This file is indexed.

/usr/share/audacity/nyquist/xm.lsp is in audacity-data 2.1.2-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
;; X-Music, inspired by Commmon Music

#|
PATTERN SEMANTICS

Patterns are objects that are generally accessed by calling 
(next pattern). Each call returns the next item in an 
infinite sequence generated by the pattern. Items are 
organized into periods. You can access all (remaining) 
items in the current period using (next pattern t).

Patterns mark the end-of-period with +eop+, a distinguished
atom. The +eop+ markers are filtered out by the next function
but returned by the :next method.

Pattern items may be patterns. This is called a nested
pattern.  When patterns are nested, you return a period 
from the innermost pattern, i.e. traversal is depth-first. 
This means when you are using something like random, you
have to remember the last thing returned and keep getting
the next element from that thing until you see +eop+; 
then you move on. It's a bit more complicated because 
a pattern advances when its immediate child pattern
finishes a cycle, but +eop+ is only returned from the
"leaf" patterns.

With nested patterns, i.e. patterns with items that
are patterns, the implementation requires that
*all* items must be patterns. The application does
*not* have to make every item a pattern, so the
implementation "cleans up" the item list: Any item
that is not a pattern is be replaced with a cycle
pattern whose list contains just the one item.

EXPLICIT PATTERN LENGTH

Pattern length may be given explicitly by a number or
a pattern that generates numbers. Generally this is 
specified as the optional :for keyword parameter when
the pattern is created. If the explicit pattern
length is a number, this will be the period length,
overriding all implicit lengths. If the pattern length
is itself a pattern, the pattern is evaluated every 
period to determine the length of the next period,
overriding any implicit length. 

IMPLEMENTATION

There are 3 ways to determine lengths: 
1) The length is implicit. The length can be
computed (at some point) and turned into an
explicit length.

2) The length is explicit. This overrides the
implicit length. The explicit length is stored as
a counter that tells how many more items to generate
in the current period.

3) The length can be generated by a pattern.
The pattern is evaluated to generate an explicit
length.

So ultimately, we just need a mechanism to handle
explicit lengths. This is incorporated into the
pattern-class. The pattern-class sends :start-period
before calling :advance when the first item in a
period is about to be generated. Also, :next returns
+eop+ automatically at the end of a period.

Because evaluation is "depth first," i.e. we 
advance to the next top-level item only after a period
is generated from a lower-level pattern, every pattern
has a "current" field that holds the current item. the
"have-current" field is a flag to tell when the "current"
field is valid. It is initialized to nil.

To generate an element, you need to follow the nested
patterns all the way to the leaf pattern for every 
generated item. This is perhaps less efficient than
storing the current leaf pattern at the top level, but
patterns can be shared, i.e. a pattern can be a 
sub-pattern of multiple patterns, so current position
in the tree structure of patterns can change at 
any time.

The evaluation of nested patterns is depth-first
and the next shallower level advances when its current
child pattern completes a cycle. To facilitate this
step, the :advance method, which advances a pattern
and computes "current", returns +eonp+, which is a
marker that a nested pattern has completed a cycle.

The :next method generates the next item or +eop+ from
a pattern. The algorithm in psuedo-code is roughly this:

next(p)
    while true:
        if not have-current
            pattern-advance()
            have-current = true
            if is-nested and current = eop:
                have-current = false
                return eonp
        if is-nested:
            rslt = next(current)
            if rslt == eonp
                have-current = false
            elif rslt == eop and not current.is-nested
                have-current = false
                return rslt
            else
                return rslt
        else
            have-current = nil
            return current

pattern-advance
    // length-pattern is either a pattern or a constant
    if null(count) and length-pattern:
        count = next(length-pattern)
        start-period() // subclass-specific computation
    if null(count)
        error
    if count == 0
        current = eop
        count = nil
    else
        advance() // subclass-specific computation
        count--


SUBCLASS RESPONSIBILITIES

Note that :advance is the method to override in the 
various subclasses of pattern-class. The :advance()
method computes the next element in the infinite
sequence of items and puts the item in the "current"
field. 

The :start-period method is called before calling 
advance to get the first item of a new period.

Finally, set the is-nested flag if there are nested patterns,
and make all items of any nested pattern be patterns (no
mix of patterns and non-patterns is allowed; use 
    (MAKE-CYCLE (LIST item))
to convert a non-pattern to a pattern).

|#

(setf SCORE-EPSILON 0.000001)

(setf pattern-class 
  (send class :new '(current have-current is-nested name count
                     length-pattern trace)))

(defun patternp (x) 
  (and (objectp x) (send x :isa pattern-class)))

(setf +eop+ '+eop+)
(setf +eonp+ '+eonp+) ;; end of nested period, this indicates you
   ;; should advance yourself and call back to get the next element

(defun check-for-list (lis name)
  (if (not (listp lis))
      (error (format nil "~A, requires a list of elements" name))))

(defun check-for-list-or-pattern (lis name)
  (if (not (or (listp lis) (patternp lis)))
      (error (format nil "~A, requires a list of elements or a pattern" name))))

(defun list-has-pattern (lis)
  (dolist (e lis) 
    (if (patternp e) (return t))))

(defun is-homogeneous (lis)
  (let (type)
    (dolist (elem lis t)
      (cond ((null type)
             (setf type (if (patternp elem) 'pattern 'atom)))
            ((and (eq type 'pattern)
                  (not (patternp elem)))
             (return nil))
            ((and (eq type 'atom)
                  (patternp elem))
             (return nil))))))

(defun make-homogeneous (lis)
  (cond ((is-homogeneous lis) lis)
        (t
         (mapcar #'(lambda (item)
                     (if (patternp item) item 
                         (make-cycle (list item)
                          ;; help debugging by naming the new pattern
                          ;; probably, the name could be item, but
                          ;; here we coerce item to a string to avoid
                          ;; surprises in code that assumes string names.
                          :name (format nil "~A" item))))
                 lis))))


(send pattern-class :answer :next '()
  '(;(display ":next" name is-nested)
    (loop
     (cond ((not have-current)
            (send self :pattern-advance)
            (setf have-current t)
            (cond (trace
                   (format t "pattern ~A advanced to ~A~%"
                           (if name name "<no-name>")
                           (if (patternp current) 
                               (if (send current :name)
                                   (send current :name)
                                   "<a-pattern>")
                               current))))
            (cond ((and is-nested (eq current +eop+))
                   ;(display ":next returning eonp" name)
                   (setf have-current nil)
                   (return +eonp+)))))
     (cond (is-nested
            (let ((rslt (send current :next)))
              (cond ((eq rslt +eonp+)
                     (setf have-current nil))
                    ;; advance next-to-leaf level at end of leaf's period
                    ((and (eq rslt +eop+) (not (send current :is-nested)))
                     (setf have-current nil)
                     ;; return +eof+ because it's the end of leaf's period
                     (return rslt))
                    (t
                     (return rslt)))))
           (t
            (setf have-current nil)
            (return current))))))


;; :PATTERN-ADVANCE -- advance to the next item in a pattern
;; 
;; this code is used by every class. class-specific behavior
;; is implemented by :advance, which this method calls
;;
(send pattern-class :answer :pattern-advance '()
  '(;(display "enter :pattern-advance" self name count current is-nested)
    (cond ((null count)
           ;(display "in :pattern-advance" name count length-pattern)
           (if length-pattern
               (setf count (next length-pattern)))
           ;; if count is still null, :start-period must set count
           (send self :start-period)))
    (cond ((null count)
           (error
            (format nil
             "~A, pattern-class :pattern-advance has null count" name))))
    (cond ((zerop count)
           (setf current +eop+)
           (setf count nil))
          (t
           (send self :advance)
           (decf count)))
    ;(display "exit :pattern-advance" name count current)
    ))


(send pattern-class :answer :is-nested '() '(is-nested))


(send pattern-class :answer :name '() '(name))


(send pattern-class :answer :set-current '(c)
  '((setf current c)
    (let ((value
           (if (patternp current) 
               (send current :name)
               current)))
      ;(display ":set-current" name value)
      )))


;; next -- get the next element in a pattern
;;
;; any non-pattern value is simply returned
;;
(defun next (pattern &optional period-flag) 
  ;(display "next" pattern period-flag (patternp pattern))
  (cond ((and period-flag (patternp pattern))
         (let (rslt elem)
           (while (not (eq (setf elem (send pattern :next)) +eop+))
               ;(display "next t" (send pattern :name) elem)
               (if (not (eq elem +eonp+)) 
                   (push elem rslt)))
           (reverse rslt)))
        (period-flag
         (display "next" pattern)
         (error (format nil "~A, next expected a pattern"
                            (send pattern :name))))
        ((patternp pattern)
         ;(display "next" (send pattern :name) pattern)
         (let (rslt)
           (dotimes (i 10000 (error
                 (format nil
                  "~A, just retrieved 10000 empty periods -- is there a bug?"
                  (send pattern :name))))
             (if (not (member (setf rslt (send pattern :next)) 
                              '(+eop+ +eonp+)))
                 (return rslt)))))
        (t ;; pattern not a pattern, so just return it:
         ;(display "next" pattern)
         pattern)))

;; ---- LENGTH Class ----

(setf length-class 
  (send class :new '(pattern length-pattern) '() pattern-class))

(send length-class :answer :isnew '(p l nm tr)
  '((setf pattern p length-pattern l name nm trace tr)))

;; note that count is used as a flag as well as a counter.
;; If count is nil, then the pattern-length has not been
;; determined. Count is nil intitially and again at the 
;; end of each period. Otherwise, count is an integer
;; used to count down the number of items remaining in 
;; the period.

(send length-class :answer :start-period '()
  '((setf count (next length-pattern))))

(send length-class :answer :advance '()
  '((send self :set-current (next pattern))))

(defun make-length (pattern length-pattern &key (name "length") trace)
  (send length-class :new pattern length-pattern name trace))

;; ---- CYCLE Class ---------

(setf cycle-class (send class :new 
                        '(lis cursor lis-pattern)
                        '() pattern-class))

(send cycle-class :answer :isnew '(l for nm tr)
  '((cond ((patternp l)
           (setf lis-pattern l))
          ((listp l)
           (send self :set-list l))
          (t
           (error (format nil "~A, expected list" nm) l)))
    (setf length-pattern for name nm trace tr)))


(send cycle-class :answer :set-list '(l)
  '((setf lis l)
    (check-for-list lis "cycle-class :set-list")
    (setf is-nested (list-has-pattern lis))
    (setf lis (make-homogeneous lis))))


(send cycle-class :answer :start-period '()
  '(;(display "cycle-class :start-period" lis-pattern lis count length-pattern)
    (cond (lis-pattern
           (send self :set-list (next lis-pattern t))
           (setf cursor lis)))
    (if (null count)
        (setf count (length lis)))))
  

(send cycle-class :answer :advance '()
  '((cond ((and (null cursor) lis)
           (setf cursor lis))
          ((null cursor)
           (error (format nil "~A, :advance - no items" name))))
    (send self :set-current (car cursor))
    (pop cursor)))


(defun make-cycle (lis &key for (name "cycle") trace)
   (check-for-list-or-pattern lis "make-cycle")
   (send cycle-class :new lis for name trace))

;; ---- LINE class ----

(setf line-class (send class :new '(lis cursor lis-pattern) 
                       '() pattern-class))

(send line-class :answer :isnew '(l for nm tr)
  '((cond ((patternp l)
           (setf lis-pattern l))
          ((listp l)
           (send self :set-list l))
          (t
           (error (format nil "~A, expected list" nm) l)))
    (setf length-pattern for name nm trace tr)))

(send line-class :answer :set-list '(l)
  '((setf lis l)
    (check-for-list lis "line-class :set-list")
    (setf is-nested (list-has-pattern lis))
    (setf lis (make-homogeneous l))
    (setf cursor lis)))


(send line-class :answer :start-period '()
  '((cond (lis-pattern
           (send self :set-list (next lis-pattern t))
           (setf cursor lis)))
    (if (null count)
        (setf count (length lis)))))


(send line-class :answer :advance '()
  '((cond ((null cursor)
           (error (format nil "~A, :advance - no items" name))))
    (send self :set-current (car cursor))
    (if (cdr cursor) (pop cursor))))
  

(defun make-line (lis &key for (name "line") trace)
   (check-for-list-or-pattern lis "make-line")
   (send line-class :new lis for name trace))


;; ---- RANDOM class -----

(setf random-class (send class :new 
       '(lis lis-pattern len previous repeats mincnt maxcnt) 
       '() pattern-class))

;; the structure is (value weight weight-pattern max min)
(setfn rand-item-value car)
(defun set-rand-item-value (item value) (setf (car item) value))
(setfn rand-item-weight cadr)
(defun set-rand-item-weight (item weight) (setf (car (cdr item)) weight))
(setfn rand-item-weight-pattern caddr)
(setfn rand-item-max cadddr)
(defun rand-item-min (lis) (car (cddddr lis)))


(defun select-random (len lis previous repeats mincnt maxcnt)
  (let (sum items r)
    (cond ((zerop len)
           (break "random-class has no list to choose from")
           nil)
          (t
           (setf sum 0)
           (dolist (item lis)
             (setf sum (+ sum (rand-item-weight item))))
           (setf items lis)
           (setf r (rrandom))
           (setf sum (* sum r))
           (setf rbd-count-all (incf rbd-count-all))
           (loop
             (setf sum (- sum (rand-item-weight (car items))))
             (if (<= sum 0) (return (car items)))
             (setf rbd-count-two (incf rbd-count-two))
             (setf items (cdr items)))))))


(defun random-convert-spec (item)
  ;; convert (value :weight wp :min min :max max) to (value nil wp max min)
  (let (value (wp 1) mincnt maxcnt lis)
    (setf value (car item))
    (setf lis (cdr item))
    (while lis
      (cond ((eq (car lis) :weight)
             (setf wp (cadr lis)))
            ((eq (car lis) :min)
             (setf mincnt (cadr lis)))
            ((eq (car lis) :max)
             (setf maxcnt (cadr lis)))
            (t
             (error "(make-random) item syntax error" item)))
      (setf lis (cddr lis)))
    (list value nil wp maxcnt mincnt)))


(defun random-atom-to-list (a)
  (if (atom a)
      (list a nil 1 nil nil)
      (random-convert-spec a)))


(send random-class :answer :isnew '(l for nm tr)
  ;; there are two things we have to normalize:
  ;; (1) make all items lists
  ;; (2) if any item is a pattern, make all items patterns
  '((cond ((patternp l)
           (setf lis-pattern l))
          ((listp l)
           (send self :set-list l))
          (t
           (error (format nil "~A, expected list") l)))
    (setf rbd-count-all 0 rbd-count-two 0)
    (setf length-pattern for name nm trace tr)))


(send random-class :answer :set-list '(l)
  '((check-for-list l "random-class :set-list")
    (setf lis (mapcar #'random-atom-to-list l))
    (dolist (item lis)
      (if (patternp (rand-item-value item))
          (setf is-nested t)))
    (if is-nested
        (mapcar #'(lambda (item)
                    (if (not (patternp (rand-item-value item)))
                        (set-rand-item-value item 
                         (make-cycle (list (rand-item-value item))))))
                lis))
    ;(display "random is-new" lis)
    (setf repeats 0)
    (setf len (length lis))))

    
(send random-class :answer :start-period '()
  '(;(display "random-class :start-period" count len lis lis-pattern)
    (cond (lis-pattern
           (send self :set-list (next lis-pattern t))))
    (if (null count)
        (setf count len))
    (dolist (item lis)
      (set-rand-item-weight item (next (rand-item-weight-pattern item))))))


(send random-class :answer :advance '()
  '((let (selection (iterations 0))
      ;(display "random-class :advance" mincnt repeats)
      (cond ((and mincnt (< repeats mincnt))
             (setf selection previous)
             (incf repeats))
            (t
             (setf selection
                   (select-random len lis previous repeats mincnt maxcnt))))
      (loop ; make sure selection is ok, otherwise try again
        (cond ((and (eq selection previous)
                    maxcnt 
                    (>= repeats maxcnt)) ; hit maximum limit, try again
               (setf selection
                     (select-random len lis previous repeats mincnt maxcnt))
               (incf iterations)
               (cond ((> iterations 10000)
                      (error
                        (format nil
                         "~A, unable to pick next item after 10000 tries"
                         name)
                       lis))))
              (t (return)))) ; break from loop, we found a selection

        ; otherwise, we are ok
        (if (not (eq selection previous))
            (setf repeats 1)
            (incf repeats))
        (setf mincnt (rand-item-min selection))
        (setf maxcnt (rand-item-max selection))
        (setf previous selection)
        ;(display "new selection" repeats mincnt maxcnt selection)
        (send self :set-current (rand-item-value selection)))))
      

(defun make-random (lis &key for (name "random") trace)
   (check-for-list-or-pattern lis "make-random")
   (send random-class :new lis for name trace))


;; ---- PALINDROME class -----

#| Palindrome includes elide, which is either t, nil, :first, or :last.
The pattern length is the "natural" length of the pattern, which goes
forward and backward through the list. Thus, if the list is of length N,
the palindrome length depends on elide as follows:
    elide   length
     nil      2N
     t        2N - 2
   :first     2N - 1
   :last      2N - 1
If elide is a pattern, and if length is not specified, then length should
be computed based on elide. 
|#


(setf palindrome-class (send class :new 
                         '(lis revlis lis-pattern 
                           direction elide-pattern
                           elide cursor)
                         '() pattern-class))

(send palindrome-class :answer :set-list '(l)
  '((setf lis l)
    (check-for-list lis "palindrome-class :start-period")
    (setf is-nested (list-has-pattern lis))
    (setf lis (make-homogeneous l))
    (setf revlis (reverse lis)
          direction t
          cursor lis)))


(send palindrome-class :answer :isnew '(l e for nm tr)
  '((cond ((patternp l)
           (setf lis-pattern l))
          ((listp l)
           (send self :set-list l))
          (t
           (error (format nil "~A, expected list" nm) l)))
    (setf elide-pattern e length-pattern for name nm trace tr)))


(send palindrome-class :answer :start-period '()
  '((cond (lis-pattern
           (send self :set-list (next lis-pattern t))
           (setf cursor lis)))
    (setf elide (next elide-pattern))
    (if (and elide (null lis))
        (error (format nil "~A, cannot elide if list is empty" name)))
    (if (null count)
        (setf count (- (* 2 (length lis))
                       (if (member elide '(:first :last)) 
                           1
                           (if elide 2 0)))))))


(send palindrome-class :answer :next-item '()
  '((send self :set-current (car cursor))
    (pop cursor)
    (cond ((and cursor (not (cdr cursor))
                (or (and direction (member elide '(:last t)))
                    (and (not direction) (member elide '(:first t)))))
           (pop cursor)))))


(send palindrome-class :answer :advance '()
  '(
    (cond (cursor
           (send self :next-item))
          (direction ;; we're going forward
           (setf direction nil) ;; now going backward
           (setf cursor revlis)
           (send self :next-item))
          (t ;; direction is reverse
           (setf direction t)
           (setf cursor lis)
           (send self :next-item)))))


(defun make-palindrome (lis &key elide for (name "palindrome") trace)
  (check-for-list-or-pattern lis "make-palindrome")
  (send palindrome-class :new lis elide for name trace))


;; ================= HEAP CLASS ======================

;; to handle the :max keyword, which tells the object to avoid
;; repeating the last element of the previous period:
;;
;; maxcnt = 1 means "avoid the repetition"
;; check-repeat signals we are at the beginning of the period and must check
;; prev holds the previous value (initially nil)
;; after each item is generated, check-repeat is cleared. It is
;; recalculated when a new period is started.

(setf heap-class (send class :new '(lis used maxcnt prev check-repeat
                                    lis-pattern len)
                       '() pattern-class))

(send heap-class :answer :isnew '(l for mx nm tr)
  '((cond ((patternp l)
           (setf lis-pattern l))
          ((listp l)
           ; make a copy of l to avoid side effects
           (send self :set-list (append l nil)))
          (t
           (error (format nil "~A, expected list" nm) l)))
    (setf length-pattern for maxcnt mx name nm trace tr)))


(send heap-class :answer :set-list '(l)
  '((setf lis l)
    (check-for-list lis "heap-class :set-list")
    (setf is-nested (list-has-pattern lis))
    (setf lis (make-homogeneous lis))
    (setf len (length lis))))


(send heap-class :answer :start-period '()
  '(;(display "heap-class :start-period" lis-pattern count lis)
    (cond (lis-pattern
           (send self :set-list (next lis-pattern t))))
    ; start of period -- may need to avoid repeating previous item
    (if (= maxcnt 1) (setf check-repeat t))
    (if (null count)
        (setf count len))))

    
(defun delete-first (elem lis)
  (cond ((null lis) nil)
        ((eq elem (car lis))
         (cdr lis))
        (t
         (cons (car lis) (delete-first elem (cdr lis))))))


;; NO-DISTINCT-ELEM -- check if any element of list is not val
;;
(defun no-distinct-elem (lis val)
  (not 
    (dolist (elem lis)
      (if (not (equal elem val))
          ;; there is a distinct element, return t from dolist
          (return t)))))
    ;; if no distinct element, dolist returns nil, but this is negated
    ;; by the NOT so the function will return t


(send heap-class :answer :advance '()
  '((cond ((null lis)
           (setf lis used)
           (setf used nil)))
    (let (n elem)
      (cond ((and check-repeat (no-distinct-elem lis prev))
             (error (format nil "~A, cannot avoid repetition, but :max is 1"
                                name))))
      (loop 
        (setf n (random (length lis)))
        (setf elem (nth n lis))
        (if (or (not check-repeat) (not (equal prev elem))) 
            (return))) ;; loop until suitable element is chosen
      (setf lis (delete-first elem lis))
      (push elem used)
      (setf check-repeat nil)
      (setf prev elem)
      (send self :set-current elem))))

(defun make-heap (lis &key for (max 2) (name "heap") trace)
  (send heap-class :new lis for max name trace))

;;================== COPIER CLASS ====================

(setf copier-class (send class :new '(sub-pattern repeat repeat-pattern 
                                      merge merge-pattern period cursor) 
                                    '() pattern-class))

(send copier-class :answer :isnew '(p r m for nm tr)
  '((setf sub-pattern p repeat-pattern r merge-pattern m)
    (setf length-pattern for name nm trace tr)))


#| copier-class makes copies of periods from sub-pattern

If merge is true, the copies are merged into one big period.
If merge is false, then repeat separate periods are returned.
If repeat is negative, then -repeat periods of sub-pattern
are skipped.

merge and repeat are computed from merge-pattern and 
repeat-pattern initially and after making repeat copies

To repeat individual items, set the :for keyword parameter of
the sub-pattern to 1.
|#

(send copier-class :answer :start-period '()
  '((cond ((null count) 
           (cond ((or (null repeat) (zerop repeat))
                  (send self :really-start-period))
                 (t
                  (setf count (length period))))))))


(send copier-class :answer :really-start-period '()
  '(;(display "copier-class :really-start-period" count)
    (setf merge (next merge-pattern))
    (setf repeat (next repeat-pattern))
    (while (minusp repeat)
      (dotimes (i (- repeat))
        (setf period (next sub-pattern t)))
      (setf repeat (next repeat-pattern))
      (setf merge (next merge-pattern)))
    (setf period (next sub-pattern t))
    (setf cursor nil)
    (if (null count)
        (setf count (* (if merge repeat 1)
                       (length period))))))


(send copier-class :answer :advance '()
  '((let ((loop-count 0))
      (loop
        ;(display "copier loop" repeat cursor period)
        (cond (cursor
               (send self :set-current (car cursor))
               (pop cursor)
               (return))
              ((plusp repeat)
               (decf repeat)
               (setf cursor period))
              ((> loop-count 10000)
               (error (format nil
                "~A, copier-class :advance encountered 10000 empty periods"
                name)))
              (t
               (send self :really-start-period)))
        (incf loop-count)))))


(defun make-copier (sub-pattern &key for (repeat 1) merge (name "copier") trace)
  (send copier-class :new sub-pattern repeat merge for name trace))
   
;; ================= ACCUMULATE-CLASS ===================

(setf accumulate-class (send class :new '(sub-pattern period cursor sum mini maxi) 
                                    '() pattern-class))


(send accumulate-class :answer :isnew '(p for nm tr mn mx)
  '((setf sub-pattern p length-pattern for name nm trace tr sum 0 mini mn maxi mx)
    ; (display "accumulate isnew" self nm)
    ))


#| 
accumulate-class creates sums of numbers from another pattern
The output periods are the same as the input periods (by default).
|#

(send accumulate-class :answer :start-period '()
  '((cond ((null count)
           (send self :really-start-period)))))


(send accumulate-class :answer :really-start-period '()
  '((setf period (next sub-pattern t))
    (setf cursor period)
    ;(display "accumulate-class :really-start-period" period cursor count)
    (if (null count)
        (setf count (length period)))))


(send accumulate-class :answer :advance '()
  '((let ((loop-count 0) (minimum (next mini)) (maximum (next maxi)))
      (loop
        (cond (cursor
               (setf sum (+ sum (car cursor)))
               (cond ((and (numberp minimum) (< sum minimum))
                      (setf sum minimum)))
               (cond ((and (numberp maximum) (> sum maximum))
                      (setf sum maximum)))
               (send self :set-current sum)
               (pop cursor)
               (return))
              ((> loop-count 10000)
               (error (format nil
                "~A, :advance encountered 10000 empty periods" name)))
              (t
               (send self :really-start-period)))
        (incf loop-count)))))


(defun make-accumulate (sub-pattern &key for min max (name "accumulate") trace)
  (send accumulate-class :new sub-pattern for name trace min max))
   
;;================== ACCUMULATION CLASS ===================

;; for each item, generate all items up to and including the item, e.g.
;; (a b c) -> (a a b a b c)

(setf accumulation-class (send class :new '(lis lis-pattern outer inner len)
                               '() pattern-class))

(send accumulation-class :answer :isnew '(l for nm tr)
  '((cond ((patternp l)
           (setf lis-pattern l))
          ((listp l)
           (send self :set-list l))
          (t
           (error (format nil "~A, expected list" nm) l)))
      (setf length-pattern for name nm trace tr)))

(send accumulation-class :answer :set-list '(l)
  '((setf lis l)
    (check-for-list lis "heap-class :set-list")
    (setf lis (make-homogeneous lis))
    (setf inner lis)
    (setf outer lis)
    (setf len (length lis))))

(send accumulation-class :answer :start-period '()
  '((cond (lis-pattern
           (send self :set-list (next lis-pattern t))))
    ; start of period, length = (n^2 + n) / 2
    (if (null count) (setf count (/ (+ (* len len) len) 2)))))

(send accumulation-class :answer :advance '()
  ;; inner traverses lis from first to outer
  ;; outer traverses lis
  '((let ((elem (car inner)))
      (cond ((eq inner outer)
             (setf outer (rest outer))
             (setf outer (if outer outer lis))
             (setf inner lis))
            (t
             (setf inner (rest inner))))
      (send self :set-current elem))))

(defun make-accumulation (lis &key for (name "accumulation") trace)
  (send accumulation-class :new lis for name trace))


;;================== SUM CLASS =================

(setf sum-class (send class :new '(x y period cursor fn) '() pattern-class))

(send sum-class :answer :isnew '(xx yy for nm tr)
  '((setf x xx y yy length-pattern for name nm trace tr fn #'+)))

#|
sum-class creates pair-wise sums of numbers from 2 streams.
The output periods are the same as the input periods of the first
pattern argument (by default).
|#

(send sum-class :answer :start-period '()
  '((cond ((null count)
           (send self :really-start-period)))))

(send sum-class :answer :really-start-period '()
  '((setf period (next x t))
    (setf cursor period)
    (if (null count)
        (setf count (length period)))))

(send sum-class :answer :advance '()
  '((let ((loop-count 0) rslt)
      (loop
        (cond (cursor
               (setf rslt (funcall fn (car cursor) (next y)))
               (send self :set-current rslt)
               (pop cursor)
               (return))
              ((> loop-count 10000)
               (error (format nil
                       "~A, :advance encountered 10000 empty periods" name)))
              (t
               (send self :really-start-period)))
        (incf loop-count)))))


(defun make-sum (x y &key for (name "sum") trace)
  (send sum-class :new x y for name trace))               


;;================== PRODUCT CLASS =================

(setf product-class (send class :new '() '() sum-class))

(send product-class :answer :isnew '(xx yy for nm tr)
  '((setf x xx y yy length-pattern for name nm trace tr fn #'*)))

(defun make-product (x y &key for (name "product") trace)
  (send product-class :new x y for name trace))               


;;================== EVAL CLASS =================

(setf eval-class (send class :new '(expr expr-pattern) 
                       '() pattern-class))

(send eval-class :answer :isnew '(e for nm tr)
  '((cond ((patternp e)
           (setf expr-pattern e))
          (t
           (setf expr e)))
    (setf length-pattern for name nm trace tr)))


(send eval-class :answer :start-period '()
  '(;(display "cycle-class :start-period" lis-pattern lis count length-pattern)
    (cond (expr-pattern
           (setf expr (next expr-pattern))))))
  

(send eval-class :answer :advance '()
  '((send self :set-current (eval expr))))


(defun make-eval (expr &key (for 1) (name "eval") trace)
   (send eval-class :new expr for name trace))

;;================== MARKOV CLASS ====================

(setf markov-class (send class :new 
      '(rules order state produces pattern len) 
      '() pattern-class))


(defun is-produces-homogeneous (produces)
  (let (type elem)
    (setf *rslt* nil)
    (loop
      (cond ((or (null produces) (eq produces :eval) (null (cadr produces)))
             (return t)))
      (setf elem (cadr produces))
      (cond ((null type)
             (setf type (if (patternp elem) 'pattern 'atom))
           ;(display "is-produces-homogeneous" type)
             (setf *rslt* (eq type 'pattern))
             ;(display "is-produces-homogeneous" *rslt*)
             )
            ((and (eq type 'pattern) (not (patternp elem)))
             (return nil))
            ((and (eq type 'atom)
                  (patternp elem))
             (return nil)))
      (setf produces (cddr produces)))))


(defun make-produces-homogeneous (produces)
  (let (result item)
    (loop
      (if (null produces) (return nil))
      (push (car produces) result)
      (setf produces (cdr produces))
      (setf item (car produces))
      (setf produces (cdr produces))
      (if (not (patternp item)) 
        (setf item (make-cycle (list item))))
      (push item result))
    (reverse result)))


(send markov-class :answer :isnew '(r o s p for nm tr)
  ;; input parameters are rules, order, state, produces, for, name, trace
  '((setf order o state s produces p length-pattern for name nm trace tr)
    (setf len (length r))
    ;; input r looks like this:
    ;; ((prev1 prev2 -> next1 next2 (next3 weight) ... ) ...)
    ;; transition table will look like a list of these:
    ;; ((prev1 prev2 ... prevn) (next1 weight weight-pattern) ...)
    (dolist (rule r)
      (let ((targets (cdr (nthcdr order rule)))
            entry pattern)
        ;; build entry in reverse order
        (dolist (target targets)
          (push (if (atom target)
                    (list target 1 1) 
                    (list (first target) 
                          (next (second target)) 
                          (second target))) 
                entry))
        ; (display "isnew" entry rule targets order (nthcdr order rule))
        (dotimes (i order)
          (push (nth i rule) pattern))
        (push (cons (reverse pattern) entry) rules)))
    (setf rules (reverse rules)) ;; keep rules in original order
    (setf *rslt* nil) ;; in case produces is nil
    (cond ((and produces (not (is-produces-homogeneous produces)))
           (setf produces (make-produces-homogeneous produces))))
    ;(display "markov-class :isnew" *rslt*)
    (setf is-nested *rslt*) ;; returned by is-produces-homogeneous
    ;(display "markov-class :isnew" is-nested)
    ))


(defun markov-match (state pattern)
  (dolist (p pattern t) ;; return true if no mismatch
    ;; compare element-by-element
    (cond ((eq p '*)) ; anything matches '*
          ((eql p (car state)))
          (t (return nil))) ; a mismatch: return false
    (setf state (cdr state))))

(defun markov-sum-of-weights (rule)
  ;(display "sum-of-weights" rule)
  (let ((sum 0.0))
    (dolist (target (cdr rule))
      ;(display "markov-sum-of-weights" target)
      (setf sum (+ sum (second target))))
    sum))


(defun markov-pick-target (sum rule)
  (let ((total 0.0)
        ;; want to choose a value in the interval [0, sum)
        ;; but real-random is not open on the right, so fudge
        ;; the range by a small amount:
        (r (real-random 0.0 (- sum SCORE-EPSILON))))
    (dolist (target (cdr rule))
      (setf total (+ total (second target)))
      (cond ((> total r) (return (car target)))))))


(defun markov-update-weights (rule)
  (dolist (target (cdr rule))
    (setf (car (cdr target)) (next (caddr target)))))


(defun markov-map-target (target produces)
  (while (and produces (not (eq target (car produces))))
    (setf produces (cddr produces)))
  (cadr produces))


(send markov-class :answer :find-rule '()
  '((let (rslt)
      ;(display "find-rule" rules)
      (dolist (rule rules)
        ;(display "find-rule" state rule)
        (cond ((markov-match state (car rule))
               (setf rslt rule)
               (return rslt))))
      (cond ((null rslt)
             (display "Error, no matching rule found" state rules)
             (error (format nil "~A, (markov-class)" name))))
      rslt)))


(send markov-class :answer :start-period '()
  '((if (null count)
        (setf count len))))

(defun markov-general-rule-p (rule)
  (let ((pre (car rule)))
    (cond ((< (length pre) 2) nil) ;; 1st-order mm
          (t
           ;; return false if any member not *
           ;; return t if all members are *
           (dolist (s pre t)
             (if (eq s '*) t (return nil)))))))

(defun markov-find-state-leading-to (target rules)
  (let (candidates)
    (dolist (rule rules)
      (let ((targets (cdr rule)))
        (dolist (targ targets)
          (cond ((eql (car targ) target)
                 (push (car rule) candidates))))))
    (cond (candidates ;; found at least one
           (nth (random (length candidates)) candidates))
          (t
           nil))))

(send markov-class :answer :advance '()
  '((let (rule sum target rslt new-state)
      ;(display "markov" pattern rules)
      (setf rule (send self :find-rule))
      ;(display "advance 1" rule)
      (markov-update-weights rule)
      ;(display "advance 2" rule)
      (setf sum (markov-sum-of-weights rule))
      ;; the target can be a pattern, so apply NEXT to it
      (setf target (next (markov-pick-target sum rule)))
      ;; if the matching rule is multiple *'s, then this
      ;; is a higher-order Markov model, and we may now
      ;; wander around in parts of the state space that
      ;; never appeared in the training data. To avoid this
      ;; we violate the strict interpretation of the rules
      ;; and pick a random state sequence from the rule set
      ;; that might have let to the current state. We jam
      ;; this state sequence into state so that when we
      ;; append target, we'll have a history that might
      ;; have a corresponding rule next time.
      (cond ((markov-general-rule-p rule)
             (setf new-state (markov-find-state-leading-to target rules))
             (cond (new-state
                    ;(display "state replacement" new-state target)
                    (setf state new-state)))))
      (setf state (append (cdr state) (list target)))
      ;(display "markov next" rule sum target state)
      ;; target is the symbol for the current state. We can
      ;; return target (default), the value of target, or a
      ;; mapped value:
      (cond ((eq produces :eval)
             (setf target (eval target)))
            ((and produces (listp produces))
             ;(display "markov-produce" target produces)
             (setf target (markov-map-target target produces))))
      (if (not (eq is-nested (patternp target)))
          (error (format nil 
         "~A :is-nested keyword (~A) not consistent with result (~A)"
                  name is-nested target)))
      (send self :set-current target))))


(defun make-markov (rules &key produces past for (name "markov") trace)
  ;; check to make sure past and rules are consistent
  (let ((order (length past)))
    (dolist (rule rules)
      (dotimes (i order)
        (if (eq (car rule) '->)
            (error (format nil "~A, a rule does not match the length of :past"
                               name)))
        (pop rule))
      (if (eq (car rule) '->) nil
          (error (format nil "~A, a rule does not match the length of :past"
                             name)))))
  (cond ((null for)
         (setf for (length rules))))
  (send markov-class :new rules (length past) past produces for name trace))


(defun markov-rule-match (rule state)
  (cond ((null state) t)
        ((eql (car rule) (car state))
         (markov-rule-match (cdr rule) (cdr state)))
        (t nil)))


(defun markov-find-rule (rules state)
  (dolist (rule rules)
    ;(display "find-rule" rule)
    (cond ((markov-rule-match rule state)
           (return rule)))))

;; ------- functions below are for MARKOV-CREATE-RULES --------

;; MARKOV-FIND-CHOICE -- given a next state, find it in rule
;;
;; use state to get the order of the Markov model, e.g. how
;; many previous states to skip in the rule, (add 1 for '->).
;; then use assoc to do a quick search
;;
;; example:
;;  (markov-find-choice '(a b -> (c 1) (d 2)) '(a b) 'd)
;; returns (d 2) from the rule
;;
(defun markov-find-choice (rule state next)
  (assoc next (nthcdr (1+ (length state)) rule)))

(defun markov-update-rule (rule state next)
  (let ((choice (markov-find-choice rule state next)))
    (cond (choice
           (setf (car (cdr choice)) (1+ (cadr choice))))
          (t
           (nconc rule (list (list next 1)))))
    rule))


(defun markov-update-rules (rules state next)
  (let ((rule (markov-find-rule rules state)))
    (cond (rule
           (markov-update-rule rule state next))
          (t
           (setf rules
                 (nconc rules 
                        (list (append state
                                      (cons '-> (list 
                                                 (list next 1)))))))))
    rules))


;; MARKOV-UPDATE-HISTOGRAM -- keep a list of symbols and counts
;; 
;; This histogram will become the right-hand part of a rule, so
;; the format is ((symbol count) (symbol count) ...)
;;
(defun markov-update-histogram (histogram next)
  (let ((pair (assoc next histogram)))
    (cond (pair
           (setf (car (cdr pair)) (1+ (cadr pair))))
          (t
           (setf histogram (cons (list next 1) histogram))))
    histogram))


(defun markov-create-rules (sequence order &optional generalize)
  (let ((seqlen (length sequence)) state rules next histogram rule)
    (cond ((<= seqlen order)
           (error "markov-create-rules: sequence must be longer than order"))
          ((< order 1)
           (error "markov-create-rules: order must be 1 or greater")))
    ; build initial state sequence
    (dotimes (i order)
      (setf state (nconc state (list (car sequence))))
      (setf sequence (cdr sequence)))
    ; for each symbol, either update a rule or add a rule
    (while sequence
      (setf next (car sequence))
      (setf sequence (cdr sequence))
      (setf rules (markov-update-rules rules state next))
      (setf histogram (markov-update-histogram histogram next))
      ; shift next state onto current state list
      (setf state (nconc (cdr state) (list next))))
    ; generalize?
    (cond (generalize
           (setf rule (cons '-> histogram))
           (dotimes (i order)
             (setf rule (cons '* rule)))
           (setf rules (nconc rules (list rule)))))
    rules))


;; ----- WINDOW Class ---------

(setf window-class (send class :new 
                         '(pattern skip-pattern lis cursor)
                         '() pattern-class))

(send window-class :answer :isnew '(p for sk nm tr)
  '((setf pattern p length-pattern for skip-pattern sk name nm trace tr)))


(send window-class :answer :start-period '()
  '((if (null count) (error (format nil "~A, :start-period -- count is null"
                                        name)))
    (cond ((null lis) ;; first time
           (dotimes (i count)
             (push (next pattern) lis))
           (setf lis (reverse lis)))
          (t
           (let ((skip (next skip-pattern)))
             (dotimes (i skip)
               (if lis (pop lis) (next pattern))))
           (setf lis (reverse lis))
           (let ((len (length lis)))
             (while (< len count)
               (incf len)
               (push (next pattern) lis))
             (while (> len count)
               (decf len)
               (pop lis))
             (setf lis (reverse lis)))))
    (setf cursor lis)))


(send window-class :answer :advance '()
  '((send self :set-current (car cursor))
    (pop cursor)))

(defun make-window (pattern length-pattern skip-pattern
                    &key (name "window") trace)
  (send window-class :new pattern length-pattern skip-pattern name trace))

;; SCORE-SORTED -- test if score is sorted
;;
(defun score-sorted (score)
  (let ((result t))
    (while (cdr score)
      (cond ((event-before (cadr score) (car score))
             (setf result nil)
             (return nil)))
      (setf score (cdr score)))
    result))
    

(defmacro score-gen (&rest args)
  (let (key val tim dur (name ''note) ioi trace save 
        score-len score-dur others pre post
        next-expr (score-begin 0) score-end)
    (while (and args (cdr args))
      (setf key (car args))
      (setf val (cadr args))
      (setf args (cddr args))       
      (case key
        (:time (setf tim val))
        (:dur (setf dur val))
        (:name (setf name val))
        (:ioi (setf ioi val))
        (:trace (setf trace val))
        (:save (setf save val))
        (:pre (setf pre val))
        (:post (setf post val))
        (:score-len (setf score-len val))
        (:score-dur (setf score-dur val))
        (:begin (setf score-begin val))
        (:end (setf score-end val))
        (t (setf others (cons key (cons val others))))))
    ;; make sure at least one of score-len, score-dur is present
    (cond ((and (null score-len) (null score-dur))
           (error
           "score-gen needs either :score-len or :score-dur to limit length")))
    ;; compute expression for dur
    (cond ((null dur)
           (setf dur 'sg:ioi)))
    ;; compute expression for ioi
    (cond ((null ioi)
           (setf ioi 1)))
    ;; compute expression for next start time
    (setf next-expr '(+ sg:start sg:ioi))
    ; (display "score-gen" others)
    `(let (sg:seq (sg:start ,score-begin) sg:ioi 
           (sg:score-len ,score-len) (sg:score-dur ,score-dur)
           (sg:count 0) (sg:save ,save) 
           (sg:begin ,score-begin) (sg:end ,score-end) sg:det-end)
       ;; sg:det-end is a flag that tells us to determine the end time
       (cond ((null sg:end) (setf sg:end 0 sg:det-end t)))
       ;; make sure at least one of score-len, score-dur is present
       (loop
         (cond ((or (and sg:score-len (<= sg:score-len sg:count))
                    (and sg:score-dur (<= (+ sg:begin sg:score-dur) sg:start)))
                (return)))
         ,pre
         ,(cond (tim (list 'setf 'sg:start tim)))
         (setf sg:ioi ,ioi)
         (setf sg:dur ,dur)
         (push (list sg:start sg:dur (list ,name ,@others))
               sg:seq)
         ,post
         (cond (,trace
                (format t "get-seq trace at ~A stretch ~A: ~A~%" 
                          sg:start sg:dur (car sg:seq))))
         (incf sg:count)
         (setf sg:start ,next-expr)
         ;; end time of score will be max over start times of the next note
         ;; this bases the score duration on ioi's rather than durs. But
         ;; if user specified sg:end, sg:det-end is false and we do not
         ;; try to compute sg:end.
         (cond ((and sg:det-end (> sg:start sg:end))
                (setf sg:end sg:start))))
       (setf sg:seq (reverse sg:seq))
       ;; avoid sorting a sorted list -- XLisp's quicksort can overflow the
       ;; stack if the list is sorted because (apparently) the pivot points
       ;; are not random.
       (cond ((not (score-sorted sg:seq))
              (setf sg:seq (bigsort sg:seq #'event-before))))
       (push (list 0 0 (list 'SCORE-BEGIN-END ,score-begin sg:end)) sg:seq)
       (cond (sg:save (set sg:save sg:seq)))
       sg:seq)))

;; ============== score manipulation ===========

(defun event-before (a b)
  (< (car a) (car b)))

;; EVENT-END -- get the ending time of a score event
;;
(defun event-end (e) (+ (car e) (cadr e)))

;; EVENT-TIME -- time of an event
;;
(setfn event-time car)

;; EVENT-DUR -- duration of an event
;;
(setfn event-dur cadr)

;; EVENT-SET-TIME -- new event with new time
;;
(defun event-set-time (event time)
  (cons time (cdr event)))


;; EVENT-SET-DUR -- new event with new dur
;;
(defun event-set-dur (event dur)
  (list (event-time event) 
        dur 
        (event-expression event)))
  
  
;; EVENT-SET-EXPRESSION -- new event with new expression
;;
(defun event-set-expression (event expression)
  (list (event-time event) 
        (event-dur event)
        expression))
  
;; EXPR-HAS-ATTR -- test if expression has attribute
;;
(defun expr-has-attr (expression attr)
  (member attr expression))


;; EXPR-GET-ATTR -- get value of attribute from expression
;;
(defun expr-get-attr (expression attr &optional default)
  (let ((m (member attr expression)))
    (if m (cadr m) default)))


;; EXPR-SET-ATTR -- set value of an attribute in expression
;; (returns new expression)
(defun expr-set-attr (expr attr value)
  (cons (car expr) (expr-parameters-set-attr (cdr expr) attr value)))

(defun expr-parameters-set-attr (lis attr value)
  (cond ((null lis) (list attr value))
        ((eq (car lis) attr) (cons attr (cons value (cddr lis))))
        (t (cons (car lis) 
                 (cons (cadr lis) 
                       (expr-parameters-set-attr (cddr lis) attr value))))))


;; EXPR-REMOVE-ATTR -- expression without attribute value pair
(defun expr-remove-attr (event attr)
  (cons (car expr) (expr-parameters-remove-attr (cdr expr) attr)))

(defun expr-parameters-remove-attr (lis attr)
   (cond ((null lis) nil)
         ((eq (car lis) attr) (cddr lis))
         (t (cons (car lis)
                  (cons (cadr lis)
                        (expr-parameters-remove-attr (cddr lis) attr))))))


;; EVENT-GET-ATTR -- get value of attribute from event
;;
(defun event-get-attr (note attr &optional default)
  (expr-get-attr (event-expression note) attr default))


;; EVENT-SET-ATTR -- new event with attribute = value
(defun event-set-attr (event attr value)
  (event-set-expression 
    event
    (expr-set-attr (event-expression event) attr value)))


;; EVENT-REMOVE-ATTR -- new event without atttribute value pair
(defun event-remove-attr (event attr)
  (event-set-expression
     event
     (event-remove-attr (event-expression event) attr)))


;; SCORE-GET-BEGIN -- get the begin time of a score
;;
(defun score-get-begin (score)
  (setf score (score-must-have-begin-end score))
  (cadr (event-expression (car score))))


;; SCORE-SET-BEGIN -- set the begin time of a score
;;
(defun score-set-begin (score time)
  (setf score (score-must-have-begin-end score))
  (cons (list 0 0 (list 'score-begin-end time 
                        (caddr (event-expression (car score)))))
        (cdr score)))


;; SCORE-GET-END -- get the end time of a score
;;
(defun score-get-end (score)
  (setf score (score-must-have-begin-end score))
  (caddr (event-expression (car score))))


;; SCORE-SET-END -- set the end time of a score
;;
(defun score-set-end (score time)
  (setf score (score-must-have-begin-end score))
  (cons (list 0 0 (list 'score-begin-end 
                        (cadr (event-expression (car score))) time))
        (cdr score)))


;; FIND-FIRST-NOTE -- use keywords to find index of first selected note
;;
(defun find-first-note (score from-index from-time)
  (let ((s (cdr score)))
    ;; offset by one because we removed element 0
    (setf from-index (if from-index (max 0 (- from-index 1)) 0))
    (setf from-time (if from-time 
                        (- from-time SCORE-EPSILON)
                        (- SCORE-EPSILON)))
    (if s (setf s (nthcdr from-index s)))
    
    (while (and s (>= from-time (event-time (car s))))
      (setf s (cdr s))
      (incf from-index))
    (1+ from-index)))


;; EVENT-BEFORE -- useful function for sorting scores
;;
(defun event-before (a b)
  (< (car a) (car b)))
  
;; bigsort -- a sort routine that avoids recursion in order
;; to sort large lists without overflowing the evaluation stack
;;
;; Does not modify input list. Does not minimize cons-ing.
;;
;; Algorithm: first accumulate sorted sub-sequences into lists
;; Then merge pairs iteratively until only one big list remains
;; 
(defun bigsort (lis cmp) ; sort lis using cmp function
  ;; if (funcall cmp a b) then a and b are in order
  (prog (rslt sub pairs)
    ;; first, convert to sorted sublists stored on rslt
    ;; accumulate sublists in sub
   get-next-sub
    (if (null lis) (go done-1))
    (setf sub (list (car lis)))
    (setf lis (cdr lis))
   fill-sub
    ;; invariant: sub is non-empty, in reverse order
    (cond ((and lis (funcall cmp (car sub) (car lis)))
           (setf sub (cons (car lis) sub))
           (setf lis (cdr lis))
           (go fill-sub)))
    (setf sub (reverse sub)) ;; put sub in correct order
    (setf rslt (cons sub rslt)) ;; build rslt in reverse order
    (go get-next-sub)
   done-1
    ;; invariant: rslt is list of sorted sublists
    (if (cdr rslt) nil (go done-2))
    ;; invariant: rslt has at least one list
    (setf pairs rslt)
    (setf rslt nil)
   merge-pairs    ;; merge a pair and save on rslt
    (if (car pairs) nil (go end-of-pass)) ;; loop until all pairs merged
    ;; invariant: pairs has at least one list
    (setf list1 (car pairs)) ;; list1 is non-empty
    (setf list2 (cadr pairs)) ;; list2 could be empty
    (setf pairs (cddr pairs))
    (cond (list2
           (setf rslt (cons (list-merge list1 list2 cmp) rslt)))
          (t
           (setf rslt (cons list1 rslt))))
    (go merge-pairs)
   end-of-pass
    (go done-1)
   done-2
    ;; invariant: rslt has one sorted list!
    (return (car rslt))))

(defun list-merge (list1 list2 cmp)
  (prog (rslt)
   merge-loop
    (cond ((and list1 list2)
           (cond ((funcall cmp (car list1) (car list2))
                  (setf rslt (cons (car list1) rslt))
                  (setf list1 (cdr list1)))
                 (t
                  (setf rslt (cons (car list2) rslt))
                  (setf list2 (cdr list2)))))
          (list1
           (return (nconc (reverse rslt) list1)))
          (t
           (return (nconc (reverse rslt) list2))))
    (go merge-loop)))  


;; SCORE-SORT -- sort a score into time order
;;
;; If begin-end exists, preserve it. If not, compute
;; it from the sorted score.
;;
(defun score-sort (score &optional (copy-flag t)) 
  (let* ((score1 (score-must-have-begin-end score))
         (begin-end (car score1))
         ;; if begin-end already existed, then it will
         ;; be the first of score. Otherwise, one must
         ;; have been generated above by score-must-have-begin-end
         ;; in which case we should create it again after sorting.
         (needs-begin-end (not (eq begin-end (first score)))))
    (setf score1 (cdr score1)) ;; don't include begin-end in sort.
    (if copy-flag (setf score1 (append score1 nil)))
    (setf score1 (bigsort score1 #'event-before))
    (if needs-begin-end (score-must-have-begin-end score1)
                        (cons begin-end score1))
  ))
  

;; PUSH-SORT -- insert an event in (reverse) sorted order
;;
;; Note: Score should NOT have a score-begin-end expression
;;
(defun push-sort (event score)
  (let (insert-after)
    (cond ((null score) (list event))
          ((event-before (car score) event)
           (cons event score))
          (t
           (setf insert-after score)
           (while (and (cdr insert-after) 
                       (event-before event (cadr insert-after)))
             (setf insert-after (cdr insert-after)))
           (setf (cdr insert-after) (cons event (cdr insert-after)))
           score))))


(setf FOREVER 3600000000.0) ; 1 million hours

;; FIND-LAST-NOTE -- use keywords to find index beyond last selected note
;;
;; note that the :to-index keyword is the index of the last note (numbered
;; from zero), whereas this function returns the index of the last note
;; plus one, i.e. selected notes have an index *less than* this one
;;
(defun find-last-note (score to-index to-time)
  ;; skip past score-begin-end event
  (let ((s (cdr score))
        (n 1))
    (setf to-index (if to-index (1+ to-index) (length score)))
    (setf to-time (if to-time (- to-time SCORE-EPSILON)  FOREVER))
    (while (and s (< n to-index) (< (event-time (car s)) to-time))
      (setf s (cdr s))
      (incf n))
    n))


;; SCORE-MUST-HAVE-BEGIN-END -- add score-begin-end event if necessary
;;
(defun score-must-have-begin-end (score)
  (cond ((null score) 
         (list (list 0 0 (list 'SCORE-BEGIN-END 0 0))))
        ((eq (car (event-expression (car score))) 'SCORE-BEGIN-END)
         score)
        (t (cons (list 0 0 (list 'SCORE-BEGIN-END (event-time (car score))
                                 (event-end (car (last score)))))
                 score))))


;; SCORE-SHIFT -- add offset to times of score events
;;
(defun score-shift (score offset &key from-index to-index from-time to-time)
  (setf score (score-must-have-begin-end score))
  (let ((i 1) 
        (start (find-first-note score from-index from-time))
        (stop (find-last-note score to-index to-time))
        (end (caddr (event-expression (car score))))
        result)
    (dolist (event (cdr score))
      (cond ((and (<= start i) (< i stop))
             (setf event (event-set-time 
                          event (+ (event-time event) offset)))
             (setf end (max end (event-end event)))))
      (setf result (push-sort event result))
      (incf i))
    (cons (list 0 0 (list 'SCORE-BEGIN-END
                          (cadr (event-expression (car score)))
                          end))
          (reverse result))))


;; TIME-STRETCH -- map a timestamp according to stretch factor
;;
(defun time-stretch (time stretch start-time stop-time)
  (cond ((< time start-time) time)
        ((< time stop-time) 
         (+ start-time (* stretch (- time start-time))))
        (t ; beyond stop-time
         (+ (- time stop-time) ; how much beyond stop-time
            start-time
            (* stretch (- stop-time start-time))))))
         

;; EVENT-STRETCH -- apply time warp to an event
(defun event-stretch (event stretch dur-flag time-flag start-time stop-time)
  (let* ((new-time (event-time event))
         (new-dur (event-dur event))
         (end-time (+ new-time new-dur)))
    (cond (time-flag
           (setf new-time (time-stretch new-time stretch 
                                        start-time stop-time))))
    (cond ((and time-flag dur-flag)
           ;; both time and dur are stretched, so map the end time just
           ;; like the start time, then subtract to get new duration
           (setf end-time (time-stretch end-time stretch
                                        start-time stop-time))
           (setf new-dur (- end-time new-time)))
          ((and dur-flag (>= new-time start-time) (< new-time stop-time))
           ;; stretch only duration, not time. If note starts in range
           ;; scale to get the new duration.
           (setf new-dur (* stretch new-dur))))
    (list new-time new-dur (event-expression event))))


;; SCORE-STRETCH -- stretch a region of the score
;;
(defun score-stretch (score factor &key (dur t) (time t)
                      from-index to-index (from-time 0) (to-time FOREVER))
  (setf score (score-must-have-begin-end score))
  (let ((begin-end (event-expression (car score)))
        (i 1))
    (if from-index
        (setf from-time (max from-time 
                             (event-time (nth from-index score)))))
    (if to-index
        (setf to-time (min to-time 
                           (event-end (nth to-index score)))))
    ; stretch from start-time to stop-time
    (cons (list 0 0 (list 'SCORE-BEGIN-END 
                          (time-stretch (cadr begin-end) factor 
                                        from-time to-time)
                          (time-stretch (caddr begin-end) factor
                                        from-time to-time)))
          (mapcar #'(lambda (event) 
                      (event-stretch event factor dur time
                                     from-time to-time))
                  (cdr score)))))
    

;; Get the second element of params (the value field) and turn it
;; into a numeric value if possible (by looking up a global variable
;; binding). This allows scores to say C4 instead of 60.
;;
(defun get-numeric-value (params)
  (let ((v (cadr params)))
    (cond ((and (symbolp v) (boundp v) (numberp (symbol-value v)))
           (setf v (symbol-value v))))
    v))

          
(defun params-transpose (params keyword amount)
  (cond ((null params) nil)
        ((eq keyword (car params))
         (let ((v (get-numeric-value params)))
           (cond ((numberp v)
                  (setf v (+ v amount))))
           (cons (car params)
                 (cons v (cddr params)))))
        (t (cons (car params)
                 (cons (cadr params)
                       (params-transpose (cddr params) keyword amount))))))


(defun score-transpose (score keyword amount &key
                        from-index to-index from-time to-time)
  (score-apply score 
               #'(lambda (time dur expression)
                   (list time dur 
                         (cons (car expression)
                               (params-transpose (cdr expression)
                                                 keyword amount))))
               :from-index from-index :to-index to-index
               :from-time from-time :to-time to-time))


(defun params-scale (params keyword amount)
  (cond ((null params) nil)
        ((eq keyword (car params))
         (let ((v (get-numeric-value params)))
           (cond ((numberp v)
                  (setf v (* v amount))))
           (cons (car params)
                 (cons v (cddr params)))))
        (t (cons (car params)
                 (cons (cadr params)
                       (params-scale (cddr params) keyword amount))))))


(defun score-scale (score keyword amount &key
                    from-index to-index from-time to-time)
  (score-apply score 
               #'(lambda (time dur expression)
                   (list time dur
                         (cons (car expression)
                               (params-scale (cdr expression)
                                             keyword amount))))
               :from-index from-index :to-index to-index
               :from-time from-time :to-time to-time))


(defun score-sustain (score factor &key
                      from-index to-index from-time to-time)
  (setf score (score-must-have-begin-end score))
  (let ((i 0)
        (start (find-first-note score from-index from-time))
        (stop (find-last-note score to-index to-time))
        result)
    (dolist (event score)
      (cond ((and (<= start i) (< i stop))
             (setf event (event-set-dur
                          event (* (event-dur event) factor)))))
      (push event result)
      (incf i))
    (reverse result)))


(defun map-voice (expression replacement-list)
  (let ((mapping (assoc (car expression) replacement-list)))
    (cond (mapping (cons (second mapping)
                         (cdr expression)))
          (t expression))))


(defun score-voice (score replacement-list &key
                    from-index to-index from-time to-time)
  (setf score (score-must-have-begin-end score))
  (let ((i 0) 
        (start (find-first-note score from-index from-time))
        (stop (find-last-note score to-index to-time))
        result)
    (dolist (event score)
      (cond ((and (<= start i) (< i stop))
             (setf event (event-set-expression
                          event (map-voice (event-expression event)
                                           replacement-list)))))
      (push event result)
      (incf i))
    (reverse result)))


(defun score-merge (&rest scores)
  ;; scores is a list of scores
  (cond ((null scores) nil)
        (t
         (score-merge-1 (car scores) (cdr scores)))))


;; SCORE-MERGE-1 -- merge list of scores into score
;;
(defun score-merge-1 (score scores)
  ;; scores is a list of scores to merge
  (cond ((null scores) score)
        (t (score-merge-1 (score-merge-2 score (car scores))
                          (cdr scores)))))

;; SCORE-MERGE-2 -- merge 2 scores
;;
(defun score-merge-2 (score addin)
  ;(display "score-merge-2 before" score addin)
  (setf score (score-must-have-begin-end score))
  (setf addin (score-must-have-begin-end addin))
  ;(display "score-merge-2" score addin)
  (let (start1 start2 end1 end2)
    (setf start1 (score-get-begin score))
    (setf start2 (score-get-begin addin))
    (setf end1 (score-get-end score))
    (setf end2 (score-get-end addin))
    
    ;; note: score-sort is destructive, but append copies score
    ;;       and score-shift copies addin
    (score-sort
     (cons (list 0 0 (list 'SCORE-BEGIN-END (min start1 start2)
                           (max end1 end2)))
           (append (cdr score) (cdr addin) nil)))))



;; SCORE-APPEND -- append scores together in sequence
;;
(defun score-append (&rest scores)
  ;; scores is a list of scores
  (cond ((null scores) nil)
        (t
         (score-append-1 (car scores) (cdr scores)))))


;; SCORE-APPEND-1 -- append list of scores into score
;;
(defun score-append-1 (score scores)
  ;; scores is a list of scores to append
  (cond ((null scores) score)
        (t (score-append-1 (score-append-2 score (car scores))
                           (cdr scores)))))


;; SCORE-APPEND-2 -- append 2 scores
;;
(defun score-append-2 (score addin)
  ;(display "score-append-2" score addin)
  (setf score (score-must-have-begin-end score))
  (setf addin (score-must-have-begin-end addin))
  (let (end1 start2 begin-end1 begin-end2)
    (setf start1 (score-get-begin score))
    (setf end1 (score-get-end score))
    (setf start2 (score-get-begin addin))
    (setf end2 (score-get-end addin))
    (setf begin-end1 (event-expression (car score)))
    (setf begin-end2 (event-expression (car addin)))
    (setf addin (score-shift addin (- end1 start2)))
    ;; note: score-sort is destructive, but append copies score
    ;;       and score-shift copies addin
    (score-sort
     (cons (list 0 0 (list 'SCORE-BEGIN-END start1 (+ end1 (- end2 start2))))
           (append (cdr score) (cdr addin) nil)))))


(defun score-select (score predicate &key
                    from-index to-index from-time to-time reject)
  (setf score (score-must-have-begin-end score))
  (let ((begin-end (car score))
        (i 1) 
        (start (find-first-note score from-index from-time))
        (stop (find-last-note score to-index to-time))
        result)
    ;; selected if start <= i AND i < stop AND predicate(...)
    ;; choose if not reject and selected or reject and not selected
    ;; so in other words choose if reject != selected. Use NULL to
    ;; coerce into boolean values and then use NOT EQ to compare
    (dolist (event (cdr score))
      (cond ((not (eq (null reject)
                      (null (and (<= start i) (< i stop)
                                 (or (eq predicate t)
                                     (funcall predicate 
                                      (event-time event) 
                                      (event-dur event) 
                                      (event-expression event)))))))
             (push event result)))
      (incf i))
    (cons begin-end (reverse result))))


;; SCORE-FILTER-LENGTH -- remove notes beyond cutoff time
;;
(defun score-filter-length (score cutoff)
  (let (result)
    (dolist (event score)
      (cond ((<= (event-end event) cutoff)
             (push event result))))
    (reverse result)))


;; SCORE-REPEAT -- make n copies of score in sequence
;;
(defun score-repeat (score n)
  (let (result)
    (dotimes (i n)
      (setf result (score-append result score)))
    result))


;; SCORE-STRETCH-TO-LENGTH -- stretch score to have given length
;;
(defun score-stretch-to-length (score length)
  (let ((begin-time (score-get-begin score))
        (end-time (score-get-end score))
        duration stretch)
    (setf duration (- end-time begin-time))
    (cond ((< 0 duration)
           (setf stretch (/ length (- end-time begin-time)))
           (score-stretch score stretch))
          (t score))))


(defun score-filter-overlap (score)
  (setf score (score-must-have-begin-end score))
  (prog (event end-time filtered-score
         (begin-end (car score)))
    (setf score (cdr score))
    (cond ((null score) (return (list begin-end))))
  loop
    ;; get event from score
    (setf event (car score))
    ;; add a note to filtered-score
    (push event filtered-score)
    ;; save the end-time of this event: start + duration
    (setf end-time (+ (car event) (cadr event)))
    ;; now skip everything until end-time in score
  loop2
    (pop score) ;; move to next event in score
    (cond ((null score) 
           (return (cons begin-end (reverse filtered-score)))))
    (setf event (car score)) ;; examine next event
    (setf start-time (car event))
    ;(display "overlap" start-time (- end-time SCORE-EPSILON))
    (cond ((< start-time (- end-time SCORE-EPSILON))
           ;(display "toss" event start-time end-time)
           (go loop2)))
    (go loop)))


(defun score-print (score)
 (format t "(")
 (dolist (event score)
  (format t "~S~%" event))
 (format t ")~%"))

(defun score-play (score)
  (play (timed-seq score)))


(defun score-adjacent-events (score function &key
                              from-index to-index from-time to-time)
  (setf score (score-must-have-begin-end score))
  (let ((begin-end (car score))
        (a nil)
        (b (second score))
        (c-list (cddr score))
        r newscore
        (i 1)
        (start (find-first-note score from-index from-time))
        (stop (find-last-note score to-index to-time)))
    (dolist (event (cdr score))
      (setf r b)
      (cond ((and (<= start i) (< i stop))
             (setf r (funcall function a b (car c-list)))))
      (cond (r
             (push r newscore)
             (setf a r)))
      (setf b (car c-list))
      (setf c-list (cdr c-list))
      (incf i))
    (score-sort (cons begin-end newscore))))


(defun score-apply (score fn &key
                    from-index to-index from-time to-time)

  (setf score (score-must-have-begin-end score))
  (let ((begin-end (car score))
        (i 1) 
        (start (find-first-note score from-index from-time))
        (stop (find-last-note score to-index to-time))
        result)
    (dolist (event (cdr score))
      (push 
       (cond ((and (<= start i) (< i stop))
              (funcall fn (event-time event)
                          (event-dur event) (event-expression event)))
             (t event))
       result)
      (incf i))
    (score-sort (cons begin-end result))))


(defun score-indexof (score fn &key
                      from-index to-index from-time to-time)
  (setf score (score-must-have-begin-end score))
  (let ((i 1) 
        (start (find-first-note score from-index from-time))
        (stop (find-last-note score to-index to-time))
        result)
    (dolist (event (cdr score))
      (cond ((and (<= start i) (< i stop)
                  (funcall fn (event-time event)
                              (event-dur event)
                              (event-expression event)))
             (setf result i)
             (return)))
      (incf i))
    result))


(defun score-last-indexof (score fn &key
                           from-index to-index from-time to-time)
  (setf score (score-must-have-begin-end score))
  (let ((i 1) 
        (start (find-first-note score from-index from-time))
        (stop (find-last-note score to-index to-time))
        result)
    (dolist (event (cdr score))
      (cond ((and (<= start i) (< i stop)
                  (funcall fn (event-time event)
                           (event-dur event)
                           (event-expression event)))
             (setf result i)))
      (incf i))
    result))


;; SCORE-RANDOMIZE-START -- alter start times with offset
;; keywords: jitter, offset, feel factor
;;
(defun score-randomize-start (score amt &key
                              from-index to-index from-time to-time)
  (score-apply score
               (lambda (time dur expr)
                 (setf time (+ (real-random (- amt) amt) time))
                 (setf time (max 0.0 time))
                 (list time dur expr))))


;; SCORE-READ-SMF -- read a standard MIDI file to a score
;;
(defun score-read-smf (filename)
  (let ((seq (seq-create))
        (file (open-binary filename)))
    (cond (file
           (seq-read-smf seq file)
           (close file)
           (score-from-seq seq))
          (t nil))))


;; SCORE-READ -- read a standard MIDI file to a score
;;
(defun score-read (filename)
  (let ((seq (seq-create))
        (file (open filename)))
    (cond (file
           (seq-read seq file)
           (close file)
           (score-from-seq seq))
          (t nil))))


;; SET-PROGRAM-TO -- a helper function to set a list value
(defun set-program-to (lis index value default)
  ;; if length or lis <= index, extend the lis with default
  (while (<= (length lis) index)
    (setf lis (nconc lis (list default))))
  ;; set the nth element
  (setf (nth index lis) value)
  ;; return the list
  lis)


(defun score-from-seq (seq)
  (prog (event tag score programs)
    (seq-reset seq)
loop
    (setf event (seq-get seq))
    (setf tag (seq-tag event))
    (cond ((= tag seq-done-tag)
           (go exit))
          ((= tag seq-prgm-tag)
           (let ((chan (seq-channel event))
                 (when (seq-time event))
                 (program (seq-program event)))
             (setf programs (set-program-to programs chan program 0))
             (push (list (* when 0.001) 1
                         (list 'NOTE :pitch nil :program program))
                   score)))
          ((= tag seq-note-tag)
         (let ((chan (seq-channel event))
                 (pitch (seq-pitch event))
                 (vel (seq-velocity event))
                 (when (seq-time event))
                 (dur (seq-duration event)))
             (push (list (* when 0.001) (* dur 0.001)
                       (list 'NOTE :chan (1- chan) :pitch pitch :vel vel))
                   score))))
    (seq-next seq)
    (go loop)
exit
    (setf *rslt* programs) ;; extra return value
    (return (score-sort score))))


(defun score-write (score filename &optional programs)
  (score-write-smf score filename programs t))

(defun score-write-smf (score filename &optional programs as-adagio)
  (let ((file (if as-adagio (open filename :direction :output)
                            (open-binary filename :direction :output)))
        (seq (seq-create))
        (chan 1))
    (cond (file
           (dolist (program programs)
             ;; 6 = SEQ_PROGRAM
             (seq-insert-ctrl seq 0 0 6 chan program)
             ;(display "insert ctrl" seq 0 0 6 chan program)
             (incf chan))

           (dolist (event (cdr (score-must-have-begin-end score)))
             (let ((time (event-time event))
                   (dur (event-dur event))
                   (chan (event-get-attr event :chan 0))
                   (pitch (event-get-attr event :pitch))
                   (program (event-get-attr event :program))
                   (vel (event-get-attr event :vel 100)))
               (cond (program
                      ;(display "score-write-smf program" chan program)
                      (seq-insert-ctrl seq (round (* time 1000))
                                       0 6 (1+ chan)
                                       (round program))))
               (cond ((consp pitch)
                      (dolist (p pitch)
                        (seq-insert-note seq (round (* time 1000))
                                         0 (1+ chan) (round p) 
                                         (round (* dur 1000)) (round vel))))
                     (pitch
                      (seq-insert-note seq (round (* time 1000))
                                       0 (1+ chan) (round pitch)
                                       (round (* dur 1000)) (round vel))))))
           (if as-adagio (seq-write seq file) (seq-write-smf seq file))
           (close file)))))


;; make a default note function for scores
;;
(defun note (&key (pitch 60) (vel 100))
  ;; load the piano if it is not loaded already
  (if (not (boundp '*piano-srate*)) 
      (abs-env (load "pianosyn")))
  (piano-note-2 pitch vel))

;;================================================================

;; WORKSPACE functions have moved to envelopes.lsp


;; DESCRIBE -- add a description to a global variable
;;
(defun describe (symbol &optional description)
  (add-to-workspace symbol)
  (cond (description
         (putprop symbol description 'description))
        (t
         (get symbol 'description))))

;; INTERPOLATE -- linear interpolation function
;;
;; compute y given x by interpolating between points (x1, y1) and (x2, y2)
(defun interpolate (x x1 y1 x2 y2)
  (cond ((= x1 x2) x1)
        (t (+ y1 (* (- x x1) (/ (- y2 y1) (- x2 (float x1))))))))


;; INTERSECTION -- set intersection
;;
;; compute the intersection of two lists
(defun intersection (a b)
  (let (result)
    (dolist (elem a)
      (if (member elem b) (push elem result)))
    result))

;; UNION -- set union
;;
;; compute the union of two lists
(defun union (a b)
  (let (result)
    (dolist (elem a)
      (if (not (member elem result)) (push elem result)))
    (dolist (elem b)
      (if (not (member elem result)) (push elem result)))
    result))

;; SET-DIFFERENCE -- set difference
;;
;; compute the set difference between two sets
(defun set-difference (a b)
  (remove-if (lambda (elem) (member elem b)) a))

;; SUBSETP -- test is list is subset
;;
;; test if a is subset of b
(defun subsetp (a b)
  (let ((result t))
    (dolist (elem a)
      (cond ((not (member elem b))
             (setf result nil)
             (return nil))))
    result))

;; functions to support score editing in jNyqIDE

(if (not (boundp '*default-score-file*))
    (setf *default-score-file* "score.dat"))

;; SCORE-EDIT -- save a score for editing by jNyqIDE
;;
;; file goes to a data file to be read by jNyqIDE
;; Note that the parameter is a global variable name, not a score,
;; but you do not quote the global variable name, e.g. call
;;    (score-edit my-score)
;;
(defmacro score-edit (score-name)
    `(score-edit-symbol (quote ,score-name)))

(defun score-edit-symbol (score-name)
    (prog ((f (open *default-score-file* :direction :output))
           score expr)
      (cond ((symbolp score-name)
             (setf score (eval score-name)))
            (t
             (error "score-edit expects a symbol naming the score to edit")))
      (cond ((null f)
        (format t "score-edit: error in output file ~A!~%" *default-score-file*)
        (return nil)))

      (format t "score-edit: writing ~A ...~%" *default-score-file*)
      (format f "~A~%" score-name) ; put name on first line
      (dolist (event score) ;cdr scor
        (format f "~A " (event-time event))  ; print start time
        (format f "~A " (event-dur event))   ; print duration

        (setf expr (event-expression event))

        ; print the pitch and the rest of the attributes
        (format f "~A " (expr-get-attr expr :pitch))
        (format f "~A~%" (expr-parameters-remove-attr expr :pitch)))
      (close f)
      (format t "score-edit: wrote ~A events~%" (length score))))


;; Read in a data file stored in the score-edit format and save
;; it to the global variable it came from
(defun score-restore ()
  (prog ((inf (open *default-score-file*))
         name start dur pitch expr score)
    (cond ((null inf)
           (format t "score-restore: could not open ~A~%" *default-score-file*)
           (return nil)))
    (setf name (read inf)) ;; score name
    (loop
      (setf start (read inf))
      (cond ((null start) (return)))
      (setf dur (read inf))
      (setf pitch (read inf))
      (setf expr (read inf))
      (cond (pitch
             (setf expr (expr-set-attr expr :pitch pitch)))))
    (close inf)
    (setf (symbol-value name) score)))