on:
                # already in open, check if better score
                on = self.on[n.l]
                if n.score < on.score:
                    self.on[n.l] = n
            else:
                # new node, add to open list
                self.on[n.l] = n

        return None

    def findPath(self, fromlocation, tolocation):
        #s = time.time()
        ret = self._findPath(fromlocation, tolocation)
        #e = time.time()
        #print 'findPath took', e - s
        return ret

    def _findPath(self, fromlocation, tolocation):
        self.on = {}
        self.c = sets.Set()

        end = tolocation
        fnode = self.mh.getNode(fromlocation)
        self.on[fnode.l] = fnode
        nextNode = fnode 
               
        while nextNode is not None: 
            finish = self._handleNode(nextNode, end)
            if finish:                
                return self._tracePath(finish)
            nextNode = self._getBestOpenNode()

        return None
      

class AStarGrid:
    resolution = 4
    IMPASSABLE = 'X'
    PASSABLE = '.'
    def __init__(self):
        self.m = {}

    def toCoords(self, x, y):
        r = self.resolution
        return (int(x - x%r), int(y - y%r))

    def findPath(self, fromlocation, tolocation):
        return AStar(self).findPath(fromlocation, tolocation)

    def add(self, elem):
        box = elem.hitbox
        if not isinstance(box, collide.AABox):
            return
        x = int(box.xmin)
        self.max_y = 0
        r = self.resolution

        for x in range(int(box.xmin - box.xmin%r),
                int(box.xmax - box.xmax % r) + r, r):
            for z in range(int(box.zmin - box.zmin%r),
                    int(box.zmax - box.zmax % r) + r, r):
                c = (x, z)
                #cost = box.dy
                #if isinstance(elem, objects.Fence): cost = self.IMPASSABLE
                #else: cost = self.PASSABLE
                cost = self.IMPASSABLE
                self.max_y = max(self.max_y, cost)
                if c in self.m:
                    self.m[c] = max(self.m[c], cost)
                else:
                    self.m[c] = cost

    def addFarmer(self, farmer):
        ''' fills up the A* map from the farmer to indicate places the
        farmer can go on the map '''
        self._addFarmer(*self.toCoords(farmer.position.x,
            farmer.position.y))
    def _addFarmer(self, x, y):
        self.m[(x,y)] = self.PASSABLE
        r = self.resolution
        for xr in (-r, 0, r):
            for yr in (-r, 0, r):
                if xr == yr == 0: continue
                xm = xr + x
                ym = yr + y
                if self.m.get((xm, ym)) is not None: continue
                self.m[(xm, ym)] = self.PASSABLE
                self._addFarmer(xm, ym)

    def getNode(self, location):
        d = self.m.get(location)
        if d is self.IMPASSABLE:
            return None
        return Node(location)

    def getAdjacentNodes(self, curnode, dest, closed):
        result = []
        cx, cy = curnode.l
        dx, dy = dest
        r = self.resolution
        for xm in (-r, 0, r):
            for ym in (-r, 0, r):
                if xm == ym == 0: continue
                x = cx + xm
                y = cy + ym
                if (x, y) in closed: continue
                n = self._handleNode(x, y, curnode, dx, dy)
                if n: result.append(n)
        return result

    def _handleNode(self, x, y, fromnode, destx, desty):
        n = self.getNode((x, y))
        if n is None: return None
        dx = max(x, destx) - min(x, destx)
        dy = max(y, desty) - min(y, desty)
        n.score = dx + dy
        n.parent = fromnode
        return n

    SEARCH = [
        (resolution, 0),
        (0, resolution),
        (-resolution, 0),
        (0, -resolution),
        (resolution, resolution),
        (-resolution, resolution),
        (-resolution, -resolution),
        (resolution, -resolution),
    ]
    def findClosest(self, sx, sy):
        x, y = self.toCoords(sx, sy)
        sx -= self.resolution / 2
        sy -= self.resolution / 2
        to_search = sets.Set([(x,y)])
        searched = sets.Set()
        while 1:
            if len(searched) == len(self.m):
                raise ValueError, "didn't find a closest point?!?"
            distances = []
            for t in list(to_search):
                if t in searched: continue
                x, y = t
                if self.m.get((x,y)) is self.PASSABLE:
                    distances.append(((sx-x)**2 + (sy-y)**2, (x, y)))
                searched.add(t)
                to_search.remove(t)
                for xm, ym in self.SEARCH:
                    xm += x
                    ym += y
                    t = (xm, ym)
                    if self.m.get(t) is self.PASSABLE:
                        distances.append(((sx-xm)**2 + (sy-ym)**2, t))
                    to_search.add(t)
            if distances:
                distances.sort()
                return distances[0][1]

    def __str__(self):
        xmin = 99; xmax = 0
        ymin = 99; ymax = 0
        for x,y in self.m.keys():
            xmin = min(xmin, x); xmax = max(xmax, x)
            ymin = min(ymin, y); ymax = max(ymax, y)
        print 'X %s -> %s;   Y %s -> %s'%(xmin, xmax, ymin, ymax)
        l = []
        for y in range(ymin, ymax + 4, 4):
            r = ['%3d '%y]
            for x in range(xmin, xmax + 4, 4):
                r.append(self.m.get((x,y)) or ' ')
            l.append(''.join(r))
        return '\n'.join(l)