/usr/share/doc/allegro4-doc/html/alleg033.html is in allegro4-doc 2:4.4.2-7.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 | <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN" "http://www.w3.org/TR/REC-html40/loose.dtd">
<html><head><title>
Allegro Manual: 3D math routines
</title>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<meta http-equiv="Content-Style-Type" content="text/css">
<link rel="stylesheet" title="Default" type="text/css" href="allegro.css"></head><body bgcolor=white text=black link="#0000ee" alink="#ff0000" vlink="#551a8b">
<h1><a name="3D math routines">3D math routines</a></h1>
<ul>
<li><a href="#apply_matrix">apply_matrix</a> — Multiplies a point by a transformation matrix.
<li><a href="#apply_matrix_f">apply_matrix_f</a> — Multiplies a point by a transformation matrix.
<li><a href="#cross_product">cross_product</a> — Calculates the cross product.
<li><a href="#cross_product_f">cross_product_f</a> — Calculates the cross product.
<li><a href="#dot_product">dot_product</a> — Calculates the dot product.
<li><a href="#dot_product_f">dot_product_f</a> — Calculates the dot product.
<li><a href="#get_align_matrix">get_align_matrix</a> — Rotates a matrix to align it along specified coordinate vectors.
<li><a href="#get_align_matrix_f">get_align_matrix_f</a> — Floating point version of get_align_matrix().
<li><a href="#get_camera_matrix">get_camera_matrix</a> — Constructs a camera matrix for perspective projection.
<li><a href="#get_camera_matrix_f">get_camera_matrix_f</a> — Floating point version of get_camera_matrix().
<li><a href="#get_rotation_matrix">get_rotation_matrix</a> — Constructs X, Y, Z rotation matrices.
<li><a href="#get_rotation_matrix_f">get_rotation_matrix_f</a> — Constructs X, Y, Z rotation matrices.
<li><a href="#get_scaling_matrix">get_scaling_matrix</a> — Constructs a scaling matrix.
<li><a href="#get_scaling_matrix_f">get_scaling_matrix_f</a> — Constructs a scaling matrix.
<li><a href="#get_transformation_matrix">get_transformation_matrix</a> — Constructs X, Y, Z rotation matrices with an angle and scaling.
<li><a href="#get_transformation_matrix_f">get_transformation_matrix_f</a> — Floating point version of get_transformation_matrix().
<li><a href="#get_translation_matrix">get_translation_matrix</a> — Constructs a translation matrix.
<li><a href="#get_translation_matrix_f">get_translation_matrix_f</a> — Constructs a translation matrix.
<li><a href="#get_vector_rotation_matrix">get_vector_rotation_matrix</a> — Constructs X, Y, Z rotation matrices with an angle.
<li><a href="#get_vector_rotation_matrix_f">get_vector_rotation_matrix_f</a> — Constructs X, Y, Z rotation matrices with an angle.
<li><a href="#get_x_rotate_matrix">get_x_rotate_matrix</a> — Construct X axis rotation matrices.
<li><a href="#get_x_rotate_matrix_f">get_x_rotate_matrix_f</a> — Construct X axis rotation matrices.
<li><a href="#get_y_rotate_matrix">get_y_rotate_matrix</a> — Construct Y axis rotation matrices.
<li><a href="#get_y_rotate_matrix_f">get_y_rotate_matrix_f</a> — Construct Y axis rotation matrices.
<li><a href="#get_z_rotate_matrix">get_z_rotate_matrix</a> — Construct Z axis rotation matrices.
<li><a href="#get_z_rotate_matrix_f">get_z_rotate_matrix_f</a> — Construct Z axis rotation matrices.
<li><a href="#identity_matrix">identity_matrix</a> — Global containing the identity matrix.
<li><a href="#identity_matrix_f">identity_matrix_f</a> — Global containing the identity matrix.
<li><a href="#matrix_mul">matrix_mul</a> — Multiplies two matrices.
<li><a href="#matrix_mul_f">matrix_mul_f</a> — Multiplies two matrices.
<li><a href="#normalize_vector">normalize_vector</a> — Converts the vector to a unit vector.
<li><a href="#normalize_vector_f">normalize_vector_f</a> — Converts the vector to a unit vector.
<li><a href="#persp_project">persp_project</a> — Projects a 3d point into 2d screen space.
<li><a href="#persp_project_f">persp_project_f</a> — Projects a 3d point into 2d screen space.
<li><a href="#polygon_z_normal">polygon_z_normal</a> — Finds the Z component of the normal vector to three vertices.
<li><a href="#polygon_z_normal_f">polygon_z_normal_f</a> — Finds the Z component of the normal vector to three vertices.
<li><a href="#qscale_matrix">qscale_matrix</a> — Optimised routine for scaling an already generated matrix.
<li><a href="#qscale_matrix_f">qscale_matrix_f</a> — Optimised routine for scaling an already generated matrix.
<li><a href="#qtranslate_matrix">qtranslate_matrix</a> — Optimised routine for translating an already generated matrix.
<li><a href="#qtranslate_matrix_f">qtranslate_matrix_f</a> — Optimised routine for translating an already generated matrix.
<li><a href="#set_projection_viewport">set_projection_viewport</a> — Sets the viewport used to scale the output of persp_project().
<li><a href="#vector_length">vector_length</a> — Calculates the length of a vector.
<li><a href="#vector_length_f">vector_length_f</a> — Calculates the length of a vector.
</ul>
<p>
Allegro contains some 3d helper functions for manipulating vectors,
constructing and using transformation matrices, and doing perspective
projections from 3d space onto the screen. It is not, and never will be, a
fully fledged 3d library (the goal is to supply generic support routines,
not shrink-wrapped graphics code :-) but these functions may be useful for
developing your own 3d code.
<p>
Allegro uses a right-handed coordinate system, i.e. if you point the thumb
of your right hand along the x axis, and the index finger along the y axis,
your middle finger points in the direction of the z axis.
<p>
Allegro's world coordinate system typically has the positive x axis right,
the positive y axis up, and the positive z axis out of the screen. What
all this means is this: Assume, the viewer is located at the origin (0/0/0)
in world space, looks along the negative z axis (0/0/-1), and is oriented
so up is along the positive y axis (0/1/0). Then something located at
(100/200/-300) will be 100 to the right, 200 above, and 300 in front of the
viewer. Just like in OpenGL. (Of course, both OpenGL and Allegro allow to
use a different system.) Here's a short piece of code demonstrating the
transformation pipeline of a point from world space to the screen.
<blockquote class="code"><pre>
/* First, set up the projection viewport. */
<a href="#set_projection_viewport" class="autotype" title="Sets the viewport used to scale the output of persp_project().">set_projection_viewport</a> (0, 0, <a href="alleg009.html#SCREEN_W" class="autotype" title="Global define to obtain the size of the screen.">SCREEN_W</a>, <a href="alleg009.html#SCREEN_H" class="autotype" title="Global define to obtain the size of the screen.">SCREEN_H</a>);
/* Next, get a camera matrix, depending on the
* current viewer position and orientation.
*/
<a href="#get_camera_matrix_f" class="autotype" title="Floating point version of get_camera_matrix().">get_camera_matrix_f</a> (&m,
0, 0, 0, /* Viewer position, in this case, 0/0/0. */
0, 0, -1, /* Viewer direction, in this case along negative z. */
0, 1, 0, /* Up vector, in this case positive y. */
32, /* The FOV, here 45 degrees. */
(float)<a href="alleg009.html#SCREEN_W" class="autotype" title="Global define to obtain the size of the screen.">SCREEN_W</a> / (float)<a href="alleg009.html#SCREEN_H" class="autotype" title="Global define to obtain the size of the screen.">SCREEN_H</a>)); /* Aspect ratio. */
/* Applying the matrix transforms the point 100/200/-300
* from world space into camera space. The transformation
* moves and rotates the point so it is relative to the
* camera, scales it according to the FOV and aspect
* parameters, and also flips up and front direction -
* ready to project the point to the viewport.
*/
<a href="#apply_matrix_f" class="autotype" title="Multiplies a point by a transformation matrix.">apply_matrix_f</a> (&m, 100, 200, -300, &x, &y, &z);
/* Finally, the point is projected from
* camera space to the <a href="alleg009.html#screen" class="autotype" title="Global pointer to the screen hardware video memory.">screen</a>.
*/
<a href="#persp_project_f" class="autotype" title="Projects a 3d point into 2d screen space.">persp_project_f</a> (cx, cy, cz, &sx, &sy);</pre></blockquote>
<p>
For more details, look at the function descriptions of
set_projection_viewport(), get_camera_matrix(), and persp_project(), as well
as the relevant example programs.
<p>
All the 3d math functions are available in two versions: one which uses
fixed point arithmetic, and another which uses floating point. The syntax
for these is identical, but the floating point functions and structures are
postfixed with '_f', eg. the fixed point function cross_product() has a
floating point equivalent cross_product_f(). If you are programming in C++,
Allegro also overloads these functions for use with the 'fix' class.
<p>
3d transformations are accomplished by the use of a modelling matrix. This
is a 4x4 array of numbers that can be multiplied with a 3d point to produce
a different 3d point. By putting the right values into the matrix, it can be
made to do various operations like translation, rotation, and scaling. The
clever bit is that you can multiply two matrices together to produce a third
matrix, and this will have the same effect on points as applying the
original two matrices one after the other. For example, if you have one
matrix that rotates a point and another that shifts it sideways, you can
combine them to produce a matrix that will do the rotation and the shift in
a single step. You can build up extremely complex transformations in this
way, while only ever having to multiply each point by a single matrix.
<p>
Allegro actually cheats in the way it implements the matrix structure.
Rotation and scaling of a 3d point can be done with a simple 3x3 matrix, but
in order to translate it and project it onto the screen, the matrix must be
extended to 4x4, and the point extended into 4d space by the addition of an
extra coordinate, w=1. This is a bad thing in terms of efficiency, but
fortunately an optimisation is possible. Given the 4x4 matrix:
<blockquote class="text"><pre>
( a, b, c, d )
( e, f, g, h )
( i, j, k, l )
( m, n, o, p )
</pre></blockquote>
a pattern can be observed in which parts of it do what. The top left 3x3
grid implements rotation and scaling. The three values in the top right
column (d, h, and l) implement translation, and as long as the matrix is
only used for affine transformations, m, n and o will always be zero and p
will always be 1. If you don't know what affine means, read Foley & Van
Damme: basically it covers scaling, translation, and rotation, but not
projection. Since Allegro uses a separate function for projection, the
matrix functions only need to support affine transformations, which means
that there is no need to store the bottom row of the matrix. Allegro
implicitly assumes that it contains (0,0,0,1), and optimises the matrix
manipulation functions accordingly. Read chapter "Structures and types
defined by Allegro" for an internal view of the MATRIX/_f structures.
<p><br>
<div class="al-api"><b>extern <a class="autotype" href="alleg001.html#MATRIX" title="Fixed point matrix structure.">MATRIX</a> <a name="identity_matrix">identity_matrix</a>;</b></div><br>
<div class="al-api-cont"><b>extern <a class="autotype" href="alleg001.html#MATRIX_f" title="Floating point matrix structure.">MATRIX_f</a> <a name="identity_matrix_f">identity_matrix_f</a>;</b></div><br>
Global variables containing the 'do nothing' identity matrix. Multiplying
by the identity matrix has no effect.
<p><br>
<div class="al-api"><b>void <a name="get_translation_matrix">get_translation_matrix</a>(<a class="autotype" href="alleg001.html#MATRIX" title="Fixed point matrix structure.">MATRIX</a> *m, <a class="autotype" href="alleg001.html#fixed" title="Fixed point integer to replace floats.">fixed</a> x, <a class="autotype" href="alleg001.html#fixed" title="Fixed point integer to replace floats.">fixed</a> y, <a class="autotype" href="alleg001.html#fixed" title="Fixed point integer to replace floats.">fixed</a> z);</b></div><br>
<div class="al-api-cont"><b>void <a name="get_translation_matrix_f">get_translation_matrix_f</a>(<a class="autotype" href="alleg001.html#MATRIX_f" title="Floating point matrix structure.">MATRIX_f</a> *m, float x, float y, float z);</b></div><br>
Constructs a translation matrix, storing it in m. When applied to the
point (px, py, pz), this matrix will produce the point (px+x, py+y,
pz+z). In other words, it moves things sideways.
<blockquote class="xref"><em><b>See also:</b></em>
<a class="xref" href="#apply_matrix" title="Multiplies a point by a transformation matrix.">apply_matrix</a>,
<a class="xref" href="#get_transformation_matrix" title="Constructs X, Y, Z rotation matrices with an angle and scaling.">get_transformation_matrix</a>,
<a class="xref" href="#qtranslate_matrix" title="Optimised routine for translating an already generated matrix.">qtranslate_matrix</a>.</blockquote>
<blockquote class="eref"><em><b>Examples using this:</b></em>
<a class="eref" href="alleg045.html#exstars" title="3d starfield and lightsourced spaceship.">exstars</a>.</blockquote>
<div class="al-api"><b>void <a name="get_scaling_matrix">get_scaling_matrix</a>(<a class="autotype" href="alleg001.html#MATRIX" title="Fixed point matrix structure.">MATRIX</a> *m, <a class="autotype" href="alleg001.html#fixed" title="Fixed point integer to replace floats.">fixed</a> x, <a class="autotype" href="alleg001.html#fixed" title="Fixed point integer to replace floats.">fixed</a> y, <a class="autotype" href="alleg001.html#fixed" title="Fixed point integer to replace floats.">fixed</a> z);</b></div><br>
<div class="al-api-cont"><b>void <a name="get_scaling_matrix_f">get_scaling_matrix_f</a>(<a class="autotype" href="alleg001.html#MATRIX_f" title="Floating point matrix structure.">MATRIX_f</a> *m, float x, float y, float z);</b></div><br>
Constructs a scaling matrix, storing it in m. When applied to the point
(px, py, pz), this matrix will produce the point (px*x, py*y, pz*z). In
other words, it stretches or shrinks things.
<blockquote class="xref"><em><b>See also:</b></em>
<a class="xref" href="#apply_matrix" title="Multiplies a point by a transformation matrix.">apply_matrix</a>,
<a class="xref" href="#get_transformation_matrix" title="Constructs X, Y, Z rotation matrices with an angle and scaling.">get_transformation_matrix</a>,
<a class="xref" href="#qscale_matrix" title="Optimised routine for scaling an already generated matrix.">qscale_matrix</a>.</blockquote>
<div class="al-api"><b>void <a name="get_x_rotate_matrix">get_x_rotate_matrix</a>(<a class="autotype" href="alleg001.html#MATRIX" title="Fixed point matrix structure.">MATRIX</a> *m, <a class="autotype" href="alleg001.html#fixed" title="Fixed point integer to replace floats.">fixed</a> r);</b></div><br>
<div class="al-api-cont"><b>void <a name="get_x_rotate_matrix_f">get_x_rotate_matrix_f</a>(<a class="autotype" href="alleg001.html#MATRIX_f" title="Floating point matrix structure.">MATRIX_f</a> *m, float r);</b></div><br>
Construct X axis rotation matrices, storing them in m. When applied to a
point, these matrices will rotate it about the X axis by the specified
angle (given in binary, 256 degrees to a circle format).
<blockquote class="xref"><em><b>See also:</b></em>
<a class="xref" href="#apply_matrix" title="Multiplies a point by a transformation matrix.">apply_matrix</a>,
<a class="xref" href="#get_rotation_matrix" title="Constructs X, Y, Z rotation matrices.">get_rotation_matrix</a>,
<a class="xref" href="#get_y_rotate_matrix" title="Construct Y axis rotation matrices.">get_y_rotate_matrix</a>,
<a class="xref" href="#get_z_rotate_matrix" title="Construct Z axis rotation matrices.">get_z_rotate_matrix</a>.</blockquote>
<div class="al-api"><b>void <a name="get_y_rotate_matrix">get_y_rotate_matrix</a>(<a class="autotype" href="alleg001.html#MATRIX" title="Fixed point matrix structure.">MATRIX</a> *m, <a class="autotype" href="alleg001.html#fixed" title="Fixed point integer to replace floats.">fixed</a> r);</b></div><br>
<div class="al-api-cont"><b>void <a name="get_y_rotate_matrix_f">get_y_rotate_matrix_f</a>(<a class="autotype" href="alleg001.html#MATRIX_f" title="Floating point matrix structure.">MATRIX_f</a> *m, float r);</b></div><br>
Construct Y axis rotation matrices, storing them in m. When applied to a
point, these matrices will rotate it about the Y axis by the specified
angle (given in binary, 256 degrees to a circle format).
<blockquote class="xref"><em><b>See also:</b></em>
<a class="xref" href="#apply_matrix" title="Multiplies a point by a transformation matrix.">apply_matrix</a>,
<a class="xref" href="#get_rotation_matrix" title="Constructs X, Y, Z rotation matrices.">get_rotation_matrix</a>,
<a class="xref" href="#get_x_rotate_matrix" title="Construct X axis rotation matrices.">get_x_rotate_matrix</a>,
<a class="xref" href="#get_z_rotate_matrix" title="Construct Z axis rotation matrices.">get_z_rotate_matrix</a>.</blockquote>
<div class="al-api"><b>void <a name="get_z_rotate_matrix">get_z_rotate_matrix</a>(<a class="autotype" href="alleg001.html#MATRIX" title="Fixed point matrix structure.">MATRIX</a> *m, <a class="autotype" href="alleg001.html#fixed" title="Fixed point integer to replace floats.">fixed</a> r);</b></div><br>
<div class="al-api-cont"><b>void <a name="get_z_rotate_matrix_f">get_z_rotate_matrix_f</a>(<a class="autotype" href="alleg001.html#MATRIX_f" title="Floating point matrix structure.">MATRIX_f</a> *m, float r);</b></div><br>
Construct Z axis rotation matrices, storing them in m. When applied to a
point, these matrices will rotate it about the Z axis by the specified
angle (given in binary, 256 degrees to a circle format).
<blockquote class="xref"><em><b>See also:</b></em>
<a class="xref" href="#apply_matrix" title="Multiplies a point by a transformation matrix.">apply_matrix</a>,
<a class="xref" href="#get_rotation_matrix" title="Constructs X, Y, Z rotation matrices.">get_rotation_matrix</a>,
<a class="xref" href="#get_x_rotate_matrix" title="Construct X axis rotation matrices.">get_x_rotate_matrix</a>,
<a class="xref" href="#get_y_rotate_matrix" title="Construct Y axis rotation matrices.">get_y_rotate_matrix</a>.</blockquote>
<div class="al-api"><b>void <a name="get_rotation_matrix">get_rotation_matrix</a>(<a class="autotype" href="alleg001.html#MATRIX" title="Fixed point matrix structure.">MATRIX</a> *m, <a class="autotype" href="alleg001.html#fixed" title="Fixed point integer to replace floats.">fixed</a> x, <a class="autotype" href="alleg001.html#fixed" title="Fixed point integer to replace floats.">fixed</a> y, <a class="autotype" href="alleg001.html#fixed" title="Fixed point integer to replace floats.">fixed</a> z);</b></div><br>
<div class="al-api-cont"><b>void <a name="get_rotation_matrix_f">get_rotation_matrix_f</a>(<a class="autotype" href="alleg001.html#MATRIX_f" title="Floating point matrix structure.">MATRIX_f</a> *m, float x, float y, float z);</b></div><br>
Constructs a transformation matrix which will rotate points around all
three axes by the specified amounts (given in binary, 256 degrees to a
circle format). The direction of rotation can simply be found out with
the right-hand rule: Point the dumb of your right hand towards the
origin along the axis of rotation, and the fingers will curl in the
positive direction of rotation. E.g. if you rotate around the y axis,
and look at the scene from above, a positive angle will rotate in
clockwise direction.
<blockquote class="xref"><em><b>See also:</b></em>
<a class="xref" href="#apply_matrix" title="Multiplies a point by a transformation matrix.">apply_matrix</a>,
<a class="xref" href="#get_transformation_matrix" title="Constructs X, Y, Z rotation matrices with an angle and scaling.">get_transformation_matrix</a>,
<a class="xref" href="#get_vector_rotation_matrix" title="Constructs X, Y, Z rotation matrices with an angle.">get_vector_rotation_matrix</a>,
<a class="xref" href="#get_x_rotate_matrix" title="Construct X axis rotation matrices.">get_x_rotate_matrix</a>,
<a class="xref" href="#get_y_rotate_matrix" title="Construct Y axis rotation matrices.">get_y_rotate_matrix</a>,
<a class="xref" href="#get_z_rotate_matrix" title="Construct Z axis rotation matrices.">get_z_rotate_matrix</a>,
<a class="xref" href="#get_align_matrix" title="Rotates a matrix to align it along specified coordinate vectors.">get_align_matrix</a>.</blockquote>
<blockquote class="eref"><em><b>Examples using this:</b></em>
<a class="eref" href="alleg045.html#ex12bit" title="How to fake a 12-bit truecolor mode on an 8-bit card.">ex12bit</a>,
<a class="eref" href="alleg045.html#exquat" title="A comparison between Euler angles and quaternions.">exquat</a>,
<a class="eref" href="alleg045.html#exstars" title="3d starfield and lightsourced spaceship.">exstars</a>.</blockquote>
<div class="al-api"><b>void <a name="get_align_matrix">get_align_matrix</a>(<a class="autotype" href="alleg001.html#MATRIX" title="Fixed point matrix structure.">MATRIX</a> *m, <a class="autotype" href="alleg001.html#fixed" title="Fixed point integer to replace floats.">fixed</a> xfront, yfront, zfront,
<a class="autotype" href="alleg001.html#fixed" title="Fixed point integer to replace floats.">fixed</a> xup, <a class="autotype" href="alleg001.html#fixed" title="Fixed point integer to replace floats.">fixed</a> yup, <a class="autotype" href="alleg001.html#fixed" title="Fixed point integer to replace floats.">fixed</a> zup);</b></div><br>
Rotates a matrix so that it is aligned along the specified coordinate
vectors (they need not be normalized or perpendicular, but the up and
front must not be equal). A front vector of 0,0,-1 and up vector of 0,1,0
will return the identity matrix.
<blockquote class="xref"><em><b>See also:</b></em>
<a class="xref" href="#apply_matrix" title="Multiplies a point by a transformation matrix.">apply_matrix</a>,
<a class="xref" href="#get_camera_matrix" title="Constructs a camera matrix for perspective projection.">get_camera_matrix</a>.</blockquote>
<div class="al-api"><b>void <a name="get_align_matrix_f">get_align_matrix_f</a>(<a class="autotype" href="alleg001.html#MATRIX" title="Fixed point matrix structure.">MATRIX</a> *m, float xfront, yfront, zfront,
float xup, yup, zup);</b></div><br>
Floating point version of get_align_matrix().
<blockquote class="xref"><em><b>See also:</b></em>
<a class="xref" href="#get_align_matrix" title="Rotates a matrix to align it along specified coordinate vectors.">get_align_matrix</a>.</blockquote>
<div class="al-api"><b>void <a name="get_vector_rotation_matrix">get_vector_rotation_matrix</a>(<a class="autotype" href="alleg001.html#MATRIX" title="Fixed point matrix structure.">MATRIX</a> *m, <a class="autotype" href="alleg001.html#fixed" title="Fixed point integer to replace floats.">fixed</a> x, y, z, <a class="autotype" href="alleg001.html#fixed" title="Fixed point integer to replace floats.">fixed</a> a);</b></div><br>
<div class="al-api-cont"><b>void <a name="get_vector_rotation_matrix_f">get_vector_rotation_matrix_f</a>(<a class="autotype" href="alleg001.html#MATRIX_f" title="Floating point matrix structure.">MATRIX_f</a> *m, float x, y, z, float a);</b></div><br>
Constructs a transformation matrix which will rotate points around the
specified x,y,z vector by the specified angle (given in binary, 256
degrees to a circle format).
<blockquote class="xref"><em><b>See also:</b></em>
<a class="xref" href="#apply_matrix" title="Multiplies a point by a transformation matrix.">apply_matrix</a>,
<a class="xref" href="#get_rotation_matrix" title="Constructs X, Y, Z rotation matrices.">get_rotation_matrix</a>,
<a class="xref" href="#get_align_matrix" title="Rotates a matrix to align it along specified coordinate vectors.">get_align_matrix</a>.</blockquote>
<blockquote class="eref"><em><b>Examples using this:</b></em>
<a class="eref" href="alleg045.html#excamera" title="Viewing a 3d world from an arbitrary camera position.">excamera</a>.</blockquote>
<div class="al-api"><b>void <a name="get_transformation_matrix">get_transformation_matrix</a>(<a class="autotype" href="alleg001.html#MATRIX" title="Fixed point matrix structure.">MATRIX</a> *m, <a class="autotype" href="alleg001.html#fixed" title="Fixed point integer to replace floats.">fixed</a> scale,
<a class="autotype" href="alleg001.html#fixed" title="Fixed point integer to replace floats.">fixed</a> xrot, yrot, zrot, x, y, z);</b></div><br>
Constructs a transformation matrix which will rotate points around all
three axes by the specified amounts (given in binary, 256 degrees to a
circle format), scale the result by the specified amount (pass 1 for no
change of scale), and then translate to the requested x, y, z position.
<blockquote class="xref"><em><b>See also:</b></em>
<a class="xref" href="#apply_matrix" title="Multiplies a point by a transformation matrix.">apply_matrix</a>,
<a class="xref" href="#get_rotation_matrix" title="Constructs X, Y, Z rotation matrices.">get_rotation_matrix</a>,
<a class="xref" href="#get_scaling_matrix" title="Constructs a scaling matrix.">get_scaling_matrix</a>,
<a class="xref" href="#get_translation_matrix" title="Constructs a translation matrix.">get_translation_matrix</a>.</blockquote>
<blockquote class="eref"><em><b>Examples using this:</b></em>
<a class="eref" href="alleg045.html#ex3d" title="3d 'bouncy cubes' demo.">ex3d</a>,
<a class="eref" href="alleg045.html#exstars" title="3d starfield and lightsourced spaceship.">exstars</a>.</blockquote>
<div class="al-api"><b>void <a name="get_transformation_matrix_f">get_transformation_matrix_f</a>(<a class="autotype" href="alleg001.html#MATRIX_f" title="Floating point matrix structure.">MATRIX_f</a> *m, float scale,
float xrot, yrot, zrot, x, y, z);</b></div><br>
Floating point version of get_transformation_matrix().
<blockquote class="xref"><em><b>See also:</b></em>
<a class="xref" href="#get_transformation_matrix" title="Constructs X, Y, Z rotation matrices with an angle and scaling.">get_transformation_matrix</a>.</blockquote>
<blockquote class="eref"><em><b>Examples using this:</b></em>
<a class="eref" href="alleg045.html#exzbuf" title="Z-buffered polygons demo.">exzbuf</a>.</blockquote>
<div class="al-api"><b>void <a name="get_camera_matrix">get_camera_matrix</a>(<a class="autotype" href="alleg001.html#MATRIX" title="Fixed point matrix structure.">MATRIX</a> *m, <a class="autotype" href="alleg001.html#fixed" title="Fixed point integer to replace floats.">fixed</a> x, y, z, xfront, yfront, zfront,
<a class="autotype" href="alleg001.html#fixed" title="Fixed point integer to replace floats.">fixed</a> xup, yup, zup, fov, aspect);</b></div><br>
Constructs a camera matrix for translating world-space objects into a
normalised view space, ready for the perspective projection. The x, y,
and z parameters specify the camera position, xfront, yfront, and zfront
are the 'in front' vector specifying which way the camera is facing
(this can be any length: normalisation is not required), and xup, yup,
and zup are the 'up' direction vector.
<p>
The fov parameter specifies the field of view (ie. width of the camera
focus) in binary, 256 degrees to the circle format. For typical
projections, a field of view in the region 32-48 will work well. 64
(90 degrees) applies no extra scaling - so something which is one unit away
from the viewer will be directly scaled to the viewport. A bigger FOV
moves you closer to the viewing plane, so more objects will appear. A
smaller FOV moves you away from the viewing plane, which means you see a
smaller part of the world.
<p>
Finally, the aspect ratio is used to scale the Y dimensions of the image
relative to the X axis, so you can use it to adjust the proportions of
the output image (set it to 1 for no scaling - but keep in mind that the
projection also performs scaling according to the viewport size).
Typically, you will pass (float)w/(float)h, where w and h are the
parameters you passed to set_projection_viewport.
<p>
Note that versions prior to 4.1.0 multiplied this aspect ratio by 4/3.
<blockquote class="xref"><em><b>See also:</b></em>
<a class="xref" href="#apply_matrix" title="Multiplies a point by a transformation matrix.">apply_matrix</a>,
<a class="xref" href="#get_align_matrix" title="Rotates a matrix to align it along specified coordinate vectors.">get_align_matrix</a>,
<a class="xref" href="#set_projection_viewport" title="Sets the viewport used to scale the output of persp_project().">set_projection_viewport</a>,
<a class="xref" href="#persp_project" title="Projects a 3d point into 2d screen space.">persp_project</a>.</blockquote>
<div class="al-api"><b>void <a name="get_camera_matrix_f">get_camera_matrix_f</a>(<a class="autotype" href="alleg001.html#MATRIX_f" title="Floating point matrix structure.">MATRIX_f</a> *m, float x, y, z, xfront, yfront, zfront,
float xup, yup, zup, fov, aspect);</b></div><br>
Floating point version of get_camera_matrix().
<blockquote class="xref"><em><b>See also:</b></em>
<a class="xref" href="#get_camera_matrix" title="Constructs a camera matrix for perspective projection.">get_camera_matrix</a>.</blockquote>
<blockquote class="eref"><em><b>Examples using this:</b></em>
<a class="eref" href="alleg045.html#excamera" title="Viewing a 3d world from an arbitrary camera position.">excamera</a>,
<a class="eref" href="alleg045.html#exquat" title="A comparison between Euler angles and quaternions.">exquat</a>.</blockquote>
<div class="al-api"><b>void <a name="qtranslate_matrix">qtranslate_matrix</a>(<a class="autotype" href="alleg001.html#MATRIX" title="Fixed point matrix structure.">MATRIX</a> *m, <a class="autotype" href="alleg001.html#fixed" title="Fixed point integer to replace floats.">fixed</a> x, <a class="autotype" href="alleg001.html#fixed" title="Fixed point integer to replace floats.">fixed</a> y, <a class="autotype" href="alleg001.html#fixed" title="Fixed point integer to replace floats.">fixed</a> z);</b></div><br>
<div class="al-api-cont"><b>void <a name="qtranslate_matrix_f">qtranslate_matrix_f</a>(<a class="autotype" href="alleg001.html#MATRIX_f" title="Floating point matrix structure.">MATRIX_f</a> *m, float x, float y, float z);</b></div><br>
Optimised routine for translating an already generated matrix: this
simply adds in the translation offset, so there is no need to build two
temporary matrices and then multiply them together.
<blockquote class="xref"><em><b>See also:</b></em>
<a class="xref" href="#get_translation_matrix" title="Constructs a translation matrix.">get_translation_matrix</a>.</blockquote>
<div class="al-api"><b>void <a name="qscale_matrix">qscale_matrix</a>(<a class="autotype" href="alleg001.html#MATRIX" title="Fixed point matrix structure.">MATRIX</a> *m, <a class="autotype" href="alleg001.html#fixed" title="Fixed point integer to replace floats.">fixed</a> scale);</b></div><br>
<div class="al-api-cont"><b>void <a name="qscale_matrix_f">qscale_matrix_f</a>(<a class="autotype" href="alleg001.html#MATRIX_f" title="Floating point matrix structure.">MATRIX_f</a> *m, float scale);</b></div><br>
Optimised routine for scaling an already generated matrix: this simply
adds in the scale factor, so there is no need to build two temporary
matrices and then multiply them together.
<blockquote class="xref"><em><b>See also:</b></em>
<a class="xref" href="#get_scaling_matrix" title="Constructs a scaling matrix.">get_scaling_matrix</a>.</blockquote>
<div class="al-api"><b>void <a name="matrix_mul">matrix_mul</a>(const <a class="autotype" href="alleg001.html#MATRIX" title="Fixed point matrix structure.">MATRIX</a> *m1, const <a class="autotype" href="alleg001.html#MATRIX" title="Fixed point matrix structure.">MATRIX</a> *m2, <a class="autotype" href="alleg001.html#MATRIX" title="Fixed point matrix structure.">MATRIX</a> *out);</b></div><br>
<div class="al-api-cont"><b>void <a name="matrix_mul_f">matrix_mul_f</a>(const <a class="autotype" href="alleg001.html#MATRIX_f" title="Floating point matrix structure.">MATRIX_f</a> *m1, const <a class="autotype" href="alleg001.html#MATRIX_f" title="Floating point matrix structure.">MATRIX_f</a> *m2, <a class="autotype" href="alleg001.html#MATRIX_f" title="Floating point matrix structure.">MATRIX_f</a> *out);</b></div><br>
Multiplies two matrices, storing the result in out (this may be a
duplicate of one of the input matrices, but it is faster when the inputs
and output are all different). The resulting matrix will have the same
effect as the combination of m1 and m2, ie. when applied to a point p, (p
* out) = ((p * m1) * m2). Any number of transformations can be
concatenated in this way. Note that matrix multiplication is not
commutative, ie. matrix_mul(m1, m2) != matrix_mul(m2, m1).
<blockquote class="xref"><em><b>See also:</b></em>
<a class="xref" href="#apply_matrix" title="Multiplies a point by a transformation matrix.">apply_matrix</a>.</blockquote>
<blockquote class="eref"><em><b>Examples using this:</b></em>
<a class="eref" href="alleg045.html#exquat" title="A comparison between Euler angles and quaternions.">exquat</a>,
<a class="eref" href="alleg045.html#exscn3d" title="Using the 3d scene functions.">exscn3d</a>.</blockquote>
<div class="al-api"><b><a class="autotype" href="alleg001.html#fixed" title="Fixed point integer to replace floats.">fixed</a> <a name="vector_length">vector_length</a>(<a class="autotype" href="alleg001.html#fixed" title="Fixed point integer to replace floats.">fixed</a> x, <a class="autotype" href="alleg001.html#fixed" title="Fixed point integer to replace floats.">fixed</a> y, <a class="autotype" href="alleg001.html#fixed" title="Fixed point integer to replace floats.">fixed</a> z);</b></div><br>
<div class="al-api-cont"><b>float <a name="vector_length_f">vector_length_f</a>(float x, float y, float z);</b></div><br>
Calculates the length of the vector (x, y, z), using that good 'ole
Pythagoras theorem.
<blockquote class="xref"><em><b>See also:</b></em>
<a class="xref" href="#normalize_vector" title="Converts the vector to a unit vector.">normalize_vector</a>.</blockquote>
<div class="al-api"><b>void <a name="normalize_vector">normalize_vector</a>(<a class="autotype" href="alleg001.html#fixed" title="Fixed point integer to replace floats.">fixed</a> *x, <a class="autotype" href="alleg001.html#fixed" title="Fixed point integer to replace floats.">fixed</a> *y, <a class="autotype" href="alleg001.html#fixed" title="Fixed point integer to replace floats.">fixed</a> *z);</b></div><br>
<div class="al-api-cont"><b>void <a name="normalize_vector_f">normalize_vector_f</a>(float *x, float *y, float *z);</b></div><br>
Converts the vector (*x, *y, *z) to a unit vector. This points in the
same direction as the original vector, but has a length of one.
<blockquote class="xref"><em><b>See also:</b></em>
<a class="xref" href="#vector_length" title="Calculates the length of a vector.">vector_length</a>,
<a class="xref" href="#dot_product" title="Calculates the dot product.">dot_product</a>,
<a class="xref" href="#cross_product" title="Calculates the cross product.">cross_product</a>.</blockquote>
<blockquote class="eref"><em><b>Examples using this:</b></em>
<a class="eref" href="alleg045.html#exstars" title="3d starfield and lightsourced spaceship.">exstars</a>.</blockquote>
<div class="al-api"><b><a class="autotype" href="alleg001.html#fixed" title="Fixed point integer to replace floats.">fixed</a> <a name="dot_product">dot_product</a>(<a class="autotype" href="alleg001.html#fixed" title="Fixed point integer to replace floats.">fixed</a> x1, y1, z1, x2, y2, z2);</b></div><br>
<div class="al-api-cont"><b>float <a name="dot_product_f">dot_product_f</a>(float x1, y1, z1, x2, y2, z2);</b></div><br>
Calculates the dot product (x1, y1, z1) . (x2, y2, z2), returning the
result.
<blockquote class="xref"><em><b>See also:</b></em>
<a class="xref" href="#cross_product" title="Calculates the cross product.">cross_product</a>,
<a class="xref" href="#normalize_vector" title="Converts the vector to a unit vector.">normalize_vector</a>.</blockquote>
<blockquote class="eref"><em><b>Examples using this:</b></em>
<a class="eref" href="alleg045.html#exstars" title="3d starfield and lightsourced spaceship.">exstars</a>.</blockquote>
<div class="al-api"><b>void <a name="cross_product">cross_product</a>(<a class="autotype" href="alleg001.html#fixed" title="Fixed point integer to replace floats.">fixed</a> x1, y1, z1, x2, y2, z2, *xout, *yout, *zout);</b></div><br>
<div class="al-api-cont"><b>void <a name="cross_product_f">cross_product_f</a>(float x1, y1, z1, x2, y2, z2, *xout, *yout, *zout);</b></div><br>
Calculates the cross product (x1, y1, z1) x (x2, y2, z2), storing the
result in (*xout, *yout, *zout). The cross product is perpendicular to
both of the input vectors, so it can be used to generate polygon normals.
<blockquote class="xref"><em><b>See also:</b></em>
<a class="xref" href="#dot_product" title="Calculates the dot product.">dot_product</a>,
<a class="xref" href="#polygon_z_normal" title="Finds the Z component of the normal vector to three vertices.">polygon_z_normal</a>,
<a class="xref" href="#normalize_vector" title="Converts the vector to a unit vector.">normalize_vector</a>.</blockquote>
<blockquote class="eref"><em><b>Examples using this:</b></em>
<a class="eref" href="alleg045.html#exstars" title="3d starfield and lightsourced spaceship.">exstars</a>.</blockquote>
<div class="al-api"><b><a class="autotype" href="alleg001.html#fixed" title="Fixed point integer to replace floats.">fixed</a> <a name="polygon_z_normal">polygon_z_normal</a>(const <a class="autotype" href="alleg001.html#V3D" title="Fixed point vertex structure used by 3d functions.">V3D</a> *v1, const <a class="autotype" href="alleg001.html#V3D" title="Fixed point vertex structure used by 3d functions.">V3D</a> *v2, const <a class="autotype" href="alleg001.html#V3D" title="Fixed point vertex structure used by 3d functions.">V3D</a> *v3);</b></div><br>
<div class="al-api-cont"><b>float <a name="polygon_z_normal_f">polygon_z_normal_f</a>(const <a class="autotype" href="alleg001.html#V3D_f" title="Floating point vertex structure used by 3d functions.">V3D_f</a> *v1, const <a class="autotype" href="alleg001.html#V3D_f" title="Floating point vertex structure used by 3d functions.">V3D_f</a> *v2, const <a class="autotype" href="alleg001.html#V3D_f" title="Floating point vertex structure used by 3d functions.">V3D_f</a> *v3);</b></div><br>
Finds the Z component of the normal vector to the specified three
vertices (which must be part of a convex polygon). This is used mainly in
back-face culling. The back-faces of closed polyhedra are never visible
to the viewer, therefore they never need to be drawn. This can cull on
average half the polygons from a scene. If the normal is negative the
polygon can safely be culled. If it is zero, the polygon is perpendicular
to the screen.
<p>
However, this method of culling back-faces must only be used once the X and
Y coordinates have been projected into screen space using persp_project()
(or if an orthographic (isometric) projection is being used). Note that
this function will fail if the three vertices are co-linear (they lie on
the same line) in 3D space.
<blockquote class="xref"><em><b>See also:</b></em>
<a class="xref" href="#cross_product" title="Calculates the cross product.">cross_product</a>.</blockquote>
<blockquote class="eref"><em><b>Examples using this:</b></em>
<a class="eref" href="alleg045.html#ex3d" title="3d 'bouncy cubes' demo.">ex3d</a>.</blockquote>
<div class="al-api"><b>void <a name="apply_matrix">apply_matrix</a>(const <a class="autotype" href="alleg001.html#MATRIX" title="Fixed point matrix structure.">MATRIX</a> *m, <a class="autotype" href="alleg001.html#fixed" title="Fixed point integer to replace floats.">fixed</a> x, y, z, *xout, *yout, *zout);</b></div><br>
<div class="al-api-cont"><b>void <a name="apply_matrix_f">apply_matrix_f</a>(const <a class="autotype" href="alleg001.html#MATRIX_f" title="Floating point matrix structure.">MATRIX_f</a> *m, float x, y, z, *xout, *yout, *zout);</b></div><br>
Multiplies the point (x, y, z) by the transformation matrix m, storing
the result in (*xout, *yout, *zout).
<blockquote class="xref"><em><b>See also:</b></em>
<a class="xref" href="#matrix_mul" title="Multiplies two matrices.">matrix_mul</a>.</blockquote>
<blockquote class="eref"><em><b>Examples using this:</b></em>
<a class="eref" href="alleg045.html#ex12bit" title="How to fake a 12-bit truecolor mode on an 8-bit card.">ex12bit</a>,
<a class="eref" href="alleg045.html#ex3d" title="3d 'bouncy cubes' demo.">ex3d</a>,
<a class="eref" href="alleg045.html#exstars" title="3d starfield and lightsourced spaceship.">exstars</a>.</blockquote>
<div class="al-api"><b>void <a name="set_projection_viewport">set_projection_viewport</a>(int x, int y, int w, int h);</b></div><br>
Sets the viewport used to scale the output of the persp_project()
function. Pass the dimensions of the screen area you want to draw onto,
which will typically be 0, 0, SCREEN_W, and SCREEN_H. Also don't forget
to pass an appropriate aspect ratio to get_camera_matrix later. The
width and height you specify here will determine how big your viewport
is in 3d space. So if an object in your 3D space is w units wide, it
will fill the complete screen when you run into it (i.e., if it has a
distance of 1.0 after the camera matrix was applied. The fov and
aspect-ratio parameters to get_camera_matrix also apply some scaling
though, so this isn't always completely true). If you pass -1/-1/2/2 as
parameters, no extra scaling will be performed by the projection.
<blockquote class="xref"><em><b>See also:</b></em>
<a class="xref" href="#persp_project" title="Projects a 3d point into 2d screen space.">persp_project</a>,
<a class="xref" href="#get_camera_matrix" title="Constructs a camera matrix for perspective projection.">get_camera_matrix</a>.</blockquote>
<blockquote class="eref"><em><b>Examples using this:</b></em>
<a class="eref" href="alleg045.html#ex3d" title="3d 'bouncy cubes' demo.">ex3d</a>,
<a class="eref" href="alleg045.html#excamera" title="Viewing a 3d world from an arbitrary camera position.">excamera</a>,
<a class="eref" href="alleg045.html#exquat" title="A comparison between Euler angles and quaternions.">exquat</a>,
<a class="eref" href="alleg045.html#exscn3d" title="Using the 3d scene functions.">exscn3d</a>,
<a class="eref" href="alleg045.html#exstars" title="3d starfield and lightsourced spaceship.">exstars</a>,
<a class="eref" href="alleg045.html#exzbuf" title="Z-buffered polygons demo.">exzbuf</a>.</blockquote>
<div class="al-api"><b>void <a name="persp_project">persp_project</a>(<a class="autotype" href="alleg001.html#fixed" title="Fixed point integer to replace floats.">fixed</a> x, <a class="autotype" href="alleg001.html#fixed" title="Fixed point integer to replace floats.">fixed</a> y, <a class="autotype" href="alleg001.html#fixed" title="Fixed point integer to replace floats.">fixed</a> z, <a class="autotype" href="alleg001.html#fixed" title="Fixed point integer to replace floats.">fixed</a> *xout, <a class="autotype" href="alleg001.html#fixed" title="Fixed point integer to replace floats.">fixed</a> *yout);</b></div><br>
<div class="al-api-cont"><b>void <a name="persp_project_f">persp_project_f</a>(float x, float y, float z, float *xout, float *yout);</b></div><br>
Projects the 3d point (x, y, z) into 2d screen space, storing the result
in (*xout, *yout) and using the scaling parameters previously set by
calling set_projection_viewport(). This function projects from the
normalized viewing pyramid, which has a camera at the origin and facing
along the positive z axis. The x axis runs left/right, y runs up/down,
and z increases with depth into the screen. The camera has a 90 degree
field of view, ie. points on the planes x=z and -x=z will map onto the
left and right edges of the screen, and the planes y=z and -y=z map to
the top and bottom of the screen. If you want a different field of view
or camera location, you should transform all your objects with an
appropriate viewing matrix, eg. to get the effect of panning the camera
10 degrees to the left, rotate all your objects 10 degrees to the right.
<blockquote class="xref"><em><b>See also:</b></em>
<a class="xref" href="#set_projection_viewport" title="Sets the viewport used to scale the output of persp_project().">set_projection_viewport</a>,
<a class="xref" href="#get_camera_matrix" title="Constructs a camera matrix for perspective projection.">get_camera_matrix</a>.</blockquote>
<blockquote class="eref"><em><b>Examples using this:</b></em>
<a class="eref" href="alleg045.html#ex3d" title="3d 'bouncy cubes' demo.">ex3d</a>,
<a class="eref" href="alleg045.html#exstars" title="3d starfield and lightsourced spaceship.">exstars</a>.</blockquote>
<hr><div class="al-back-to-contents"><a href="allegro.html">Back to contents</a></div>
</body>
</html>
|