/usr/share/doc/avrdude/avrdude-html/Introduction.html is in avrdude-doc 6.2-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 | <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Created by GNU Texinfo 6.0, http://www.gnu.org/software/texinfo/ -->
<head>
<title>AVRDUDE: Introduction</title>
<meta name="description" content="AVRDUDE: Introduction">
<meta name="keywords" content="AVRDUDE: Introduction">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<link href="index.html#Top" rel="start" title="Top">
<link href="index.html#SEC_Contents" rel="contents" title="Table of Contents">
<link href="index.html#Top" rel="up" title="Top">
<link href="History.html#History" rel="next" title="History">
<link href="index.html#Top" rel="prev" title="Top">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.indentedblock {margin-right: 0em}
blockquote.smallindentedblock {margin-right: 0em; font-size: smaller}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smalllisp {margin-left: 3.2em}
kbd {font-style: oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nocodebreak {white-space: nowrap}
span.nolinebreak {white-space: nowrap}
span.roman {font-family: serif; font-weight: normal}
span.sansserif {font-family: sans-serif; font-weight: normal}
ul.no-bullet {list-style: none}
-->
</style>
</head>
<body lang="en">
<a name="Introduction"></a>
<div class="header">
<p>
Next: <a href="Command-Line-Options.html#Command-Line-Options" accesskey="n" rel="next">Command Line Options</a>, Previous: <a href="index.html#Top" accesskey="p" rel="prev">Top</a>, Up: <a href="index.html#Top" accesskey="u" rel="up">Top</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>]</p>
</div>
<hr>
<a name="Introduction-1"></a>
<h2 class="chapter">1 Introduction</h2>
<a name="index-introduction"></a>
<p>AVRDUDE - AVR Downloader Uploader - is a program for downloading and
uploading the on-chip memories of Atmel’s AVR microcontrollers. It can
program the Flash and EEPROM, and where supported by the serial
programming protocol, it can program fuse and lock bits. AVRDUDE also
supplies a direct instruction mode allowing one to issue any programming
instruction to the AVR chip regardless of whether AVRDUDE implements
that specific feature of a particular chip.
</p>
<p>AVRDUDE can be used effectively via the command line to read or write
all chip memory types (eeprom, flash, fuse bits, lock bits, signature
bytes) or via an interactive (terminal) mode. Using AVRDUDE from the
command line works well for programming the entire memory of the chip
from the contents of a file, while interactive mode is useful for
exploring memory contents, modifying individual bytes of eeprom,
programming fuse/lock bits, etc.
</p>
<p>AVRDUDE supports the following basic programmer types: Atmel’s STK500,
Atmel’s AVRISP and AVRISP mkII devices,
Atmel’s STK600,
Atmel’s JTAG ICE (the original one, mkII, and 3, the latter two also in ISP mode), appnote
avr910, appnote avr109 (including the AVR Butterfly),
serial bit-bang adapters,
and the PPI (parallel port interface). PPI represents a class
of simple programmers where the programming lines are directly
connected to the PC parallel port. Several pin configurations exist
for several variations of the PPI programmers, and AVRDUDE can be be
configured to work with them by either specifying the appropriate
programmer on the command line or by creating a new entry in its
configuration file. All that’s usually required for a new entry is to
tell AVRDUDE which pins to use for each programming function.
</p>
<p>A number of equally simple bit-bang programming adapters that connect
to a serial port are supported as well, among them the popular
Ponyprog serial adapter, and the DASA and DASA3 adapters that used to
be supported by uisp(1). Note that these adapters are meant to be
attached to a physical serial port. Connecting to a serial port
emulated on top of USB is likely to not work at all, or to work
abysmally slow.
</p>
<p>If you happen to have a Linux system with at least 4 hardware GPIOs
available (like almost all embedded Linux boards) you can do without
any additional hardware - just connect them to the MOSI, MISO, RESET
and SCK pins on the AVR and use the linuxgpio programmer type. It bitbangs
the lines using the Linux sysfs GPIO interface. Of course, care should
be taken about voltage level compatibility. Also, although not strictrly
required, it is strongly advisable to protect the GPIO pins from
overcurrent situations in some way. The simplest would be to just put
some resistors in series or better yet use a 3-state buffer driver like
the 74HC244. Have a look at http://kolev.info/avrdude-linuxgpio for a more
detailed tutorial about using this programmer type.
</p>
<p>The STK500, JTAG ICE, avr910, and avr109/butterfly use the serial port to communicate with the PC.
The STK600, JTAG ICE mkII/3, AVRISP mkII, USBasp, avrftdi (and derivitives), and USBtinyISP
programmers communicate through the USB, using <code>libusb</code> as a
platform abstraction layer.
The avrftdi adds support for the FT2232C/D, FT2232H, and FT4232H devices. These all use
the MPSSE mode, which has a specific pin mapping. Bit 1 (the lsb of the byte in the config
file) is SCK. Bit 2 is MOSI, and Bit 3 is MISO. Bit 4 usually reset. The 2232C/D parts
are only supported on interface A, but the H parts can be either A or B (specified by the
usbdev config parameter).
The STK500, STK600, JTAG ICE, and avr910 contain on-board logic to control the programming of the target
device.
The avr109 bootloader implements a protocol similar to avr910, but is
actually implemented in the boot area of the target’s flash ROM, as
opposed to being an external device.
The fundamental difference between the two types lies in the
protocol used to control the programmer. The avr910 protocol is very
simplistic and can easily be used as the basis for a simple, home made
programmer since the firmware is available online. On the other hand,
the STK500 protocol is more robust and complicated and the firmware is
not openly available.
The JTAG ICE also uses a serial communication protocol which is similar
to the STK500 firmware version 2 one. However, as the JTAG ICE is
intended to allow on-chip debugging as well as memory programming, the
protocol is more sophisticated.
(The JTAG ICE mkII protocol can also be run on top of USB.)
Only the memory programming functionality of the JTAG ICE is supported
by AVRDUDE.
For the JTAG ICE mkII/3, JTAG, debugWire and ISP mode are supported, provided
it has a firmware revision of at least 4.14 (decimal).
See below for the limitations of debugWire.
For ATxmega devices, the JTAG ICE mkII/3 is supported in PDI mode, provided it
has a revision 1 hardware and firmware version of at least 5.37 (decimal).
</p>
<p>The Atmel-ICE (ARM/AVR) is supported (JTAG, PDI for Xmega, debugWIRE, ISP modes).
</p>
<p>Atmel’s XplainedPro boards, using EDBG protocol (CMSIS-DAP compliant), are
supported by teh “jtag3” programmer type.
</p>
<p>The AVR Dragon is supported in all modes (ISP, JTAG, PDI, HVSP, PP, debugWire).
When used in JTAG and debugWire mode, the AVR Dragon behaves similar to a
JTAG ICE mkII, so all device-specific comments for that device
will apply as well.
When used in ISP and PDI mode, the AVR Dragon behaves similar to an
AVRISP mkII (or JTAG ICE mkII in ISP mode), so all device-specific
comments will apply there.
In particular, the Dragon starts out with a rather fast ISP clock
frequency, so the <code>-B <var>bitclock</var></code>
option might be required to achieve a stable ISP communication.
For ATxmega devices, the AVR Dragon is supported in PDI mode, provided it
has a firmware version of at least 6.11 (decimal).
</p>
<p>Wiring boards are supported, utilizing STK500 V2.x protocol, but
a simple DTR/RTS toggle to set the boards into programming mode.
The programmer type is “wiring”.
</p>
<p>The Arduino (which is very similar to the STK500 1.x) is supported via
its own programmer type specification “arduino”.
</p>
<p>The BusPirate is a versatile tool that can also be used as an AVR programmer.
A single BusPirate can be connected to up to 3 independent AVRs. See
the section on
<em>extended parameters</em>
below for details.
</p>
<p>The USBasp ISP and USBtinyISP adapters are also supported, provided AVRDUDE
has been compiled with libusb support.
They both feature simple firmware-only USB implementations, running on
an ATmega8 (or ATmega88), or ATtiny2313, respectively.
</p>
<p>The Atmel DFU bootloader is supported in both, FLIP protocol version 1
(AT90USB* and ATmega*U* devices), as well as version 2 (Xmega devices).
See below for some hints about FLIP version 1 protocol behaviour.
</p>
<table class="menu" border="0" cellspacing="0">
<tr><td align="left" valign="top">• <a href="History.html#History" accesskey="1">History</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
</table>
<hr>
<div class="header">
<p>
Next: <a href="Command-Line-Options.html#Command-Line-Options" accesskey="n" rel="next">Command Line Options</a>, Previous: <a href="index.html#Top" accesskey="p" rel="prev">Top</a>, Up: <a href="index.html#Top" accesskey="u" rel="up">Top</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>]</p>
</div>
</body>
</html>
|