This file is indexed.

/usr/share/doc/allegro4-doc/html/alleg033.html is in allegro4-doc 2:4.4.2-7.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN" "http://www.w3.org/TR/REC-html40/loose.dtd">
<html><head><title>
Allegro Manual: 3D math routines
</title>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<meta http-equiv="Content-Style-Type" content="text/css">
<link rel="stylesheet" title="Default" type="text/css" href="allegro.css"></head><body bgcolor=white text=black link="#0000ee" alink="#ff0000" vlink="#551a8b">
<h1><a name="3D math routines">3D math routines</a></h1>

<ul>
<li><a href="#apply_matrix">apply_matrix</a> &mdash; Multiplies a point by a transformation matrix.
<li><a href="#apply_matrix_f">apply_matrix_f</a> &mdash; Multiplies a point by a transformation matrix.
<li><a href="#cross_product">cross_product</a> &mdash; Calculates the cross product.
<li><a href="#cross_product_f">cross_product_f</a> &mdash; Calculates the cross product.
<li><a href="#dot_product">dot_product</a> &mdash; Calculates the dot product.
<li><a href="#dot_product_f">dot_product_f</a> &mdash; Calculates the dot product.
<li><a href="#get_align_matrix">get_align_matrix</a> &mdash; Rotates a matrix to align it along specified coordinate vectors.
<li><a href="#get_align_matrix_f">get_align_matrix_f</a> &mdash; Floating point version of get_align_matrix().
<li><a href="#get_camera_matrix">get_camera_matrix</a> &mdash; Constructs a camera matrix for perspective projection.
<li><a href="#get_camera_matrix_f">get_camera_matrix_f</a> &mdash; Floating point version of get_camera_matrix().
<li><a href="#get_rotation_matrix">get_rotation_matrix</a> &mdash; Constructs X, Y, Z rotation matrices.
<li><a href="#get_rotation_matrix_f">get_rotation_matrix_f</a> &mdash; Constructs X, Y, Z rotation matrices.
<li><a href="#get_scaling_matrix">get_scaling_matrix</a> &mdash; Constructs a scaling matrix.
<li><a href="#get_scaling_matrix_f">get_scaling_matrix_f</a> &mdash; Constructs a scaling matrix.
<li><a href="#get_transformation_matrix">get_transformation_matrix</a> &mdash; Constructs X, Y, Z rotation matrices with an angle and scaling.
<li><a href="#get_transformation_matrix_f">get_transformation_matrix_f</a> &mdash; Floating point version of get_transformation_matrix().
<li><a href="#get_translation_matrix">get_translation_matrix</a> &mdash; Constructs a translation matrix.
<li><a href="#get_translation_matrix_f">get_translation_matrix_f</a> &mdash; Constructs a translation matrix.
<li><a href="#get_vector_rotation_matrix">get_vector_rotation_matrix</a> &mdash; Constructs X, Y, Z rotation matrices with an angle.
<li><a href="#get_vector_rotation_matrix_f">get_vector_rotation_matrix_f</a> &mdash; Constructs X, Y, Z rotation matrices with an angle.
<li><a href="#get_x_rotate_matrix">get_x_rotate_matrix</a> &mdash; Construct X axis rotation matrices.
<li><a href="#get_x_rotate_matrix_f">get_x_rotate_matrix_f</a> &mdash; Construct X axis rotation matrices.
<li><a href="#get_y_rotate_matrix">get_y_rotate_matrix</a> &mdash; Construct Y axis rotation matrices.
<li><a href="#get_y_rotate_matrix_f">get_y_rotate_matrix_f</a> &mdash; Construct Y axis rotation matrices.
<li><a href="#get_z_rotate_matrix">get_z_rotate_matrix</a> &mdash; Construct Z axis rotation matrices.
<li><a href="#get_z_rotate_matrix_f">get_z_rotate_matrix_f</a> &mdash; Construct Z axis rotation matrices.
<li><a href="#identity_matrix">identity_matrix</a> &mdash; Global containing the identity matrix.
<li><a href="#identity_matrix_f">identity_matrix_f</a> &mdash; Global containing the identity matrix.
<li><a href="#matrix_mul">matrix_mul</a> &mdash; Multiplies two matrices.
<li><a href="#matrix_mul_f">matrix_mul_f</a> &mdash; Multiplies two matrices.
<li><a href="#normalize_vector">normalize_vector</a> &mdash; Converts the vector to a unit vector.
<li><a href="#normalize_vector_f">normalize_vector_f</a> &mdash; Converts the vector to a unit vector.
<li><a href="#persp_project">persp_project</a> &mdash; Projects a 3d point into 2d screen space.
<li><a href="#persp_project_f">persp_project_f</a> &mdash; Projects a 3d point into 2d screen space.
<li><a href="#polygon_z_normal">polygon_z_normal</a> &mdash; Finds the Z component of the normal vector to three vertices.
<li><a href="#polygon_z_normal_f">polygon_z_normal_f</a> &mdash; Finds the Z component of the normal vector to three vertices.
<li><a href="#qscale_matrix">qscale_matrix</a> &mdash; Optimised routine for scaling an already generated matrix.
<li><a href="#qscale_matrix_f">qscale_matrix_f</a> &mdash; Optimised routine for scaling an already generated matrix.
<li><a href="#qtranslate_matrix">qtranslate_matrix</a> &mdash; Optimised routine for translating an already generated matrix.
<li><a href="#qtranslate_matrix_f">qtranslate_matrix_f</a> &mdash; Optimised routine for translating an already generated matrix.
<li><a href="#set_projection_viewport">set_projection_viewport</a> &mdash; Sets the viewport used to scale the output of persp_project().
<li><a href="#vector_length">vector_length</a> &mdash; Calculates the length of a vector.
<li><a href="#vector_length_f">vector_length_f</a> &mdash; Calculates the length of a vector.
</ul>

<p>
Allegro contains some 3d helper functions for manipulating vectors, 
constructing and using transformation matrices, and doing perspective 
projections from 3d space onto the screen. It is not, and never will be, a 
fully fledged 3d library (the goal is to supply generic support routines,
not shrink-wrapped graphics code :-) but these functions may be useful for 
developing your own 3d code.

<p>
Allegro uses a right-handed coordinate system, i.e. if you point the thumb 
of your right hand along the x axis, and the index finger along the y axis, 
your middle finger points in the direction of the z axis.

<p>
Allegro's world coordinate system typically has the positive x axis right,
the positive y axis up, and the positive z axis out of the screen.  What
all this means is this: Assume, the viewer is located at the origin (0/0/0)
in world space, looks along the negative z axis (0/0/-1), and is oriented
so up is along the positive y axis (0/1/0). Then something located at
(100/200/-300) will be 100 to the right, 200 above, and 300 in front of the
viewer. Just like in OpenGL. (Of course, both OpenGL and Allegro allow to
use a different system.) Here's a short piece of code demonstrating the
transformation pipeline of a point from world space to the screen.

<blockquote class="code"><pre>
   /* First, set up the projection viewport. */
   <a href="#set_projection_viewport" class="autotype" title="Sets the viewport used to scale the output of persp_project().">set_projection_viewport</a> (0, 0, <a href="alleg009.html#SCREEN_W" class="autotype" title="Global define to obtain the size of the screen.">SCREEN_W</a>, <a href="alleg009.html#SCREEN_H" class="autotype" title="Global define to obtain the size of the screen.">SCREEN_H</a>);
  
   /* Next, get a camera matrix, depending on the
    * current viewer position and orientation.
    */
   <a href="#get_camera_matrix_f" class="autotype" title="Floating point version of get_camera_matrix().">get_camera_matrix_f</a> (&amp;m,
      0, 0, 0,  /* Viewer position, in this case, 0/0/0. */
      0, 0, -1, /* Viewer direction, in this case along negative z. */
      0, 1, 0,  /* Up vector, in this case positive y. */
      32,       /* The FOV, here 45 degrees. */
      (float)<a href="alleg009.html#SCREEN_W" class="autotype" title="Global define to obtain the size of the screen.">SCREEN_W</a> / (float)<a href="alleg009.html#SCREEN_H" class="autotype" title="Global define to obtain the size of the screen.">SCREEN_H</a>)); /* Aspect ratio. */
  
   /* Applying the matrix transforms the point 100/200/-300
    * from world space into camera space. The transformation
    * moves and rotates the point so it is relative to the
    * camera, scales it according to the FOV and aspect
    * parameters, and also flips up and front direction -
    * ready to project the point to the viewport.
    */
   <a href="#apply_matrix_f" class="autotype" title="Multiplies a point by a transformation matrix.">apply_matrix_f</a> (&amp;m, 100, 200, -300, &amp;x, &amp;y, &amp;z);
  
   /* Finally, the point is projected from
    * camera space to the <a href="alleg009.html#screen" class="autotype" title="Global pointer to the screen hardware video memory.">screen</a>.
    */
   <a href="#persp_project_f" class="autotype" title="Projects a 3d point into 2d screen space.">persp_project_f</a> (cx, cy, cz, &amp;sx, &amp;sy);</pre></blockquote>

<p>
For more details, look at the function descriptions of
set_projection_viewport(), get_camera_matrix(), and persp_project(), as well
as the relevant example programs.

<p>
All the 3d math functions are available in two versions: one which uses 
fixed point arithmetic, and another which uses floating point. The syntax 
for these is identical, but the floating point functions and structures are 
postfixed with '_f', eg. the fixed point function cross_product() has a 
floating point equivalent cross_product_f(). If you are programming in C++, 
Allegro also overloads these functions for use with the 'fix' class.

<p>
3d transformations are accomplished by the use of a modelling matrix. This 
is a 4x4 array of numbers that can be multiplied with a 3d point to produce 
a different 3d point. By putting the right values into the matrix, it can be 
made to do various operations like translation, rotation, and scaling. The 
clever bit is that you can multiply two matrices together to produce a third 
matrix, and this will have the same effect on points as applying the 
original two matrices one after the other. For example, if you have one 
matrix that rotates a point and another that shifts it sideways, you can 
combine them to produce a matrix that will do the rotation and the shift in 
a single step. You can build up extremely complex transformations in this 
way, while only ever having to multiply each point by a single matrix.

<p>
Allegro actually cheats in the way it implements the matrix structure. 
Rotation and scaling of a 3d point can be done with a simple 3x3 matrix, but 
in order to translate it and project it onto the screen, the matrix must be 
extended to 4x4, and the point extended into 4d space by the addition of an 
extra coordinate, w=1. This is a bad thing in terms of efficiency, but 
fortunately an optimisation is possible. Given the 4x4 matrix:
<blockquote class="text"><pre>
   ( a, b, c, d )
   ( e, f, g, h )
   ( i, j, k, l )
   ( m, n, o, p )
</pre></blockquote>
a pattern can be observed in which parts of it do what. The top left 3x3 
grid implements rotation and scaling. The three values in the top right 
column (d, h, and l) implement translation, and as long as the matrix is 
only used for affine transformations, m, n and o will always be zero and p 
will always be 1. If you don't know what affine means, read Foley &amp; Van 
Damme: basically it covers scaling, translation, and rotation, but not 
projection. Since Allegro uses a separate function for projection, the 
matrix functions only need to support affine transformations, which means 
that there is no need to store the bottom row of the matrix. Allegro 
implicitly assumes that it contains (0,0,0,1), and optimises the matrix 
manipulation functions accordingly. Read chapter "Structures and types
defined by Allegro" for an internal view of the MATRIX/_f structures.

<p><br>
<div class="al-api"><b>extern <a class="autotype" href="alleg001.html#MATRIX" title="Fixed point matrix structure.">MATRIX</a> <a name="identity_matrix">identity_matrix</a>;</b></div><br>
<div class="al-api-cont"><b>extern <a class="autotype" href="alleg001.html#MATRIX_f" title="Floating point matrix structure.">MATRIX_f</a> <a name="identity_matrix_f">identity_matrix_f</a>;</b></div><br>
   Global variables containing the 'do nothing' identity matrix. Multiplying 
   by the identity matrix has no effect.

<p><br>
<div class="al-api"><b>void <a name="get_translation_matrix">get_translation_matrix</a>(<a class="autotype" href="alleg001.html#MATRIX" title="Fixed point matrix structure.">MATRIX</a> *m, <a class="autotype" href="alleg001.html#fixed" title="Fixed point integer to replace floats.">fixed</a> x, <a class="autotype" href="alleg001.html#fixed" title="Fixed point integer to replace floats.">fixed</a> y, <a class="autotype" href="alleg001.html#fixed" title="Fixed point integer to replace floats.">fixed</a> z);</b></div><br>
<div class="al-api-cont"><b>void <a name="get_translation_matrix_f">get_translation_matrix_f</a>(<a class="autotype" href="alleg001.html#MATRIX_f" title="Floating point matrix structure.">MATRIX_f</a> *m, float x, float y, float z);</b></div><br>
   Constructs a translation matrix, storing it in m. When applied to the 
   point (px, py, pz), this matrix will produce the point (px+x, py+y, 
   pz+z). In other words, it moves things sideways.


<blockquote class="xref"><em><b>See also:</b></em>
<a class="xref" href="#apply_matrix" title="Multiplies a point by a transformation matrix.">apply_matrix</a>,
<a class="xref" href="#get_transformation_matrix" title="Constructs X, Y, Z rotation matrices with an angle and scaling.">get_transformation_matrix</a>,
<a class="xref" href="#qtranslate_matrix" title="Optimised routine for translating an already generated matrix.">qtranslate_matrix</a>.</blockquote>

<blockquote class="eref"><em><b>Examples using this:</b></em>
<a class="eref" href="alleg045.html#exstars" title="3d starfield and lightsourced spaceship.">exstars</a>.</blockquote>
<div class="al-api"><b>void <a name="get_scaling_matrix">get_scaling_matrix</a>(<a class="autotype" href="alleg001.html#MATRIX" title="Fixed point matrix structure.">MATRIX</a> *m, <a class="autotype" href="alleg001.html#fixed" title="Fixed point integer to replace floats.">fixed</a> x, <a class="autotype" href="alleg001.html#fixed" title="Fixed point integer to replace floats.">fixed</a> y, <a class="autotype" href="alleg001.html#fixed" title="Fixed point integer to replace floats.">fixed</a> z);</b></div><br>
<div class="al-api-cont"><b>void <a name="get_scaling_matrix_f">get_scaling_matrix_f</a>(<a class="autotype" href="alleg001.html#MATRIX_f" title="Floating point matrix structure.">MATRIX_f</a> *m, float x, float y, float z);</b></div><br>
   Constructs a scaling matrix, storing it in m. When applied to the point 
   (px, py, pz), this matrix will produce the point (px*x, py*y, pz*z). In 
   other words, it stretches or shrinks things.


<blockquote class="xref"><em><b>See also:</b></em>
<a class="xref" href="#apply_matrix" title="Multiplies a point by a transformation matrix.">apply_matrix</a>,
<a class="xref" href="#get_transformation_matrix" title="Constructs X, Y, Z rotation matrices with an angle and scaling.">get_transformation_matrix</a>,
<a class="xref" href="#qscale_matrix" title="Optimised routine for scaling an already generated matrix.">qscale_matrix</a>.</blockquote>
<div class="al-api"><b>void <a name="get_x_rotate_matrix">get_x_rotate_matrix</a>(<a class="autotype" href="alleg001.html#MATRIX" title="Fixed point matrix structure.">MATRIX</a> *m, <a class="autotype" href="alleg001.html#fixed" title="Fixed point integer to replace floats.">fixed</a> r);</b></div><br>
<div class="al-api-cont"><b>void <a name="get_x_rotate_matrix_f">get_x_rotate_matrix_f</a>(<a class="autotype" href="alleg001.html#MATRIX_f" title="Floating point matrix structure.">MATRIX_f</a> *m, float r);</b></div><br>
   Construct X axis rotation matrices, storing them in m. When applied to a 
   point, these matrices will rotate it about the X axis by the specified 
   angle (given in binary, 256 degrees to a circle format).


<blockquote class="xref"><em><b>See also:</b></em>
<a class="xref" href="#apply_matrix" title="Multiplies a point by a transformation matrix.">apply_matrix</a>,
<a class="xref" href="#get_rotation_matrix" title="Constructs X, Y, Z rotation matrices.">get_rotation_matrix</a>,
<a class="xref" href="#get_y_rotate_matrix" title="Construct Y axis rotation matrices.">get_y_rotate_matrix</a>,
<a class="xref" href="#get_z_rotate_matrix" title="Construct Z axis rotation matrices.">get_z_rotate_matrix</a>.</blockquote>
<div class="al-api"><b>void <a name="get_y_rotate_matrix">get_y_rotate_matrix</a>(<a class="autotype" href="alleg001.html#MATRIX" title="Fixed point matrix structure.">MATRIX</a> *m, <a class="autotype" href="alleg001.html#fixed" title="Fixed point integer to replace floats.">fixed</a> r);</b></div><br>
<div class="al-api-cont"><b>void <a name="get_y_rotate_matrix_f">get_y_rotate_matrix_f</a>(<a class="autotype" href="alleg001.html#MATRIX_f" title="Floating point matrix structure.">MATRIX_f</a> *m, float r);</b></div><br>
   Construct Y axis rotation matrices, storing them in m. When applied to a 
   point, these matrices will rotate it about the Y axis by the specified 
   angle (given in binary, 256 degrees to a circle format).


<blockquote class="xref"><em><b>See also:</b></em>
<a class="xref" href="#apply_matrix" title="Multiplies a point by a transformation matrix.">apply_matrix</a>,
<a class="xref" href="#get_rotation_matrix" title="Constructs X, Y, Z rotation matrices.">get_rotation_matrix</a>,
<a class="xref" href="#get_x_rotate_matrix" title="Construct X axis rotation matrices.">get_x_rotate_matrix</a>,
<a class="xref" href="#get_z_rotate_matrix" title="Construct Z axis rotation matrices.">get_z_rotate_matrix</a>.</blockquote>
<div class="al-api"><b>void <a name="get_z_rotate_matrix">get_z_rotate_matrix</a>(<a class="autotype" href="alleg001.html#MATRIX" title="Fixed point matrix structure.">MATRIX</a> *m, <a class="autotype" href="alleg001.html#fixed" title="Fixed point integer to replace floats.">fixed</a> r);</b></div><br>
<div class="al-api-cont"><b>void <a name="get_z_rotate_matrix_f">get_z_rotate_matrix_f</a>(<a class="autotype" href="alleg001.html#MATRIX_f" title="Floating point matrix structure.">MATRIX_f</a> *m, float r);</b></div><br>
   Construct Z axis rotation matrices, storing them in m. When applied to a 
   point, these matrices will rotate it about the Z axis by the specified 
   angle (given in binary, 256 degrees to a circle format).


<blockquote class="xref"><em><b>See also:</b></em>
<a class="xref" href="#apply_matrix" title="Multiplies a point by a transformation matrix.">apply_matrix</a>,
<a class="xref" href="#get_rotation_matrix" title="Constructs X, Y, Z rotation matrices.">get_rotation_matrix</a>,
<a class="xref" href="#get_x_rotate_matrix" title="Construct X axis rotation matrices.">get_x_rotate_matrix</a>,
<a class="xref" href="#get_y_rotate_matrix" title="Construct Y axis rotation matrices.">get_y_rotate_matrix</a>.</blockquote>
<div class="al-api"><b>void <a name="get_rotation_matrix">get_rotation_matrix</a>(<a class="autotype" href="alleg001.html#MATRIX" title="Fixed point matrix structure.">MATRIX</a> *m, <a class="autotype" href="alleg001.html#fixed" title="Fixed point integer to replace floats.">fixed</a> x, <a class="autotype" href="alleg001.html#fixed" title="Fixed point integer to replace floats.">fixed</a> y, <a class="autotype" href="alleg001.html#fixed" title="Fixed point integer to replace floats.">fixed</a> z);</b></div><br>
<div class="al-api-cont"><b>void <a name="get_rotation_matrix_f">get_rotation_matrix_f</a>(<a class="autotype" href="alleg001.html#MATRIX_f" title="Floating point matrix structure.">MATRIX_f</a> *m, float x, float y, float z);</b></div><br>
   Constructs a transformation matrix which will rotate points around all
   three axes by the specified amounts (given in binary, 256 degrees to a
   circle format). The direction of rotation can simply be found out with
   the right-hand rule: Point the dumb of your right hand towards the
   origin along the axis of rotation, and the fingers will curl in the
   positive direction of rotation. E.g. if you rotate around the y axis,
   and look at the scene from above, a positive angle will rotate in
   clockwise direction.


<blockquote class="xref"><em><b>See also:</b></em>
<a class="xref" href="#apply_matrix" title="Multiplies a point by a transformation matrix.">apply_matrix</a>,
<a class="xref" href="#get_transformation_matrix" title="Constructs X, Y, Z rotation matrices with an angle and scaling.">get_transformation_matrix</a>,
<a class="xref" href="#get_vector_rotation_matrix" title="Constructs X, Y, Z rotation matrices with an angle.">get_vector_rotation_matrix</a>,
<a class="xref" href="#get_x_rotate_matrix" title="Construct X axis rotation matrices.">get_x_rotate_matrix</a>,
<a class="xref" href="#get_y_rotate_matrix" title="Construct Y axis rotation matrices.">get_y_rotate_matrix</a>,
<a class="xref" href="#get_z_rotate_matrix" title="Construct Z axis rotation matrices.">get_z_rotate_matrix</a>,
<a class="xref" href="#get_align_matrix" title="Rotates a matrix to align it along specified coordinate vectors.">get_align_matrix</a>.</blockquote>

<blockquote class="eref"><em><b>Examples using this:</b></em>
<a class="eref" href="alleg045.html#ex12bit" title="How to fake a 12-bit truecolor mode on an 8-bit card.">ex12bit</a>,
<a class="eref" href="alleg045.html#exquat" title="A comparison between Euler angles and quaternions.">exquat</a>,
<a class="eref" href="alleg045.html#exstars" title="3d starfield and lightsourced spaceship.">exstars</a>.</blockquote>
<div class="al-api"><b>void <a name="get_align_matrix">get_align_matrix</a>(<a class="autotype" href="alleg001.html#MATRIX" title="Fixed point matrix structure.">MATRIX</a> *m, <a class="autotype" href="alleg001.html#fixed" title="Fixed point integer to replace floats.">fixed</a> xfront, yfront, zfront, 
                                 <a class="autotype" href="alleg001.html#fixed" title="Fixed point integer to replace floats.">fixed</a> xup, <a class="autotype" href="alleg001.html#fixed" title="Fixed point integer to replace floats.">fixed</a> yup, <a class="autotype" href="alleg001.html#fixed" title="Fixed point integer to replace floats.">fixed</a> zup);</b></div><br>
   Rotates a matrix so that it is aligned along the specified coordinate 
   vectors (they need not be normalized or perpendicular, but the up and 
   front must not be equal). A front vector of 0,0,-1 and up vector of 0,1,0 
   will return the identity matrix.


<blockquote class="xref"><em><b>See also:</b></em>
<a class="xref" href="#apply_matrix" title="Multiplies a point by a transformation matrix.">apply_matrix</a>,
<a class="xref" href="#get_camera_matrix" title="Constructs a camera matrix for perspective projection.">get_camera_matrix</a>.</blockquote>
<div class="al-api"><b>void <a name="get_align_matrix_f">get_align_matrix_f</a>(<a class="autotype" href="alleg001.html#MATRIX" title="Fixed point matrix structure.">MATRIX</a> *m, float xfront, yfront, zfront, 
                                   float xup, yup, zup);</b></div><br>
   Floating point version of get_align_matrix().


<blockquote class="xref"><em><b>See also:</b></em>
<a class="xref" href="#get_align_matrix" title="Rotates a matrix to align it along specified coordinate vectors.">get_align_matrix</a>.</blockquote>
<div class="al-api"><b>void <a name="get_vector_rotation_matrix">get_vector_rotation_matrix</a>(<a class="autotype" href="alleg001.html#MATRIX" title="Fixed point matrix structure.">MATRIX</a> *m, <a class="autotype" href="alleg001.html#fixed" title="Fixed point integer to replace floats.">fixed</a> x, y, z, <a class="autotype" href="alleg001.html#fixed" title="Fixed point integer to replace floats.">fixed</a> a);</b></div><br>
<div class="al-api-cont"><b>void <a name="get_vector_rotation_matrix_f">get_vector_rotation_matrix_f</a>(<a class="autotype" href="alleg001.html#MATRIX_f" title="Floating point matrix structure.">MATRIX_f</a> *m, float x, y, z, float a);</b></div><br>
   Constructs a transformation matrix which will rotate points around the 
   specified x,y,z vector by the specified angle (given in binary, 256 
   degrees to a circle format).


<blockquote class="xref"><em><b>See also:</b></em>
<a class="xref" href="#apply_matrix" title="Multiplies a point by a transformation matrix.">apply_matrix</a>,
<a class="xref" href="#get_rotation_matrix" title="Constructs X, Y, Z rotation matrices.">get_rotation_matrix</a>,
<a class="xref" href="#get_align_matrix" title="Rotates a matrix to align it along specified coordinate vectors.">get_align_matrix</a>.</blockquote>

<blockquote class="eref"><em><b>Examples using this:</b></em>
<a class="eref" href="alleg045.html#excamera" title="Viewing a 3d world from an arbitrary camera position.">excamera</a>.</blockquote>
<div class="al-api"><b>void <a name="get_transformation_matrix">get_transformation_matrix</a>(<a class="autotype" href="alleg001.html#MATRIX" title="Fixed point matrix structure.">MATRIX</a> *m, <a class="autotype" href="alleg001.html#fixed" title="Fixed point integer to replace floats.">fixed</a> scale,
                               <a class="autotype" href="alleg001.html#fixed" title="Fixed point integer to replace floats.">fixed</a> xrot, yrot, zrot, x, y, z);</b></div><br>
   Constructs a transformation matrix which will rotate points around all 
   three axes by the specified amounts (given in binary, 256 degrees to a 
   circle format), scale the result by the specified amount (pass 1 for no 
   change of scale), and then translate to the requested x, y, z position.


<blockquote class="xref"><em><b>See also:</b></em>
<a class="xref" href="#apply_matrix" title="Multiplies a point by a transformation matrix.">apply_matrix</a>,
<a class="xref" href="#get_rotation_matrix" title="Constructs X, Y, Z rotation matrices.">get_rotation_matrix</a>,
<a class="xref" href="#get_scaling_matrix" title="Constructs a scaling matrix.">get_scaling_matrix</a>,
<a class="xref" href="#get_translation_matrix" title="Constructs a translation matrix.">get_translation_matrix</a>.</blockquote>

<blockquote class="eref"><em><b>Examples using this:</b></em>
<a class="eref" href="alleg045.html#ex3d" title="3d 'bouncy cubes' demo.">ex3d</a>,
<a class="eref" href="alleg045.html#exstars" title="3d starfield and lightsourced spaceship.">exstars</a>.</blockquote>
<div class="al-api"><b>void <a name="get_transformation_matrix_f">get_transformation_matrix_f</a>(<a class="autotype" href="alleg001.html#MATRIX_f" title="Floating point matrix structure.">MATRIX_f</a> *m, float scale,
                                 float xrot, yrot, zrot, x, y, z);</b></div><br>
   Floating point version of get_transformation_matrix().


<blockquote class="xref"><em><b>See also:</b></em>
<a class="xref" href="#get_transformation_matrix" title="Constructs X, Y, Z rotation matrices with an angle and scaling.">get_transformation_matrix</a>.</blockquote>

<blockquote class="eref"><em><b>Examples using this:</b></em>
<a class="eref" href="alleg045.html#exzbuf" title="Z-buffered polygons demo.">exzbuf</a>.</blockquote>
<div class="al-api"><b>void <a name="get_camera_matrix">get_camera_matrix</a>(<a class="autotype" href="alleg001.html#MATRIX" title="Fixed point matrix structure.">MATRIX</a> *m, <a class="autotype" href="alleg001.html#fixed" title="Fixed point integer to replace floats.">fixed</a> x, y, z, xfront, yfront, zfront,
                       <a class="autotype" href="alleg001.html#fixed" title="Fixed point integer to replace floats.">fixed</a> xup, yup, zup, fov, aspect);</b></div><br>
   Constructs a camera matrix for translating world-space objects into a
   normalised view space, ready for the perspective projection. The x, y,
   and z parameters specify the camera position, xfront, yfront, and zfront
   are the 'in front' vector specifying which way the camera is facing
   (this can be any length: normalisation is not required), and xup, yup,
   and zup are the 'up' direction vector.

<p>
   The fov parameter specifies the field of view (ie. width of the camera
   focus) in binary, 256 degrees to the circle format. For typical
   projections, a field of view in the region 32-48 will work well. 64
   (90 degrees) applies no extra scaling - so something which is one unit away
   from the viewer will be directly scaled to the viewport. A bigger FOV
   moves you closer to the viewing plane, so more objects will appear. A
   smaller FOV moves you away from the viewing plane, which means you see a
   smaller part of the world.

<p>
   Finally, the aspect ratio is used to scale the Y dimensions of the image
   relative to the X axis, so you can use it to adjust the proportions of
   the output image (set it to 1 for no scaling - but keep in mind that the
   projection also performs scaling according to the viewport size).
   Typically, you will pass (float)w/(float)h, where w and h are the
   parameters you passed to set_projection_viewport.

<p>
   Note that versions prior to 4.1.0 multiplied this aspect ratio by 4/3.


<blockquote class="xref"><em><b>See also:</b></em>
<a class="xref" href="#apply_matrix" title="Multiplies a point by a transformation matrix.">apply_matrix</a>,
<a class="xref" href="#get_align_matrix" title="Rotates a matrix to align it along specified coordinate vectors.">get_align_matrix</a>,
<a class="xref" href="#set_projection_viewport" title="Sets the viewport used to scale the output of persp_project().">set_projection_viewport</a>,
<a class="xref" href="#persp_project" title="Projects a 3d point into 2d screen space.">persp_project</a>.</blockquote>
<div class="al-api"><b>void <a name="get_camera_matrix_f">get_camera_matrix_f</a>(<a class="autotype" href="alleg001.html#MATRIX_f" title="Floating point matrix structure.">MATRIX_f</a> *m, float x, y, z, xfront, yfront, zfront,
                         float xup, yup, zup, fov, aspect);</b></div><br>
   Floating point version of get_camera_matrix().


<blockquote class="xref"><em><b>See also:</b></em>
<a class="xref" href="#get_camera_matrix" title="Constructs a camera matrix for perspective projection.">get_camera_matrix</a>.</blockquote>

<blockquote class="eref"><em><b>Examples using this:</b></em>
<a class="eref" href="alleg045.html#excamera" title="Viewing a 3d world from an arbitrary camera position.">excamera</a>,
<a class="eref" href="alleg045.html#exquat" title="A comparison between Euler angles and quaternions.">exquat</a>.</blockquote>
<div class="al-api"><b>void <a name="qtranslate_matrix">qtranslate_matrix</a>(<a class="autotype" href="alleg001.html#MATRIX" title="Fixed point matrix structure.">MATRIX</a> *m, <a class="autotype" href="alleg001.html#fixed" title="Fixed point integer to replace floats.">fixed</a> x, <a class="autotype" href="alleg001.html#fixed" title="Fixed point integer to replace floats.">fixed</a> y, <a class="autotype" href="alleg001.html#fixed" title="Fixed point integer to replace floats.">fixed</a> z);</b></div><br>
<div class="al-api-cont"><b>void <a name="qtranslate_matrix_f">qtranslate_matrix_f</a>(<a class="autotype" href="alleg001.html#MATRIX_f" title="Floating point matrix structure.">MATRIX_f</a> *m, float x, float y, float z);</b></div><br>
   Optimised routine for translating an already generated matrix: this 
   simply adds in the translation offset, so there is no need to build two 
   temporary matrices and then multiply them together.


<blockquote class="xref"><em><b>See also:</b></em>
<a class="xref" href="#get_translation_matrix" title="Constructs a translation matrix.">get_translation_matrix</a>.</blockquote>
<div class="al-api"><b>void <a name="qscale_matrix">qscale_matrix</a>(<a class="autotype" href="alleg001.html#MATRIX" title="Fixed point matrix structure.">MATRIX</a> *m, <a class="autotype" href="alleg001.html#fixed" title="Fixed point integer to replace floats.">fixed</a> scale);</b></div><br>
<div class="al-api-cont"><b>void <a name="qscale_matrix_f">qscale_matrix_f</a>(<a class="autotype" href="alleg001.html#MATRIX_f" title="Floating point matrix structure.">MATRIX_f</a> *m, float scale);</b></div><br>
   Optimised routine for scaling an already generated matrix: this simply 
   adds in the scale factor, so there is no need to build two temporary 
   matrices and then multiply them together.


<blockquote class="xref"><em><b>See also:</b></em>
<a class="xref" href="#get_scaling_matrix" title="Constructs a scaling matrix.">get_scaling_matrix</a>.</blockquote>
<div class="al-api"><b>void <a name="matrix_mul">matrix_mul</a>(const <a class="autotype" href="alleg001.html#MATRIX" title="Fixed point matrix structure.">MATRIX</a> *m1, const <a class="autotype" href="alleg001.html#MATRIX" title="Fixed point matrix structure.">MATRIX</a> *m2, <a class="autotype" href="alleg001.html#MATRIX" title="Fixed point matrix structure.">MATRIX</a> *out);</b></div><br>
<div class="al-api-cont"><b>void <a name="matrix_mul_f">matrix_mul_f</a>(const <a class="autotype" href="alleg001.html#MATRIX_f" title="Floating point matrix structure.">MATRIX_f</a> *m1, const <a class="autotype" href="alleg001.html#MATRIX_f" title="Floating point matrix structure.">MATRIX_f</a> *m2, <a class="autotype" href="alleg001.html#MATRIX_f" title="Floating point matrix structure.">MATRIX_f</a> *out);</b></div><br>
   Multiplies two matrices, storing the result in out (this may be a 
   duplicate of one of the input matrices, but it is faster when the inputs 
   and output are all different). The resulting matrix will have the same 
   effect as the combination of m1 and m2, ie. when applied to a point p, (p 
   * out) = ((p * m1) * m2). Any number of transformations can be 
   concatenated in this way. Note that matrix multiplication is not 
   commutative, ie. matrix_mul(m1, m2) != matrix_mul(m2, m1).


<blockquote class="xref"><em><b>See also:</b></em>
<a class="xref" href="#apply_matrix" title="Multiplies a point by a transformation matrix.">apply_matrix</a>.</blockquote>

<blockquote class="eref"><em><b>Examples using this:</b></em>
<a class="eref" href="alleg045.html#exquat" title="A comparison between Euler angles and quaternions.">exquat</a>,
<a class="eref" href="alleg045.html#exscn3d" title="Using the 3d scene functions.">exscn3d</a>.</blockquote>
<div class="al-api"><b><a class="autotype" href="alleg001.html#fixed" title="Fixed point integer to replace floats.">fixed</a> <a name="vector_length">vector_length</a>(<a class="autotype" href="alleg001.html#fixed" title="Fixed point integer to replace floats.">fixed</a> x, <a class="autotype" href="alleg001.html#fixed" title="Fixed point integer to replace floats.">fixed</a> y, <a class="autotype" href="alleg001.html#fixed" title="Fixed point integer to replace floats.">fixed</a> z);</b></div><br>
<div class="al-api-cont"><b>float <a name="vector_length_f">vector_length_f</a>(float x, float y, float z);</b></div><br>
   Calculates the length of the vector (x, y, z), using that good 'ole 
   Pythagoras theorem.


<blockquote class="xref"><em><b>See also:</b></em>
<a class="xref" href="#normalize_vector" title="Converts the vector to a unit vector.">normalize_vector</a>.</blockquote>
<div class="al-api"><b>void <a name="normalize_vector">normalize_vector</a>(<a class="autotype" href="alleg001.html#fixed" title="Fixed point integer to replace floats.">fixed</a> *x, <a class="autotype" href="alleg001.html#fixed" title="Fixed point integer to replace floats.">fixed</a> *y, <a class="autotype" href="alleg001.html#fixed" title="Fixed point integer to replace floats.">fixed</a> *z);</b></div><br>
<div class="al-api-cont"><b>void <a name="normalize_vector_f">normalize_vector_f</a>(float *x, float *y, float *z);</b></div><br>
   Converts the vector (*x, *y, *z) to a unit vector. This points in the 
   same direction as the original vector, but has a length of one.


<blockquote class="xref"><em><b>See also:</b></em>
<a class="xref" href="#vector_length" title="Calculates the length of a vector.">vector_length</a>,
<a class="xref" href="#dot_product" title="Calculates the dot product.">dot_product</a>,
<a class="xref" href="#cross_product" title="Calculates the cross product.">cross_product</a>.</blockquote>

<blockquote class="eref"><em><b>Examples using this:</b></em>
<a class="eref" href="alleg045.html#exstars" title="3d starfield and lightsourced spaceship.">exstars</a>.</blockquote>
<div class="al-api"><b><a class="autotype" href="alleg001.html#fixed" title="Fixed point integer to replace floats.">fixed</a> <a name="dot_product">dot_product</a>(<a class="autotype" href="alleg001.html#fixed" title="Fixed point integer to replace floats.">fixed</a> x1, y1, z1, x2, y2, z2);</b></div><br>
<div class="al-api-cont"><b>float <a name="dot_product_f">dot_product_f</a>(float x1, y1, z1, x2, y2, z2);</b></div><br>
   Calculates the dot product (x1, y1, z1) . (x2, y2, z2), returning the 
   result.


<blockquote class="xref"><em><b>See also:</b></em>
<a class="xref" href="#cross_product" title="Calculates the cross product.">cross_product</a>,
<a class="xref" href="#normalize_vector" title="Converts the vector to a unit vector.">normalize_vector</a>.</blockquote>

<blockquote class="eref"><em><b>Examples using this:</b></em>
<a class="eref" href="alleg045.html#exstars" title="3d starfield and lightsourced spaceship.">exstars</a>.</blockquote>
<div class="al-api"><b>void <a name="cross_product">cross_product</a>(<a class="autotype" href="alleg001.html#fixed" title="Fixed point integer to replace floats.">fixed</a> x1, y1, z1, x2, y2, z2, *xout, *yout, *zout);</b></div><br>
<div class="al-api-cont"><b>void <a name="cross_product_f">cross_product_f</a>(float x1, y1, z1, x2, y2, z2, *xout, *yout, *zout);</b></div><br>
   Calculates the cross product (x1, y1, z1) x (x2, y2, z2), storing the 
   result in (*xout, *yout, *zout). The cross product is perpendicular to 
   both of the input vectors, so it can be used to generate polygon normals.


<blockquote class="xref"><em><b>See also:</b></em>
<a class="xref" href="#dot_product" title="Calculates the dot product.">dot_product</a>,
<a class="xref" href="#polygon_z_normal" title="Finds the Z component of the normal vector to three vertices.">polygon_z_normal</a>,
<a class="xref" href="#normalize_vector" title="Converts the vector to a unit vector.">normalize_vector</a>.</blockquote>

<blockquote class="eref"><em><b>Examples using this:</b></em>
<a class="eref" href="alleg045.html#exstars" title="3d starfield and lightsourced spaceship.">exstars</a>.</blockquote>
<div class="al-api"><b><a class="autotype" href="alleg001.html#fixed" title="Fixed point integer to replace floats.">fixed</a> <a name="polygon_z_normal">polygon_z_normal</a>(const <a class="autotype" href="alleg001.html#V3D" title="Fixed point vertex structure used by 3d functions.">V3D</a> *v1, const <a class="autotype" href="alleg001.html#V3D" title="Fixed point vertex structure used by 3d functions.">V3D</a> *v2, const <a class="autotype" href="alleg001.html#V3D" title="Fixed point vertex structure used by 3d functions.">V3D</a> *v3);</b></div><br>
<div class="al-api-cont"><b>float <a name="polygon_z_normal_f">polygon_z_normal_f</a>(const <a class="autotype" href="alleg001.html#V3D_f" title="Floating point vertex structure used by 3d functions.">V3D_f</a> *v1, const <a class="autotype" href="alleg001.html#V3D_f" title="Floating point vertex structure used by 3d functions.">V3D_f</a> *v2, const <a class="autotype" href="alleg001.html#V3D_f" title="Floating point vertex structure used by 3d functions.">V3D_f</a> *v3);</b></div><br>
   Finds the Z component of the normal vector to the specified three 
   vertices (which must be part of a convex polygon). This is used mainly in 
   back-face culling. The back-faces of closed polyhedra are never visible 
   to the viewer, therefore they never need to be drawn. This can cull on 
   average half the polygons from a scene. If the normal is negative the 
   polygon can safely be culled. If it is zero, the polygon is perpendicular 
   to the screen.

<p>
   However, this method of culling back-faces must only be used once the X and
   Y coordinates have been projected into screen space using persp_project()
   (or if an orthographic (isometric) projection is being used). Note that
   this function will fail if the three vertices are co-linear (they lie on
   the same line) in 3D space.


<blockquote class="xref"><em><b>See also:</b></em>
<a class="xref" href="#cross_product" title="Calculates the cross product.">cross_product</a>.</blockquote>

<blockquote class="eref"><em><b>Examples using this:</b></em>
<a class="eref" href="alleg045.html#ex3d" title="3d 'bouncy cubes' demo.">ex3d</a>.</blockquote>
<div class="al-api"><b>void <a name="apply_matrix">apply_matrix</a>(const <a class="autotype" href="alleg001.html#MATRIX" title="Fixed point matrix structure.">MATRIX</a> *m, <a class="autotype" href="alleg001.html#fixed" title="Fixed point integer to replace floats.">fixed</a> x, y, z, *xout, *yout, *zout);</b></div><br>
<div class="al-api-cont"><b>void <a name="apply_matrix_f">apply_matrix_f</a>(const <a class="autotype" href="alleg001.html#MATRIX_f" title="Floating point matrix structure.">MATRIX_f</a> *m, float x, y, z, *xout, *yout, *zout);</b></div><br>
   Multiplies the point (x, y, z) by the transformation matrix m, storing 
   the result in (*xout, *yout, *zout).


<blockquote class="xref"><em><b>See also:</b></em>
<a class="xref" href="#matrix_mul" title="Multiplies two matrices.">matrix_mul</a>.</blockquote>

<blockquote class="eref"><em><b>Examples using this:</b></em>
<a class="eref" href="alleg045.html#ex12bit" title="How to fake a 12-bit truecolor mode on an 8-bit card.">ex12bit</a>,
<a class="eref" href="alleg045.html#ex3d" title="3d 'bouncy cubes' demo.">ex3d</a>,
<a class="eref" href="alleg045.html#exstars" title="3d starfield and lightsourced spaceship.">exstars</a>.</blockquote>
<div class="al-api"><b>void <a name="set_projection_viewport">set_projection_viewport</a>(int x, int y, int w, int h);</b></div><br>
   Sets the viewport used to scale the output of the persp_project()
   function. Pass the dimensions of the screen area you want to draw onto,
   which will typically be 0, 0, SCREEN_W, and SCREEN_H. Also don't forget
   to pass an appropriate aspect ratio to get_camera_matrix later. The
   width and height you specify here will determine how big your viewport
   is in 3d space. So if an object in your 3D space is w units wide, it
   will fill the complete screen when you run into it (i.e., if it has a
   distance of 1.0 after the camera matrix was applied. The fov and
   aspect-ratio parameters to get_camera_matrix also apply some scaling
   though, so this isn't always completely true). If you pass -1/-1/2/2 as
   parameters, no extra scaling will be performed by the projection.


<blockquote class="xref"><em><b>See also:</b></em>
<a class="xref" href="#persp_project" title="Projects a 3d point into 2d screen space.">persp_project</a>,
<a class="xref" href="#get_camera_matrix" title="Constructs a camera matrix for perspective projection.">get_camera_matrix</a>.</blockquote>

<blockquote class="eref"><em><b>Examples using this:</b></em>
<a class="eref" href="alleg045.html#ex3d" title="3d 'bouncy cubes' demo.">ex3d</a>,
<a class="eref" href="alleg045.html#excamera" title="Viewing a 3d world from an arbitrary camera position.">excamera</a>,
<a class="eref" href="alleg045.html#exquat" title="A comparison between Euler angles and quaternions.">exquat</a>,
<a class="eref" href="alleg045.html#exscn3d" title="Using the 3d scene functions.">exscn3d</a>,
<a class="eref" href="alleg045.html#exstars" title="3d starfield and lightsourced spaceship.">exstars</a>,
<a class="eref" href="alleg045.html#exzbuf" title="Z-buffered polygons demo.">exzbuf</a>.</blockquote>
<div class="al-api"><b>void <a name="persp_project">persp_project</a>(<a class="autotype" href="alleg001.html#fixed" title="Fixed point integer to replace floats.">fixed</a> x, <a class="autotype" href="alleg001.html#fixed" title="Fixed point integer to replace floats.">fixed</a> y, <a class="autotype" href="alleg001.html#fixed" title="Fixed point integer to replace floats.">fixed</a> z, <a class="autotype" href="alleg001.html#fixed" title="Fixed point integer to replace floats.">fixed</a> *xout, <a class="autotype" href="alleg001.html#fixed" title="Fixed point integer to replace floats.">fixed</a> *yout);</b></div><br>
<div class="al-api-cont"><b>void <a name="persp_project_f">persp_project_f</a>(float x, float y, float z, float *xout, float *yout);</b></div><br>
   Projects the 3d point (x, y, z) into 2d screen space, storing the result 
   in (*xout, *yout) and using the scaling parameters previously set by 
   calling set_projection_viewport(). This function projects from the 
   normalized viewing pyramid, which has a camera at the origin and facing 
   along the positive z axis. The x axis runs left/right, y runs up/down, 
   and z increases with depth into the screen. The camera has a 90 degree 
   field of view, ie. points on the planes x=z and -x=z will map onto the 
   left and right edges of the screen, and the planes y=z and -y=z map to 
   the top and bottom of the screen. If you want a different field of view 
   or camera location, you should transform all your objects with an 
   appropriate viewing matrix, eg. to get the effect of panning the camera 
   10 degrees to the left, rotate all your objects 10 degrees to the right.




<blockquote class="xref"><em><b>See also:</b></em>
<a class="xref" href="#set_projection_viewport" title="Sets the viewport used to scale the output of persp_project().">set_projection_viewport</a>,
<a class="xref" href="#get_camera_matrix" title="Constructs a camera matrix for perspective projection.">get_camera_matrix</a>.</blockquote>

<blockquote class="eref"><em><b>Examples using this:</b></em>
<a class="eref" href="alleg045.html#ex3d" title="3d 'bouncy cubes' demo.">ex3d</a>,
<a class="eref" href="alleg045.html#exstars" title="3d starfield and lightsourced spaceship.">exstars</a>.</blockquote>
<hr><div class="al-back-to-contents"><a href="allegro.html">Back to contents</a></div>

</body>
</html>