/usr/share/acl2-7.1/ld.lisp is in acl2-source 7.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 | ; ACL2 Version 7.1 -- A Computational Logic for Applicative Common Lisp
; Copyright (C) 2015, Regents of the University of Texas
; This version of ACL2 is a descendent of ACL2 Version 1.9, Copyright
; (C) 1997 Computational Logic, Inc. See the documentation topic NOTE-2-0.
; This program is free software; you can redistribute it and/or modify
; it under the terms of the LICENSE file distributed with ACL2.
; This program is distributed in the hope that it will be useful,
; but WITHOUT ANY WARRANTY; without even the implied warranty of
; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
; LICENSE for more details.
; Written by: Matt Kaufmann and J Strother Moore
; email: Kaufmann@cs.utexas.edu and Moore@cs.utexas.edu
; Department of Computer Science
; University of Texas at Austin
; Austin, TX 78712 U.S.A.
(in-package "ACL2")
; This file, ld.lisp, provides the definition of the ACL2 macro ld,
; which implements both the ACL2 read-eval-print loop and the ACL2
; file loader.
(defun default-print-prompt (channel state)
; This is the default function for printing the ACL2 ld loop prompt. A typical
; prompt looks like: ACL2 !>, where the number of >'s indicates the ld-level.
; The prompt is printed by (fmt "~@0~sr ~@1~*2" a channel state nil), where a
; is an alist computed from current-package, ld-level, default-defun-mode,
; guard-checking-on, and ld-skip-proofsp, and #\r is bound to "" except for the
; #+:non-standard-analysis version, where it is bound to "(r)". To keep from
; consing up this alist every time, we memoize it, storing in 'prompt-memo the
; tuple (pkg level skipp defun-mode+ gc-on a), where defun-mode+ is the
; default-defun-mode except in raw-mode, where defun-mode+ is nil. Thus, if
; the current settings are as in the memo, we use the a in the memo.
; Otherwise, we compute and store a new memo.
; Warning: If you change the default prompt format, be sure to change it
; in eval-event-lst, where we print it by hand.
(let ((prompt-memo (and (f-boundp-global 'prompt-memo state)
(f-get-global 'prompt-memo state))))
(cond
((and prompt-memo
(equal (car prompt-memo) (f-get-global 'current-package state))
(equal (cadr prompt-memo) (f-get-global 'ld-level state))
(eq (caddr prompt-memo) (f-get-global 'ld-skip-proofsp state))
(eq (cadddr prompt-memo) (and (not (raw-mode-p state))
(default-defun-mode (w state))))
; In the following, we could use iff instead of eq, because the dependence of
; defun-mode-prompt on (f-get-global 'guard-checking-on state) is restricted to
; whether or not the latter is nil/:none. But it's cheap to update the
; prompt-memo so we keep the more restrictive eq test for robustness, in case
; the code for defun-mode-prompt changes.
(eq (car (cddddr prompt-memo))
(f-get-global 'guard-checking-on state)))
(fmt1 "~@0~sr ~@1~*2" (cadr (cddddr prompt-memo)) 0 channel state nil))
(t
(let ((alist
(list (cons #\0 (f-get-global 'current-package state))
(cons #\1 (defun-mode-prompt-string state))
(cons #\2 (list "" ">" ">" ">"
(make-list-ac (f-get-global 'ld-level state)
nil nil)))
(cons #\r
#+:non-standard-analysis "(r)"
#-:non-standard-analysis ""))))
(pprogn
(f-put-global 'prompt-memo
(list (f-get-global 'current-package state)
(f-get-global 'ld-level state)
(f-get-global 'ld-skip-proofsp state)
(and (not (raw-mode-p state))
(default-defun-mode (w state)))
(not (gc-off state))
; There is no need to memoize the binding of #\r for the purpose of checking if
; the prompt is current, since it never changes during a given session. Of
; course, #\r is bound in the alist.
alist)
state)
(fmt1 "~@0~sr ~@1~*2" alist 0 channel state nil)))))))
(defun print-prompt (prompt output-channel state)
(with-output-forced
output-channel
(col state)
(let ((prompt-fn (cond ((null prompt) nil)
((eq prompt t)
(f-get-global 'prompt-function state))
(t prompt))))
(cond
((null prompt-fn) (mv 0 state))
((eq prompt-fn 'default-print-prompt)
(default-print-prompt output-channel state))
(t (mv-let (erp trans-ans state)
(trans-eval (list prompt-fn
(list 'quote output-channel)
'state)
'print-prompt state t)
; If erp is non-nil, trans-ans is of the form (stobjs-out . valx). We
; strongly expect that stobjs-out is (nil state). (That is true if
; prompt is in fact ld-prompt.) That being the case, we expect
; valx to be (col replaced-state).
(cond
((or erp
(not (and (equal (car trans-ans) '(nil state))
(integerp (car (cdr trans-ans))))))
(fmt1 "~%~%Bad Prompt~%See :DOC ld-prompt>"
nil 0 output-channel state nil))
(t (mv (car (cdr trans-ans)) state)))))))))
(defun initialize-timers (state)
(pprogn
(set-timer 'prove-time '(0) state)
(set-timer 'print-time '(0) state)
(set-timer 'proof-tree-time '(0) state)
(set-timer 'other-time '(0) state)))
(defun maybe-add-command-landmark (old-wrld old-default-defun-mode form
trans-ans state)
; Old-wrld is the world before the trans-evaluation of form. That
; trans-evaluation returned trans-ans, which is thus of the form (stobjs-out
; . valx). If valx contains a state (then it must in fact contain the state
; state), and the current world of that state is different from old-wrld and
; does not end with a command landmark, we add a command landmark for form.
; We pass in old-default-defun-mode as the default-defun-mode of old-wrld.
; This way, we can compute that value at a time that old-wrld is still
; installed, so that the corresponding getprop will be fast.
(let ((wrld (w state)))
(cond ((and (member-eq 'state (car trans-ans))
(not (and (eq (caar wrld) 'command-landmark)
(eq (cadar wrld) 'global-value)))
(not (equal old-wrld wrld)))
(er-progn
(get-and-chk-last-make-event-expansion
; For purposes of tracking make-event, we allow time$ only at the top level.
; If there is user demand, we could consider allowing it in arbitrary positions
; of embedded event forms, though in that case we should be careful to check
; that nested calls work well. Note that we look for time$, not for
; return-last, because we are looking at a user-supplied form, not its
; macroexpansion.
(cond ((consp form)
(case (car form)
(time$ (cadr form))
(otherwise form)))
(t form))
wrld 'top-level state
(primitive-event-macros))
(pprogn
(cond ((raw-mode-p state)
; If we are in raw mode, then it is scary to imagine that we have changed the
; logical world.
(warning$ 'top-level "Raw"
"The ACL2 world is being modified while in raw ~
mode. See :DOC set-raw-mode. Further ~
computation in this ACL2 session may have some ~
surprising results."))
(t state))
(set-w 'extension
(add-command-landmark
old-default-defun-mode
form
(f-get-global 'connected-book-directory state)
(f-get-global 'last-make-event-expansion state)
wrld)
state)
(value nil))))
(t (value nil)))))
(defun replace-last-cdr (x val)
(cond ((atom x) val)
((atom (cdr x)) (cons (car x) val))
(t (cons (car x) (replace-last-cdr (cdr x) val)))))
(defun ld-standard-oi-missing (val file-name ld-missing-input-ok ctx state)
(cond ((eq ld-missing-input-ok t)
(value nil))
(t (let ((msg (msg "~@0 It is likely that the file you requested, ~
~x1, does not exist."
(msg *ld-special-error*
'standard-oi val)
file-name)))
(cond (ld-missing-input-ok ; not t, so :warn
(pprogn (warning$ ctx "ld-missing-input" "~@0" msg)
(value nil)))
(t (er soft ctx "~@0" msg)))))))
(defun chk-acceptable-ld-fn1-pair (pair ld-missing-input-ok ctx state
co-string co-channel)
; We check that pair, which is of the form (var . val) where var is a symbolp,
; specifies a legitimate "binding" for the LD special var. This means that we
; check that var is one of the state globals that LD appears to bind (i.e.,
; push and pop in an unwind-protected way) and that val is a reasonable value
; of that global. For example, 'standard-oi is an LD special but must be bound
; to a true-list of objects or an open object input channel.
; Co-string and co-channel are here to provide a very subtle feature of LD. If
; the same string is specified for both standard-co and proofs-co then we open
; one channel and use it in both places. Our caller, chk-acceptable-ld-fn1, is
; responsible for maintaining these two accumulators as we map down the list of
; pairs. It puts into co-string and co-channel the string and returned channel
; for the first of standard-co or proofs-co encountered.
(let ((var (car pair))
(val (cdr pair)))
; The first three LD specials, namely the three channels, are special because
; we may have to open a channel and create a new pair. Once we get past those
; three, we can just use the standard checkers and return the existing pair.
(case var
(standard-oi
(cond
((and (symbolp val)
(open-input-channel-p val :object state))
(value pair))
((true-listp val)
(value pair))
((stringp val)
(let ((file-name (extend-pathname
(f-get-global 'connected-book-directory state)
val
state)))
(mv-let (ch state)
(open-input-channel file-name :object state)
(cond (ch (value (cons 'standard-oi ch)))
(t (ld-standard-oi-missing
val file-name ld-missing-input-ok ctx
state))))))
((consp val)
(let ((last-cons (last val)))
(cond
((and (symbolp (cdr last-cons))
(open-input-channel-p (cdr last-cons) :object state))
(value pair))
((stringp (cdr last-cons))
(let ((file-name (extend-pathname
(f-get-global 'connected-book-directory
state)
(cdr last-cons)
state)))
(mv-let (ch state)
(open-input-channel file-name :object state)
(cond
(ch (value (cons 'standard-oi
(replace-last-cdr val ch))))
(t (ld-standard-oi-missing
val file-name ld-missing-input-ok ctx
state))))))
(t (er soft ctx *ld-special-error* 'standard-oi val)))))
(t (er soft ctx *ld-special-error* 'standard-oi val))))
(standard-co
(cond
((and (symbolp val)
(open-output-channel-p val :character state))
(value pair))
((equal val co-string)
(value (cons 'standard-co co-channel)))
((stringp val)
(mv-let (ch state)
(open-output-channel
(extend-pathname
(f-get-global 'connected-book-directory state)
val
state)
:character
state)
(cond (ch (value (cons 'standard-co ch)))
(t (er soft ctx *ld-special-error* 'standard-co
val)))))
(t (er soft ctx *ld-special-error* 'standard-co val))))
(proofs-co
(cond
((and (symbolp val)
(open-output-channel-p val :character state))
(value pair))
((equal val co-string)
(value (cons 'proofs-co co-channel)))
((stringp val)
(mv-let (ch state)
(open-output-channel
(extend-pathname
(f-get-global 'connected-book-directory state)
val
state)
:character
state)
(cond (ch (value (cons 'proofs-co ch)))
(t (er soft ctx *ld-special-error* 'proofs-co val)))))
(t (er soft ctx *ld-special-error* 'proofs-co val))))
(current-package
(er-progn (chk-current-package val ctx state)
(value pair)))
(ld-skip-proofsp
(er-progn (chk-ld-skip-proofsp val ctx state)
(value pair)))
(ld-redefinition-action
(er-progn (chk-ld-redefinition-action val ctx state)
(value pair)))
(ld-prompt
(er-progn (chk-ld-prompt val ctx state)
(value pair)))
(ld-missing-input-ok
(er-progn (chk-ld-missing-input-ok val ctx state)
(value pair)))
(ld-pre-eval-filter
(er-progn (chk-ld-pre-eval-filter val ctx state)
(value pair)))
(ld-pre-eval-print
(er-progn (chk-ld-pre-eval-print val ctx state)
(value pair)))
(ld-post-eval-print
(er-progn (chk-ld-post-eval-print val ctx state)
(value pair)))
(ld-evisc-tuple
(er-progn (chk-evisc-tuple val ctx state)
(value pair)))
(ld-error-triples
(er-progn (chk-ld-error-triples val ctx state)
(value pair)))
(ld-error-action
(er-progn (chk-ld-error-action val ctx state)
(value pair)))
(ld-query-control-alist
(er-progn (chk-ld-query-control-alist val ctx state)
(value pair)))
(ld-verbose
(er-progn (chk-ld-verbose val ctx state)
(value pair)))
(otherwise
(er soft ctx
"The variable ~x0 is not an authorized LD special and ~
hence cannot be bound by LD."
var)))))
(defun close-channels (channel-closing-alist state)
; It is necessary to close the channels that we open. We must in fact
; record them somewhere in state so that if we abort LD with a hard error or
; user interrupt that throws us into the unwind-protect code of LP, they are
; still closed. To enable such "remote closings" we invent the notion of a
; "channel closing alist" which is an alist that pairs opened channels to
; their "types", where a type is either 'oi (object input) or 'co (character
; output). Given such an alist we close each channel in it, if the channel
; is in fact open.
(cond
((null channel-closing-alist) state)
(t (pprogn
(cond
((eq (cdar channel-closing-alist) 'oi)
(cond
((open-input-channel-p (caar channel-closing-alist) :object state)
(close-input-channel (caar channel-closing-alist) state))
(t state)))
((eq (cdar channel-closing-alist) 'co)
(cond
((open-output-channel-p (caar channel-closing-alist)
:character state)
(close-output-channel (caar channel-closing-alist) state))
(t state)))
(t (let ((temp (er hard 'close-channels
"The channel ~x0 was tagged with an unimplemented ~
channel type, ~x1."
(caar channel-closing-alist)
(cdar channel-closing-alist))))
(declare (ignore temp))
state)))
(close-channels (cdr channel-closing-alist) state)))))
(defun chk-acceptable-ld-fn1 (alist ld-missing-input-ok ctx state co-string
co-channel new-alist channel-closing-alist)
; We copy alist (reversing it) onto new-alist, checking that each pair in it
; binds an LD special to a legitimate value. We open the requested files as we
; go and replace the file names with the open channels. We also accumulate
; into channel-closing-alist the pairs necessary to close (with close-channels)
; the channels we have opened. We return a pair consisting of the new-alist
; and the final channel-closing-alist. See chk-acceptable-ld-fn1-pair for an
; explanation of co-string and co-channel.
; Implementation Note: This odd structure has the single redeeming feature that
; if any given pair of alist causes an error, we have in our hands enough
; information to close any channels we might have opened thus far. If we get
; all the way down alist without causing an error, the channel-closing-alist
; will be used in the acl2-unwind-protect cleanup form and enable us to "close
; on pop" -- which was its original purpose. But an earlier coding of this
; function suffered from the problem that we could open several channels and
; then, right here, cause an error (e.g., the proposed 'current-package setting
; is bad). If that happened, those open channels would never be closed. It is
; still possible to "lose" an opened channel: abort this function after some
; files have been opened.
; This flaw cannot be fixed, at least with the current set of primitives. To
; close a channel we must have the channel. We don't have the channel until
; after we have opened it, i.e., the way we get our hands on a channel in ACL2
; is to open a file, but the way we close a channel is to call
; close-output-channel on the channel object (rather than the file). Thus,
; there is no way we can unwind protect code that opens a channel so as to
; guarantee to close the channel because we can't get the object we are to
; "cleanup" (the channel) until after we have "modified" (opened) it. So there
; is a window of vulnerability between the time we open the channel and the
; time we stash it away in some location known to our cleanup form. During
; that window an abort can cause us to lose a channel in the sense that we do
; not close it. Now we can make that window much smaller than it is now. As
; things stand now we are vulnerable to aborts from the time we start
; processing alist here until we finish and enter the acl2-unwind-protect in
; ld-fn that "binds" the ld specials. But all this vulnerability means is that
; lisp fails to close some opened channels during an abort. If such a thing
; happens, the user could detect it with some poking around. For example, he
; could just type
; (open-output-channel-p 'ACL2-OUTPUT-CHANNEL::STANDARD-CHARACTER-OUTPUT-i
; :character state)
; for a bunch of i starting at 0 and see if there are some he doesn't know
; about. This is not a catastrophic error. It is as though the abort placed
; in the open-output-channels field of the state an additional channel or two.
; The only way, as far as we can see, that this can be a problem is in the
; sense of resource exhaustion: operating systems (and thus lisps) generally
; allow a finite number of open channels.
; If we someday endeavor to plug this hole some additional care must be taken
; because the act of opening an ACL2 channel (in raw lisp) is non-atomic -- we
; have to open the stream, generate a channel symbol, and store some stuff on
; the property list of the symbol. So an abort there can cause an
; irretrievable loss of an open channel unless the problem is addressed down
; there as well.
; Finally we would just like to note that soft errors are handled perfectly
; here in the sense that if some channels are opened and then we get a soft
; error, we close the channels. And aborts are handled perfectly once we get
; outside of the window of vulnerability discussed.
(cond
((null alist)
(let ((new-alist
(cond ((eq ld-missing-input-ok :missing)
(put-assoc-eq 'ld-verbose nil
(put-assoc-eq 'ld-prompt nil new-alist)))
(t new-alist))))
(value (cons new-alist channel-closing-alist))))
(t (mv-let
(erp pair state)
(chk-acceptable-ld-fn1-pair (car alist) ld-missing-input-ok ctx state
co-string co-channel)
(cond
(erp (pprogn
(close-channels channel-closing-alist state)
(mv t nil state)))
(t
(mv-let
(pair ld-missing-input-ok)
(cond ((null pair)
(assert$ (eq (caar alist) 'standard-oi)
(mv (cons 'standard-oi nil) :missing)))
(t (mv pair ld-missing-input-ok)))
(chk-acceptable-ld-fn1
(cdr alist) ld-missing-input-ok ctx state
(cond ((and (null co-string)
(or (eq (car pair) 'standard-co)
(eq (car pair) 'proofs-co))
(stringp (cdr (car alist))))
(extend-pathname
(f-get-global 'connected-book-directory state)
(cdr (car alist))
state))
(t co-string))
(cond ((and (null co-channel)
(or (eq (car pair) 'standard-co)
(eq (car pair) 'proofs-co))
(stringp (cdr (car alist))))
(cdr pair))
(t co-channel))
(cons pair new-alist)
(cond
((eq (car pair) 'standard-oi)
(cond ((stringp (cdr (car alist)))
(cons (cons (cdr pair) 'oi) channel-closing-alist))
((and (consp (cdr (car alist)))
(stringp (cdr (last (cdr (car alist))))))
(cons (cons (cdr (last (cdr pair))) 'oi)
channel-closing-alist))
(t channel-closing-alist)))
((and (or (eq (car pair) 'standard-co)
(eq (car pair) 'proofs-co))
(stringp (cdr (car alist))))
(cons (cons (cdr pair) 'co) channel-closing-alist))
(t channel-closing-alist))))))))))
(defun chk-acceptable-ld-fn (alist state)
; Alist is an alist that pairs LD specials with proposed values. We check
; that those values are legitimate and that only authorized LD specials are
; bound. If strings are supplied for the specials standard-oi, standard-co,
; and proofs-co, we open corresponding channels and put those channels in
; for the values in the alist. We return a pair consisting of the modified
; alist and a channel closing alist that pairs opened channels with the
; type information it takes to close them.
(let ((ctx 'ld))
(er-progn
(cond
((or (null (f-boundp-global 'current-acl2-world state))
(null (w state)))
(er soft ctx
"The theorem prover's database has not yet been initialized. To ~
initialize ACL2 to its full theory, which currently takes about 3 ~
minutes on a Sparc 2 (Dec. 1992), invoke (initialize-acl2) from ~
Common Lisp."))
(t (value nil)))
(cond ((symbol-alistp alist) (value nil))
(t (er soft ctx
"The argument to ld-fn must be a symbol-alistp and ~x0 is ~
not."
alist)))
(cond ((assoc-eq 'standard-oi alist) (value nil))
(t (er soft ctx
"The alist argument to ld-fn must specify a value ~
for 'standard-oi and ~x0 does not."
alist)))
(cond ((not (duplicate-keysp-eq alist)) (value nil))
(t (er soft ctx
"The alist argument to ld-fn must contain no duplications ~
among the LD specials to be bound. Your alist contains ~
duplicate values for ~&0."
(duplicates (strip-cars alist)))))
(chk-acceptable-ld-fn1 alist
(cdr (assoc-eq 'ld-missing-input-ok alist))
ctx state nil nil nil nil))))
(defun f-put-ld-specials (alist state)
; Alist is an alist that pairs LD specials with their new values. We
; f-put-global each special. Because f-put-global requires an explicitly
; quoted variable, we case split on the authorized LD-specials. This is
; easier and safer than making translate give us special treatment. To add
; a new LD-special you must change this function, as well as
; f-get-ld-specials and the checker chk-acceptable-ld-fn1-pair.
; Warning: Somebody else better have checked that the values assigned are
; legitimate. For example, we here set 'current-package to whatever we are
; told to set it. This is not a function the user should call!
(cond
((null alist) state)
(t (pprogn
(case
(caar alist)
(standard-oi
(f-put-global 'standard-oi (cdar alist) state))
(standard-co
(f-put-global 'standard-co (cdar alist) state))
(proofs-co
(f-put-global 'proofs-co (cdar alist) state))
(current-package
(f-put-global 'current-package (cdar alist) state))
(ld-skip-proofsp
(f-put-global 'ld-skip-proofsp (cdar alist) state))
(ld-redefinition-action
(f-put-global 'ld-redefinition-action (cdar alist) state))
(ld-prompt
(f-put-global 'ld-prompt (cdar alist) state))
(ld-missing-input-ok
(f-put-global 'ld-missing-input-ok (cdar alist) state))
(ld-pre-eval-filter
(f-put-global 'ld-pre-eval-filter (cdar alist) state))
(ld-pre-eval-print
(f-put-global 'ld-pre-eval-print (cdar alist) state))
(ld-post-eval-print
(f-put-global 'ld-post-eval-print (cdar alist) state))
(ld-evisc-tuple
(f-put-global 'ld-evisc-tuple (cdar alist) state))
(ld-error-triples
(f-put-global 'ld-error-triples (cdar alist) state))
(ld-error-action
(f-put-global 'ld-error-action (cdar alist) state))
(ld-query-control-alist
(f-put-global 'ld-query-control-alist (cdar alist) state))
(ld-verbose
(f-put-global 'ld-verbose (cdar alist) state))
(otherwise
(let ((x (er hard 'f-put-ld-specials
"Someone is using ~x0 as an unauthorized LD-special."
(caar alist))))
(declare (ignore x))
state)))
(f-put-ld-specials (cdr alist) state)))))
(defun f-get-ld-specials (state)
; Make an alist, suitable for giving to f-put-ld-specials, that records the
; current values of all LD-specials. To add a new LD-special you must
; change this function, f-put-ld-specials, and the checker
; chk-acceptable-ld-fn1-pair.
(list (cons 'standard-oi
(f-get-global 'standard-oi state))
(cons 'standard-co
(f-get-global 'standard-co state))
(cons 'proofs-co
(f-get-global 'proofs-co state))
(cons 'current-package
(f-get-global 'current-package state))
(cons 'ld-skip-proofsp
(f-get-global 'ld-skip-proofsp state))
(cons 'ld-redefinition-action
(f-get-global 'ld-redefinition-action state))
(cons 'ld-prompt
(f-get-global 'ld-prompt state))
(cons 'ld-missing-input-ok
(f-get-global 'ld-missing-input-ok state))
(cons 'ld-pre-eval-filter
(f-get-global 'ld-pre-eval-filter state))
(cons 'ld-pre-eval-print
(f-get-global 'ld-pre-eval-print state))
(cons 'ld-post-eval-print
(f-get-global 'ld-post-eval-print state))
(cons 'ld-evisc-tuple
(f-get-global 'ld-evisc-tuple state))
(cons 'ld-error-triples
(f-get-global 'ld-error-triples state))
(cons 'ld-error-action
(f-get-global 'ld-error-action state))
(cons 'ld-query-control-alist
(f-get-global 'ld-query-control-alist state))
(cons 'ld-verbose
(f-get-global 'ld-verbose state))))
(defun ld-read-keyword-command1 (n state)
(cond
((= n 0) (value nil))
(t (mv-let (eofp obj state)
(read-standard-oi state)
(cond
(eofp (er soft 'ld-read-keyword-command
"Unfinished keyword command at eof on (standard-oi ~
state)."))
(t
(er-let*
((rst (ld-read-keyword-command1 (1- n) state)))
; Note: We take advantage of the fact that this function ALWAYS returns a list
; of quoted objects. See the call of strip-cadrs in ld-read-keyword-command
; below. So if you optmize away some of the quotes, beware!
(value (cons (list 'quote obj) rst)))))))))
(defun exit-ld (state)
; This is the function most commonly aliased to the keyword command :q. Its
; evaluation causes LD to terminate immediately. Any function that returns
; three results, the first of which is nil, the second of which is :q and the
; third of which is STATE will do the same.
(value :q))
(defun macro-minimal-arity1 (lst)
(declare (xargs :guard (true-listp lst)))
(cond ((endp lst) 0)
((lambda-keywordp (car lst))
0)
(t (1+ (macro-minimal-arity1 (cdr lst))))))
(defun macro-minimal-arity (sym default wrld)
(let ((args (getprop sym 'macro-args default 'current-acl2-world wrld)))
(macro-minimal-arity1 (if (eq (car args) '&whole)
(cddr args)
args))))
(defun ld-read-keyword-command (key state)
; ld supports the convention that when a keyword :key is typed
; as a command and the corresponding symbol in the "ACL2" package,
; ACL2::key is a function or macro of arity n, we read n more
; objects, quote them, and apply the ACL2 function or macro.
; Thus,
; MY-PKG !>:ubt foo
; is the same thing as
; MY-PKG !>(ACL2::UBT 'foo)
; We require that the macro not have any lambda keyword arguments, since
; that makes it hard or impossible to determine how many things we should
; read.
; We also support the convention that if :key is bound on 'ld-keyword-aliases
; in state, say in the entry (:key n fn), we manufacture (fn 'x1 ... 'xn)
; instead of requiring that key be a function and returning (key 'x1 ... 'xn).
; This function returns four results, (mv erp keyp form state). If erp is t an
; error was caused and the message has been printed. Otherwise, keyp is
; non-nil or nil according to whether the keyword hack was involved. Form is
; the parsed form of the command read, e.g., (acl2::ubt 'foo). If non-nil,
; keyp is the actual list of objects read, e.g., (:ubt foo).
(let ((temp (assoc-eq key (ld-keyword-aliases state))))
(cond
(temp
(mv-let (erp args state)
(ld-read-keyword-command1 (cadr temp) state)
(cond
(erp (mv t nil nil state))
(t (mv nil
(cons key (strip-cadrs args))
(cons (caddr temp) args)
state)))))
((eq key :q)
; Here is the only place we recognize :q as a special command. Essentially :q
; is an alias for (exit-ld state) except it is overridden by any other aliases
; for :q.
(mv nil '(:q) '(exit-ld state) state))
(t
(let* ((sym (intern (symbol-name key) "ACL2"))
(wrld (w state))
(len (cond ((function-symbolp sym wrld)
(length (formals sym wrld)))
((getprop sym 'macro-body nil 'current-acl2-world wrld)
(macro-minimal-arity
sym
`(:error "See LD-READ-KEYWORD-COMMAND.")
wrld))
(t nil))))
(cond (len (mv-let (erp args state)
(ld-read-keyword-command1 len state)
(cond (erp (mv t nil nil state))
(t (mv nil
(cons key (strip-cadrs args))
(cons sym args)
state)))))
(t (mv-let (erp val state)
(er soft 'LD
"Unrecognized keyword command ~x0."
key)
(declare (ignore erp val))
(mv t nil nil state)))))))))
(defun restore-iprint-ar-from-wormhole (state)
(declare (xargs :stobjs state))
#+acl2-loop-only
(mv-let (erp val state)
(read-acl2-oracle state)
(declare (ignore erp))
; If we intend to reason about this function, then we might want to check that
; val is a reasonable value. But that seems not important, since very little
; reasoning would be possible anyhow for this function.
(pprogn (f-put-global 'iprint-ar
(and (consp val) (car val))
state)
(f-put-global 'iprint-hard-bound
(nfix (and (consp val)
(consp (cdr val))
(cadr val)))
state)
(f-put-global 'iprint-soft-bound
(nfix (and (consp val)
(consp (cdr val))
(cddr val)))
state)
state))
#-acl2-loop-only
(let* ((ar *wormhole-iprint-ar*))
(when ar
(f-put-global 'iprint-ar (compress1 'iprint-ar ar) state)
(f-put-global 'iprint-hard-bound *wormhole-iprint-hard-bound* state)
(f-put-global 'iprint-soft-bound *wormhole-iprint-soft-bound* state)
(setq *wormhole-iprint-ar* nil))
state))
(defun ld-fix-command (form)
#-acl2-loop-only
(when (and (consp form)
(eq (car form) 'defconst) ; optimization
(f-get-global 'boot-strap-flg *the-live-state*))
(case-match form
(('defconst name ('quote val) . &)
(assert (boundp name))
(let ((old-val (symbol-value name)))
; Note that we are in the boot-strap, where we presumably don't use
; redefinition. If we later do so, we should see this assertion fire and then
; we can figure out what to do.
(assert (equal val old-val))
(when (not (eq val old-val))
(let ((caddr-form (caddr form))) ; (quote val)
(setf (cadr caddr-form)
old-val)))))))
form)
(defun ld-read-command (state)
; This function reads an ld command from the standard-oi channel of state and
; returns it. It implements the keyword command hack. We return five results:
; (mv eofp erp keyp form state). Eofp means we exhausted standard-oi. Erp,
; when t, indicates that an error occurred, e.g., an ill-formed keyword command
; was read. The error message has been printed. Keyp, when non-nil, indicates
; that form is the parsed form of a keyword command. The list of objects
; actually read is the non-nil value of keyp and that list, without the
; enclosing parentheses, should be printed instead of form. Thus, if :kons is
; an alias for cons, then :kons x y will parse into (cons 'x 'y) and keyp will
; be (:kons x y).
(pprogn
(restore-iprint-ar-from-wormhole state) ; even before the read
(mv-let (eofp val state)
(read-standard-oi state)
(pprogn
(cond ((int= (f-get-global 'ld-level state) 1)
(let ((last-index (iprint-last-index state)))
(cond ((> last-index (iprint-soft-bound state))
(rollover-iprint-ar nil last-index state))
(t state))))
(t state))
(cond (eofp (mv t nil nil nil state))
((keywordp val)
(mv-let (erp keyp form state)
(ld-read-keyword-command val state)
(mv nil erp keyp form state)))
((stringp val)
(let ((upval (string-upcase val)))
(cond ((find-non-hidden-package-entry
upval
(global-val 'known-package-alist (w state)))
(mv nil nil nil `(in-package ,upval) state))
(t (mv nil nil nil val state)))))
(t (mv nil nil nil (ld-fix-command val) state)))))))
(defun ld-print-command (keyp form col state)
(with-base-10
(mv-let (col state)
(cond
((not (eq (ld-pre-eval-print state) t)) (mv col state))
(keyp
(fmt1 "~*0~|"
(list (cons #\0 (list "" "~x*" "~x* " "~x* " keyp)))
col
(standard-co state)
state
(ld-evisc-tuple state)))
(t
(fmt1 "~q0~|"
(list (cons #\0 form))
col
(standard-co state)
state
(ld-evisc-tuple state))))
(declare (ignore col))
state)))
(defun ld-filter-command (form state)
(let ((filter (ld-pre-eval-filter state)))
(cond ((eq filter :all) (value t))
((eq filter :query)
(acl2-query :filter
'("~#0~[~Y12?~/Eval?~]"
:y t :n nil :r :return :q :error
:? ("We are in the LD read-eval-print loop, ~
processing the forms in standard-oi. The ~
form printed above is one of those forms. Do ~
you want to evaluate it (Y) or not (N)? You ~
may also answer R, meaning ``return ~
immediately from LD (without reading or ~
evaluating any more forms)'' or Q meaning ~
``return immediately from LD, signalling an ~
error.''"
:y t :n nil :r :return :q :error))
(list (cons #\0 (if (eq (ld-pre-eval-print state) t) 1 0))
(cons #\1 form)
(cons #\2 (ld-evisc-tuple state)))
state))
(t (value t)))))
#-acl2-loop-only
(defun-one-output ppr? (x raw-x col channel state)
(cond
((and (raw-mode-p state)
(bad-lisp-objectp x))
(if (not (eq channel *standard-co*))
(error "Attempted to print LD results to other than *standard-co*!"))
(format t "[Note: Printing non-ACL2 result.]")
(terpri)
(prin1 raw-x)
state)
(t
(ppr x col channel state t))))
(defun ld-print-results (trans-ans state)
; This is the function used by ld to print the results of the
; trans-evaluation of the form read. Trans-ans is of the form
; (stobjs-out . valx).
; If ld-post-eval-print is nil we print nothing. If it is t, we
; print with the standard evisceration (ld-evisc-tuple). If it is
; :command-conventions, we hide error/value/state pairs by just printing
; value and we don't print anyting when the value is :invisible.
(let ((flg (ld-post-eval-print state))
(output-channel (standard-co state)))
; In raw mode in Allegro Common Lisp (and not GCL, but perhaps other lisps),
; evaluation of (time ...) causes the result value to be printed at the end of
; a comment line printed by time, which is unfortunate. This sort of printing
; problem does not seem to have come up in other than raw mode, and besides, we
; do not want to try to model this sort of maybe-newline printing in the
; logic. So we restrict this solution to raw mode. Furthermore, the lisps
; listed below do not need this fix, and they all print a newline even with
; "~&" when apparently not necessary, so we exclude them from this fix.
#-(or acl2-loop-only gcl cmu sbcl lispworks ccl)
(when (raw-mode-p state)
(format (get-output-stream-from-channel output-channel) "~&"))
(cond
((null flg) state)
(t
(let* ((stobjs-out (car trans-ans))
(valx (cdr trans-ans))
(evisc-tuple (ld-evisc-tuple state))
(evisc-alist (world-evisceration-alist state (car evisc-tuple)))
(print-level (cadr evisc-tuple))
(print-length (caddr evisc-tuple)))
(mv-let
(eviscerated-valx state)
(eviscerate-stobjs-top (evisceration-stobj-marks stobjs-out nil)
valx
print-level print-length evisc-alist
(table-alist 'evisc-table (w state))
nil
state)
(cond
((and (eq flg :command-conventions)
(ld-error-triples state)
(equal stobjs-out *error-triple-sig*))
; We get here if we are following command-conventions and the form
; returned triple (mv erp val state). Note that erp must be a
; non-stobj (typically a Boolean) but that val may be a stobj or not.
(cond
((eq (cadr valx) :invisible)
state)
(t
(pprogn
(princ$ (if (stringp (f-get-global 'triple-print-prefix state))
(f-get-global 'triple-print-prefix state)
"")
output-channel state)
; The following raw code is identical to the logic code below except that the
; raw code handles infix printing, which is, at the moment, entirely
; extra-logical.
#-acl2-loop-only
(let ((col
(if (stringp (f-get-global 'triple-print-prefix state))
(length (f-get-global 'triple-print-prefix state))
0))
(evg (cadr eviscerated-valx)))
(cond
((and (live-state-p state)
(output-in-infixp state))
(print-infix
evg
nil
(- (fmt-hard-right-margin state) col)
0 col
(get-output-stream-from-channel output-channel)
t)
*the-live-state*)
(t (ppr? evg (cadr valx) col output-channel state))))
#+acl2-loop-only
(ppr (cadr eviscerated-valx)
(if (stringp (f-get-global 'triple-print-prefix state))
(length (f-get-global 'triple-print-prefix state))
0)
output-channel state t)
(newline output-channel state)))))
(t (pprogn
#-acl2-loop-only
(cond
((and (live-state-p state)
(output-in-infixp state))
(print-infix
eviscerated-valx
nil
(fmt-hard-right-margin state)
0 0
(get-output-stream-from-channel output-channel)
t)
*the-live-state*)
(t (ppr? eviscerated-valx valx 0 output-channel state)))
#+acl2-loop-only
(ppr eviscerated-valx 0 output-channel state t)
(newline output-channel state))))))))))
(defun ld-print-prompt (state)
; Like print-prompt except may print the prompt both to *standard-co*
; and (standard-co state).
(mv-let (col state)
(print-prompt (ld-prompt state) (standard-co state) state)
(cond
((and (eq (standard-oi state) *standard-oi*)
(not (eq (standard-co state) *standard-co*)))
(mv-let (irrel-col state)
(print-prompt (ld-prompt state) *standard-co* state)
(declare (ignore irrel-col))
(mv col state)))
(t (mv col state)))))
(defun ld-return-error (state)
(let ((action (ld-error-action state)))
(cond ((eq action :return!)
(mv :return
(list :stop-ld (f-get-global 'ld-level state))
state))
((and (consp action)
(eq (car action) :exit))
(mv action (good-bye-fn (cadr action)) state))
(t (mv action :error state)))))
(defun initialize-accumulated-warnings ()
#-acl2-loop-only
(setq *accumulated-warnings* nil)
nil)
(defun ld-read-eval-print (state)
; This is LD's read-eval-print step. We read a form from standard-oi, eval it,
; and print the result to standard-co, will lots of bells and whistles
; controlled by the various LD specials. The result of this function is a
; triple (mv signal val state), where signal is one of :CONTINUE, :RETURN,
; :ERROR, or (:EXIT n). When the signal is :continue, :error, or (:exit n),
; val is irrelevant. When the signal is :return, val is the "reason" we are
; terminating and is one of :exit, :eof, :error, :filter, or (:stop-ld n) where
; n is the ld-level at the time of termination.
(pprogn
(cond ((<= (f-get-global 'ld-level state) 1)
(pprogn (f-put-global 'trace-level 0 state)
(print-deferred-ttag-notes-summary state)))
(t state))
(mv-let
(col state)
(if (and (eql (f-get-global 'in-verify-flg state) 1)
(eql (f-get-global 'ld-level state) 1))
(mv 0 state)
(ld-print-prompt state))
(mv-let
(eofp erp keyp form state)
(let ((in-verify-flg (f-get-global 'in-verify-flg state)))
(cond (in-verify-flg
(pprogn (f-put-global 'in-verify-flg nil state)
(cond ((and (eql (f-get-global 'ld-level state) 1)
(eql in-verify-flg 1))
(pprogn
(print-re-entering-proof-checker nil state)
(mv nil nil nil '(verify) state)))
(t (ld-read-command state)))))
(t (ld-read-command state))))
(cond
(eofp (cond ((ld-prompt state)
(pprogn (princ$ "Bye." (standard-co state) state)
(newline (standard-co state) state)
; In versions before v2-8, typing ctrl-d (ctrl-c ctrl-d in Emacs) did not
; immediately kill the Lisp if the resulting eof condition was detected by BRR
; processing. The code below fixes that; let's hope it doesn't "fix" anything
; else!
(prog2$ (and (equal (standard-oi state) *standard-oi*)
(good-bye))
state)
(mv :return :eof state)))
(t (mv :return :eof state))))
(erp (ld-return-error state))
(t (pprogn
(ld-print-command keyp form col state)
(mv-let
(erp ans state)
(ld-filter-command form state)
(cond
(erp (ld-return-error state))
((null ans) (mv :continue nil state))
((eq ans :error) (mv :error nil state))
((eq ans :return) (mv :return :filter state))
(t (assert$
(eq ans t)
(pprogn
(cond ((<= (f-get-global 'ld-level state) 1)
(prog2$ (initialize-accumulated-warnings)
(initialize-timers state)))
(t state))
(f-put-global 'last-make-event-expansion nil state)
(let* ((old-wrld (w state))
(old-default-defun-mode
(default-defun-mode old-wrld)))
(mv-let
(error-flg trans-ans state)
(revert-world-on-error
(mv-let (error-flg trans-ans state)
(if (raw-mode-p state)
(acl2-raw-eval form state)
(trans-eval form 'top-level state t))
; If error-flg is non-nil, trans-ans is (stobjs-out . valx).
(er-progn
(chk-absstobj-invariants nil state)
(cond
(error-flg (mv t nil state))
((and (ld-error-triples state)
(equal (car trans-ans) *error-triple-sig*)
(car (cdr trans-ans)))
(mv t nil state))
(t (er-progn
(maybe-add-command-landmark
old-wrld
old-default-defun-mode
form
trans-ans state)
(mv nil trans-ans state)))))))
; If error-flg is non-nil, trans-ans is (stobjs-out . valx) and we know
; that valx is not an erroneous error triple if we're paying attention to
; error triples.
; The code inside the revert-world-on-error arranges to revert if either
; trans-eval returns an error, or the value is to be thought of as an
; error triple and it signals an error. Error-flg, now, is set to t
; iff we reverted.
(cond
(error-flg (ld-return-error state))
((and (equal (car trans-ans) *error-triple-sig*)
(eq (cadr (cdr trans-ans)) :q))
(mv :return :exit state))
(t (pprogn
(ld-print-results trans-ans state)
(cond
((and (ld-error-triples state)
(not (eq (ld-error-action state) :continue))
(equal (car trans-ans) *error-triple-sig*)
(let ((val (cadr (cdr trans-ans))))
(and (consp val)
(eq (car val) :stop-ld))))
(mv :return
(list* :stop-ld
(f-get-global 'ld-level state)
(cdr (cadr (cdr trans-ans))))
state))
(t
; We make the convention of checking the new-namep filter immediately after
; we have successfully eval'd a form (rather than waiting for the next form)
; so that if the user has set the filter up he gets a satisfyingly
; immediate response when he introduces the name.
(let ((filter (ld-pre-eval-filter state)))
(cond
((and (not (eq filter :all))
(not (eq filter :query))
(not (new-namep filter
(w state))))
(er-progn
; We reset the filter to :all even though we are about to exit this LD
; with :return. This just makes things work if "this LD" is the top-level
; one and LP immediately reenters.
(set-ld-pre-eval-filter :all state)
(mv :return :filter state)))
(t (mv :continue nil state)))))))))))))))))))))))
(defun ld-loop (state)
; Note: We use a bit of raw lisp to ensure that the ACL2 unwind protect stack
; is properly configured before we execute the prompt for the next command.
; This acl2-unwind can be exercised, we think, by evaluating LD recursively
; and aborting the inferior LD so that it fails to cleanup after itself.
(mv-let
(signal val state)
#+acl2-loop-only (ld-read-eval-print state)
#-acl2-loop-only (progn (acl2-unwind *ld-level* t)
(ld-read-eval-print state))
(cond ((eq signal :continue)
(ld-loop state))
((eq signal :return)
(value val))
(t (mv t nil state)))))
; The following raw lisp special variable controls whether the raw lisp version
; of ld-fn-body, below, prints the header as per ld-verbose or does not. The
; handling of aborts in ld-fn forces us to call ld-fn-body again after each
; abort and we wish to suppress the header message after all entrances other
; than the first. This only happens after an abort (all bets are off) and the
; idea is to fool the user into thinking a normal error was signalled.
#-acl2-loop-only
(defvar *first-entry-to-ld-fn-body-flg*)
(defun get-directory-of-file (p)
; P is an absolute pathname for a file, not a directory. We return an absolute
; pathname for the directory of that file. See also get-parent-directory,
; which is a related function for directories.
(let* ((p-rev (reverse p))
(posn (position *directory-separator* p-rev)))
(if posn
(subseq p 0 (1- (- (length p) posn)))
(er hard 'get-directory-of-file
"Implementation error! Unable to get directory for file ~x0."
p))))
(defun update-cbd (standard-oi0 state)
; For the case that standard-oi0 is a string (representing a file), we formerly
; used extend-pathname to compute the new cbd from the old cbd and
; standard-oi0. However, this caused us to follow soft links when that was
; undesirable. Here is a suitable experiment, after building the nonstd books
; by connecting to books/nonstd/ and running "make clean-nonstd" followed by
; "make all-nonstd". In this experiment, we had already certified the regular
; books using ACL2(h), and an error occurred because of an attempt to read
; books/arithmetic/equalities.cert, which used a special hons-only format.
; cd /projects/acl2/devel/books/nonstd/arithmetic/
; /projects/acl2/devel/allegro-saved_acl2r
; (ld "top.lisp")
(let ((old-cbd (f-get-global 'connected-book-directory state)))
(cond ((and old-cbd
(stringp standard-oi0)
(position *directory-separator* standard-oi0))
(let* ((os (os (w state)))
(filename-dir
(expand-tilde-to-user-home-dir
(concatenate 'string
(get-directory-of-file
standard-oi0)
*directory-separator-string*)
os 'update-cbd state)))
(f-put-global
'connected-book-directory
(if (absolute-pathname-string-p filename-dir nil os)
filename-dir
(our-merge-pathnames old-cbd filename-dir))
state)))
(t state))))
(defun ld-fn-body (standard-oi0 new-ld-specials-alist state)
; This function is defined only to make it convenient for ld-fn to execute its
; "body" either inside or outside an acl2-unwind-protect.
; WARNING: Because of the hidden acl2-unwind in the raw code for ld-loop above
; do not try to use acl2-unwind-protect in this function. The cleanup form for
; it will be executed before the first form is read because ld-loop rolls back
; to the initialized version of the frame. Furthermore, do not execute
; non-idempotent state changing forms here, i.e., incrementing or decrementing
; some counter in state, because the abort handling may cause this body to be
; reentered after an abort while the logical semantics suggests that it is
; entered only once. (Of course, aborts mean all bets are off, but the idea is
; to make it seem like they are errors.) We once incremented and decremented
; ld-level here and found the load level going down every time an abort
; occurred (because its increment was undone by the hidden acl2-unwind in
; ld-loop, mentioned above, and it was decremented at every abort).
#+(and acl2-par (not acl2-loop-only))
(when (and (not *wormholep*)
; We do not reset parallelism variables while in a wormhole (say from :brr),
; because that could interfere with a surrounding (outside the wormhole) prover
; call.
; Fortunately, it isn't necessary to do that reset, because there is nothing to
; clean up: we (plan as of Feb. 2011 to) disable entry to the prover from a
; wormhole when parallelism is enabled for the prover.
(or (eql *ld-level* 1)
*reset-parallelism-variables*))
; We claim that the parallelism variables are reset when either (1) we are
; entering the top-level ACL2 loop from raw Lisp, or else (2) a raw Lisp break
; has occurred. Let's see how the conditions above guarantee that claim. If
; (1) holds then the initial call of ld-fn-body in ld-fn0 will get us here with
; *ld-level* 1. When (2) holds then our-abort threw to 'local-top-level after
; setting *reset-parallelism-variables* to t, and the ld-fn-body call in ld-fn0
; is re-entered after that throw is caught, and here we are!
; In rare cases we might get here without (1) or (2) holding -- say, after :a!.
; But it's OK to call reset-all-parallelism-variables in such cases; we simply
; prefer to minimize the frequency of calls, for efficiency.
(reset-all-parallelism-variables))
(pprogn
(f-put-ld-specials new-ld-specials-alist state)
(update-cbd standard-oi0 state)
(cond (#+acl2-loop-only (ld-verbose state)
#-acl2-loop-only (and *first-entry-to-ld-fn-body-flg*
(ld-verbose state))
; We print the file name rather than the channel.
(cond
((eq (ld-verbose state) t)
(fms (if (eq standard-oi0 *standard-oi*)
"ACL2 loading *standard-oi*.~%"
"ACL2 loading ~x0.~%")
(list (cons #\0 (cond ((consp standard-oi0) (kwote standard-oi0))
(t standard-oi0))))
(standard-co state)
state
(ld-evisc-tuple state)))
(t (with-base-10
(fms
"~@0"
(list (cons #\0 (ld-verbose state))
(cons #\v (f-get-global 'acl2-version state))
(cons #\l (f-get-global 'ld-level state))
(cons #\c (f-get-global 'connected-book-directory
state))
(cons #\b (f-get-global 'system-books-dir
state)))
(standard-co state)
state
(ld-evisc-tuple state))))))
(t state))
(mv-let
(erp val state)
(ld-loop state)
(pprogn
(cond ((eq (ld-verbose state) t)
(fms (if (eq standard-oi0 *standard-oi*)
"Finished loading *standard-oi*.~%"
"Finished loading ~x0.~%")
(list (cons #\0 (cond ((consp standard-oi0) (kwote standard-oi0))
(t standard-oi0))))
(standard-co state)
state
(ld-evisc-tuple state)))
(t state))
(mv erp val state)))))
(defun ld-fn1 (standard-oi0 alist state bind-flg)
; If this function weren't defined we would have to duplicate its body twice in
; ld-fn, once in the #+acl2-loop-only section and again in the
; #-acl2-loop-only section in the case where the state is not the live state.
; The reason we grab the old ld-level and use it in the cleanup form rather
; than just decrementing the then current value is that we do not know how many
; times the cleanup form will be tried before it is not interrupted.
(let* ((old-ld-level (f-get-global 'ld-level state))
(new-ld-level (1+ old-ld-level))
(old-cbd (f-get-global 'connected-book-directory state)))
(er-let*
((pair (chk-acceptable-ld-fn alist state)))
(let ((old-ld-specials-alist (f-get-ld-specials state))
(new-ld-specials-alist (car pair))
(channel-closing-alist (cdr pair)))
(if bind-flg
(acl2-unwind-protect
"ld-fn"
(pprogn
(f-put-global 'ld-level new-ld-level state)
(ld-fn-body standard-oi0 new-ld-specials-alist state))
(pprogn
(f-put-global 'ld-level old-ld-level state)
(f-put-global 'connected-book-directory old-cbd state)
(f-put-ld-specials old-ld-specials-alist state)
(close-channels channel-closing-alist state))
(pprogn
(f-put-global 'ld-level old-ld-level state)
(f-put-global 'connected-book-directory old-cbd state)
(f-put-ld-specials old-ld-specials-alist state)
(close-channels channel-closing-alist state)))
(acl2-unwind-protect
"ld-fn"
(pprogn (f-put-global 'ld-level new-ld-level state)
(ld-fn-body standard-oi0 new-ld-specials-alist state))
(f-put-global 'ld-level old-ld-level state)
(f-put-global 'ld-level old-ld-level state)))))))
(defun ld-fn-alist (alist state)
(let ((standard-oi (cdr (assoc 'standard-oi alist)))
(dir (cdr (assoc 'dir alist)))
(ctx 'ld)
(os (os (w state))))
(cond ((and (stringp standard-oi)
dir)
(let ((standard-oi-expanded
(expand-tilde-to-user-home-dir standard-oi os ctx state)))
(cond ((absolute-pathname-string-p standard-oi-expanded nil os)
(er hard ctx
"It is illegal to supply a :DIR argument to LD here ~
because the supplied filename,~|~% ~s0,~|~%is an ~
absolute pathname (see :DOC pathname), and hence ~
there is no reasonable way to merge it with a :DIR ~
value."
standard-oi))
(t
(let ((resolve-dir
(include-book-dir-with-chk hard 'ld dir)))
(cond (resolve-dir
(put-assoc-eq 'standard-oi
(our-merge-pathnames
resolve-dir
standard-oi-expanded)
(delete-assoc-eq 'dir alist)))
(t alist)))))))
((assoc-eq 'dir alist)
(delete-assoc-eq 'dir alist))
(t alist))))
(defun ld-fn0 (alist state bind-flg)
; We set the ld specials to the values specified in alist and then enter the
; standard ACL2 read-eval-print loop. If bind-flg is t then the ld specials
; are restored to their pre-call values upon exit or abort. Otherwise they are
; not. Another interpretation of the flag is: if bind-flg is t then the load
; specials are merely "bound" locally to the values in alist, otherwise, they
; are globally smashed to values in alist. If this call is considered the
; "top-level" call of ld-fn, bind-flg ought to be nil: the final values of the
; load specials established during the interaction survive exiting to raw lisp
; and are present when ld-fn is reentered later. If this call is not
; "top-level" then the values established during interaction are lost on exit.
; Advice: It is best to read this function as though ld-fn1's body were
; substituted below. Ld-fn1 is just a way to avoid duplication of code and has
; nothing to do with the unwind protection we are really implementing.
(let ((alist (ld-fn-alist alist state)))
#+acl2-loop-only
(ld-fn1 (cdr (assoc-eq 'standard-oi alist)) alist state bind-flg)
; The part in UPPERCASE below is raw lisp that manages the unwind stack and
; *ld-level*. The part in lowercase is identical to the pure ACL2 in ld-fn1
; above. It is helpful to split the buffer, put the pure ACL2 in the top
; window and read what follows in the bottom one. Observe that if the state is
; not live, we just use the pure ACL2. So start with the PROGN below.
#-acl2-loop-only
(COND
((LIVE-STATE-P STATE)
(PROGN
(ACL2-UNWIND *LD-LEVEL* NIL)
(PUSH NIL *ACL2-UNWIND-PROTECT-STACK*)
(LET* ((*LD-LEVEL* (1+ *LD-LEVEL*))
(*READTABLE* *ACL2-READTABLE*)
(*FIRST-ENTRY-TO-LD-FN-BODY-FLG* T)
(ABORT-OBJ (CONS 'ABORT NIL))
(THROWN-VAL NIL)
(LD-ERP ABORT-OBJ)
(LD-VAL NIL)) ; below implies an abort happened
(let* ((old-ld-level (f-get-global 'ld-level state))
(new-ld-level (1+ old-ld-level))
(old-cbd (f-get-global 'connected-book-directory state)))
(MV-LET
(ERP pair STATE)
(chk-acceptable-ld-fn alist state)
(COND
(ERP (ACL2-UNWIND (1- *LD-LEVEL*) NIL) (MV ERP PAIR STATE))
(T
(let ((old-ld-specials-alist (f-get-ld-specials state))
(new-ld-specials-alist (car pair))
(channel-closing-alist (cdr pair)))
(PUSH-CAR
(CONS "ld-fn"
(IF bind-flg
(FUNCTION
(LAMBDA
NIL
(pprogn
(f-put-global 'ld-level old-ld-level state)
(f-put-global 'connected-book-directory
old-cbd state)
(f-put-ld-specials old-ld-specials-alist
state)
(close-channels channel-closing-alist
state))))
(FUNCTION
(LAMBDA
NIL
(pprogn
(f-put-global 'ld-level old-ld-level state))))))
*ACL2-UNWIND-PROTECT-STACK*
'LD-FN)
(TAGBODY
LOOP
(UNWIND-PROTECT
(pprogn (f-put-global 'ld-level new-ld-level state)
(PROGN
(SETQ THROWN-VAL
(CATCH
'LOCAL-TOP-LEVEL
(MV-LET
(ERP VAL STATE)
(ld-fn-body (cdr (assoc-eq 'standard-oi
alist))
new-ld-specials-alist state)
(PROGN
(WHEN bind-flg
(f-put-global
'connected-book-directory
old-cbd
state))
(SETQ LD-ERP ERP)
(SETQ LD-VAL VAL)
NIL))))
STATE))
(WITH-INTERRUPTS
; We allow interrupts for the cleanup form. This seems acceptable because of
; how we handle ACL2 unwind-protects, calling ACL2-UNWIND; see The Essay on
; Unwind-Protect. It also seems acceptable because some Lisps don't disable
; interrupts during evaluation of unwind-protect cleanup forms, so we expect to
; allow interrupts anyhow. And it seems important to do so, in case printing
; the gag-state needs to be interrupted; see the call of print-summary-on-error
; in prove-loop0.
(COND
(*ACL2-PANIC-EXIT-STATUS*
(exit-lisp *ACL2-PANIC-EXIT-STATUS*))
((EQ LD-ERP ABORT-OBJ)
; We get here if the ld-fn-body failed to terminate normally. This can happen
; either because lisp caused some error or because we threw to the tag above.
; If we threw to the tag then LD-ERP is ABORT-OBJ (because we didn't get to
; the SETQ above) and THROW-VAL is whatever we threw. If we did not throw,
; then THROWN-VAL is NIL (because the lisp error prevented us from doing the
; SETQ THROWN-VAL). We make the convention that we always throw non-nil
; values to the tag so as to distinguish these two cases.
#+akcl (si::RESET-STACK-LIMITS)
(COND ((EQ THROWN-VAL :ABORT)
; THROWN-VAL is always either NIL (meaning no throw occurred) or else the
; "reason" we threw. Currently the possibilities are :ABORT (thrown when the
; user types (a!)), :POP (thrown when the user types (p!)) or :WORMHOLE-ER
; (thrown when we tried to make a non-undoable change to state while in a
; wormhole). We only care about :ABORT. :WORMHOLE-ER is treated as a "normal"
; lisp error, i.e., we just unwind back to here and continue at this level.
; :ABORT means we are to exit all the way back to *LD-LEVEL* 1. :POP means
; that we are to pop up one level unless we are already at the top level.
(COND ((= *LD-LEVEL* 1)
; At *LD-LEVEL* = 1 we know *standard-co* is *STANDARD-OUTPUT*.
(PRINC "Abort to ACL2 top-level"
*STANDARD-OUTPUT*)
(TERPRI *STANDARD-OUTPUT*))
(T
(THROW 'LOCAL-TOP-LEVEL :ABORT))))
((EQ THROWN-VAL :POP)
(COND ((= *LD-LEVEL* 1)
(PRINC "Currently at ACL2 top-level"
*STANDARD-OUTPUT*))
(t
(COND ((= *LD-LEVEL* 2)
(PRINC "Pop up to ACL2 top-level"
*STANDARD-OUTPUT*))
(t
(PRINC "Pop up one LD level"
*STANDARD-OUTPUT*)))
(WHEN (NOT (EQ (LD-ERROR-ACTION STATE)
:ERROR))
(SET-LD-ERROR-ACTION :RETURN!
STATE))))
(TERPRI *STANDARD-OUTPUT*)))
(ACL2-UNWIND *LD-LEVEL* T)
; We first unwind back to the current level so STANDARD-OI and LD-ERROR-ACTION
; are correctly set.
(COND ((EQ (LD-ERROR-ACTION STATE) :CONTINUE)
(SETQ *FIRST-ENTRY-TO-LD-FN-BODY-FLG*
(COND ((EQ THROWN-VAL :ABORT) T)
(T NIL)))
(SETQ NEW-LD-SPECIALS-ALIST NIL)
(SETQ THROWN-VAL NIL)
(GO LOOP))
((EQ (LD-ERROR-ACTION STATE) :RETURN)
(ACL2-UNWIND (1- *LD-LEVEL*) NIL)
(RETURN-FROM LD-FN0 (VALUE :ERROR)))
((EQ (LD-ERROR-ACTION STATE) :RETURN!)
(ACL2-UNWIND (1- *LD-LEVEL*) NIL)
(RETURN-FROM
LD-FN0
(VALUE (LIST :STOP-LD
(F-GET-GLOBAL 'LD-LEVEL
STATE)))))
(T (ACL2-UNWIND (1- *LD-LEVEL*) NIL)
(RETURN-FROM LD-FN0 (MV T NIL STATE)))))
(T
(ACL2-UNWIND (1- *LD-LEVEL*) NIL)
(RETURN-FROM LD-FN0
(MV LD-ERP LD-VAL STATE)))))))))))))))
(T (ld-fn1 (cdr (assoc-eq 'standard-oi alist)) alist state bind-flg)))))
(defun ld-fn (alist state bind-flg)
; See ld-fn0. Here, we just provide a little wrapper for top-level calls of
; ld-fn0 in case that there is an interrupt that isn't handled inside ld-fn0.
; To see this issue in action, evaluate the following four forms and interrupt
; the last one twice: once late in the proof attempt and once immediately upon
; printing the checkpoint summary (which is done by a call of acl2-unwind in
; the cleanup form of an unwind-protect, on behalf of a call of
; acl2-unwind-protect inside prove-loop0 that invokes
; print-summary-on-error upon an error).
; (defun foo (n acc)
; (if (zp n)
; acc
; (foo (1- n)
; (cons `(equal (nth ,n x) x)
; acc))))
;
; (defmacro mac (n)
; (cons 'and (foo n nil)))
;
; (set-rewrite-stack-limit 10000)
;
; (thm
; (mac 1000)
; :otf-flg t
; :hints (("Goal" :do-not '(preprocess))))
(let ((alist (if (assoc-eq 'ld-error-action alist)
alist
(acons 'ld-error-action
(let ((action (ld-error-action state)))
(if (and (consp action)
(eq (car action) :exit))
action
:return!))
alist))))
#-acl2-loop-only
(cond (*load-compiled-stack*
(error "It is illegal to call LD while loading a compiled book, in ~
this case:~%~a .~%See :DOC calling-ld-in-bad-contexts."
(caar *load-compiled-stack*)))
((= *ld-level* 0)
(return-from
ld-fn
(let ((complete-flg nil))
(unwind-protect
(mv-let (erp val state)
(ld-fn0 alist state bind-flg)
(progn (setq complete-flg t)
(mv erp val state)))
(when (and (not complete-flg)
(not *acl2-panic-exit-status*))
(fms "***NOTE***: An interrupt or error has occurred in the ~
process of cleaning up from an earlier interrupt or ~
error. This is likely to leave you at the raw Lisp ~
prompt after you abort to the top level. If so, then ~
execute ~x0 to re-enter the ACL2 read-eval-print ~
loop.~|~%"
(list (cons #\0 '(lp)))
*standard-co*
state
nil)))))))
(cond ((not (f-get-global 'ld-okp state))
(er soft 'ld
"It is illegal to call LD in this context. See DOC ~
calling-ld-in-bad-contexts."))
(t (ld-fn0 alist state bind-flg)))))
(defmacro ld (standard-oi
&key
dir
(standard-co 'same standard-cop)
(proofs-co 'same proofs-cop)
(current-package 'same current-packagep)
(ld-skip-proofsp 'same ld-skip-proofspp)
(ld-redefinition-action 'same ld-redefinition-actionp)
(ld-prompt 'same ld-promptp)
(ld-missing-input-ok 'same ld-missing-input-okp)
(ld-pre-eval-filter 'same ld-pre-eval-filterp)
(ld-pre-eval-print 'same ld-pre-eval-printp)
(ld-post-eval-print 'same ld-post-eval-printp)
(ld-evisc-tuple 'same ld-evisc-tuplep)
(ld-error-triples 'same ld-error-triplesp)
(ld-error-action 'same ld-error-actionp)
(ld-query-control-alist 'same ld-query-control-alistp)
(ld-verbose 'same ld-verbosep))
`(ld-fn
(list ,@(append
(list `(cons 'standard-oi ,standard-oi))
(if dir
(list `(cons 'dir ,dir))
nil)
(if standard-cop
(list `(cons 'standard-co ,standard-co))
nil)
(if proofs-cop
(list `(cons 'proofs-co ,proofs-co))
nil)
(if current-packagep
(list `(cons 'current-package ,current-package))
nil)
(if ld-skip-proofspp
(list `(cons 'ld-skip-proofsp ,ld-skip-proofsp))
nil)
(if ld-redefinition-actionp
(list `(cons 'ld-redefinition-action
,ld-redefinition-action))
nil)
(if ld-promptp
(list `(cons 'ld-prompt ,ld-prompt))
nil)
(if ld-missing-input-okp
(list `(cons 'ld-missing-input-ok ,ld-missing-input-ok))
nil)
(if ld-pre-eval-filterp
(list `(cons 'ld-pre-eval-filter ,ld-pre-eval-filter))
nil)
(if ld-pre-eval-printp
(list `(cons 'ld-pre-eval-print ,ld-pre-eval-print))
nil)
(if ld-post-eval-printp
(list `(cons 'ld-post-eval-print ,ld-post-eval-print))
nil)
(if ld-evisc-tuplep
(list `(cons 'ld-evisc-tuple ,ld-evisc-tuple))
nil)
(if ld-error-triplesp
(list `(cons 'ld-error-triples ,ld-error-triples))
nil)
(if ld-error-actionp
(list `(cons 'ld-error-action ,ld-error-action))
nil)
(if ld-query-control-alistp
(list `(cons 'ld-query-control-alist ,ld-query-control-alist))
nil)
(if ld-verbosep
(list `(cons 'ld-verbose ,ld-verbose))
nil)))
state
t))
(defmacro quick-test nil
; We might want to add other events to the list below to test a wide variety of
; features.
'(ld '((defun app (x y)
(declare (xargs :guard (true-listp x)))
(if (eq x nil) y (cons (car x) (app (cdr x) y))))
(defthm true-listp-app
(implies (true-listp x) (equal (true-listp (app x y)) (true-listp y))))
:program
(defun rev (x)
(declare (xargs :guard (true-listp x)))
(if (eq x nil) nil (app (rev (cdr x)) (list (car x)))))
:logic
(verify-termination rev)
(verify-guards rev)
(defthm true-listp-rev
(implies (true-listp x) (true-listp (rev x)))
:rule-classes :type-prescription)
(defthm rev-rev (implies (true-listp x) (equal (rev (rev x)) x))))
:ld-pre-eval-print t
:ld-error-action :return))
(defun wormhole-prompt (channel state)
(fmt1 "Wormhole ~s0~sr ~@1~*2"
(list (cons #\0 (f-get-global 'current-package state))
(cons #\1 (defun-mode-prompt-string state))
(cons #\r
#+:non-standard-analysis "(r)"
#-:non-standard-analysis "")
(cons #\2
(list "" ">" ">" ">"
(make-list-ac (- (f-get-global 'ld-level state) 1) nil nil))))
0 channel state nil))
(defun reset-ld-specials-fn (reset-channels-flg state)
; We restore all of the ld specials to their initial, top-level
; values, except for the three channels, standard-oi, standard-co, and
; proofs-co, which are not reset unless the reset-channels-flg is t.
; Of course, if this function is called while under a recursive ld,
; then when we pop out of that ld, the reset values will be lost.
(f-put-ld-specials
(cond (reset-channels-flg *initial-ld-special-bindings*)
(t (cdddr *initial-ld-special-bindings*)))
state))
(defmacro reset-ld-specials (reset-channels-flg)
`(reset-ld-specials-fn ,reset-channels-flg state))
(defun maybe-reset-defaults-table1
(key pre-defaults-tbl post-defaults-tbl state)
(let* ((pre-val (cdr (assoc-eq key pre-defaults-tbl)))
(post-val (cdr (assoc-eq key post-defaults-tbl)))
(cmd `(table acl2-defaults-table ,key ',pre-val)))
(if (equal pre-val post-val)
(value nil)
(er-let*
((ans
(acl2-query
:ubt-defaults
'("The default ~s0 was ~x1 before undoing, but will be ~x2 after ~
undoing unless the command ~x3 is executed. Do you wish to ~
re-execute this command after the :ubt?"
:y t :n nil
:? ("If you answer in the affirmative, then the command ~X34 will ~
be executed on your behalf. This will make the default ~s0 ~
equal to ~x1, which is what it was just before your :ubt ~
command was executed. Otherwise, the default ~s0 will be ~
what it is in the world after the undoing, namely ~x2. See ~
also :DOC acl2-defaults-table."
:y t :n nil))
(list (cons #\0 (string-downcase (symbol-name key)))
(cons #\1 pre-val)
(cons #\2 post-val)
(cons #\3 cmd)
(cons #\4 nil))
state)))
(if ans
(ld (list cmd)
:ld-pre-eval-filter :all
:ld-pre-eval-print t
:ld-post-eval-print :command-conventions
:ld-evisc-tuple (abbrev-evisc-tuple state)
:ld-error-triples t
:ld-error-action :return)
(value nil))))))
(defun maybe-reset-defaults-table2
(keys pre-defaults-tbl post-defaults-tbl state)
(if keys
(er-progn (maybe-reset-defaults-table1
(car keys) pre-defaults-tbl post-defaults-tbl state)
(maybe-reset-defaults-table2
(cdr keys) pre-defaults-tbl post-defaults-tbl state))
(value nil)))
(defun maybe-reset-defaults-table (pre-defaults-tbl post-defaults-tbl state)
(maybe-reset-defaults-table2 (union-equal (strip-cars pre-defaults-tbl)
(strip-cars post-defaults-tbl))
pre-defaults-tbl post-defaults-tbl state))
(defun delete-something (lst)
; Lst must be non-nil. We return a list that is one shorter than lst by either
; dropping the first nil we find in lst or, if there are no nils, the last
; element.
(cond ((null (cdr lst)) nil)
((null (car lst)) (cdr lst))
(t (cons (car lst) (delete-something (cdr lst))))))
(defun store-in-kill-ring (x0 ring)
; A "kill ring" is a fancy queue that stores a fixed number, say n, of non-nil
; items in the order in which they were stored. Only the most recent n non-nil
; items stored are saved. When a non-nil item is stored and the ring is full,
; the oldest item is dropped out and lost. So we have described a queue so
; far. The only other operation on kill rings is "rotate" which selects an
; item from the kill ring but does not remove it. Given a ring containing n
; items, n+1 rotations will return the each of the items in turn and in the
; reverse order in which they were stored. More on rotation later.
; Kill rings are just lists of the n items, in order. The length of the list
; is n but there may be nils in the list. The initial kill ring of length n
; is just n nils.
(cond ((or (null x0) ; item is nil or the size of the
(null ring)) ; ring is 0. We store nothing.
ring)
(t (cons x0 (delete-something ring)))))
(defun rotate-kill-ring1 (ring xn)
(cond ((null ring) xn)
((car ring) (append ring xn))
(t (rotate-kill-ring1 (cdr ring) (append xn (list nil))))))
(defun rotate-kill-ring (ring xn)
; See store-in-kill-ring for background on rings. Xn is an element to add to
; the ring. We step the ring once, returning (mv item ring'), where item is
; the most recently added item in ring and ring' is the result of removing that
; item and adding xn as the oldest item in the ring. Thus, a series of
; rotate-kill-ring n+1 long will return us to the original configuration.
(cond ((null (car ring)) (mv nil ring))
(t (mv (car ring)
(rotate-kill-ring1 (cdr ring) (list xn))))))
(defun ubt-ubu-fn1 (kwd wrld pred-wrld state)
(let ((pre-defaults-table (table-alist 'acl2-defaults-table wrld)))
(er-let*
((redo-cmds (ubt-ubu-query kwd wrld pred-wrld nil
nil wrld state nil)))
(pprogn
(f-put-global
'undone-worlds-kill-ring
(store-in-kill-ring wrld
(f-get-global
'undone-worlds-kill-ring
state))
state)
(set-w 'retraction pred-wrld state)
(let ((redo-cmds (if (eq (car redo-cmds)
(default-defun-mode pred-wrld))
(cdr redo-cmds)
redo-cmds)))
(er-progn
(if redo-cmds
(mv-let (col state)
(fmt "Undoing complete. Redoing started...~%"
nil (standard-co state) state nil)
(declare (ignore col))
(value nil))
(value nil))
(if redo-cmds
(ld redo-cmds
:ld-redefinition-action '(:doit! . :overwrite)
:ld-pre-eval-filter :all
:ld-pre-eval-print t
:ld-post-eval-print :command-conventions
:ld-evisc-tuple (abbrev-evisc-tuple state)
:ld-error-triples t
:ld-error-action :return
:ld-query-control-alist
(cons '(:redef :y)
(ld-query-control-alist state)))
(value nil))
(if redo-cmds
(mv-let (col state)
(fmt1 "Redoing complete.~%~%"
nil 0 (standard-co state) state nil)
(declare (ignore col))
(value nil))
(value nil))
(maybe-reset-defaults-table
pre-defaults-table
(table-alist 'acl2-defaults-table (w state))
state)
(pcs-fn :x :x nil state)
(value :invisible)))))))
(defun ubt-ubu-fn (kwd cd state)
; Kwd is :ubt or :ubu.
(let* ((wrld (w state))
(command-number-baseline
(access command-number-baseline-info
(global-val 'command-number-baseline-info wrld)
:current)))
(er-let* ((cmd-wrld (er-decode-cd cd wrld kwd state)))
(cond ((if (eq kwd :ubt)
(<= (access-command-tuple-number (cddar cmd-wrld))
command-number-baseline)
(< (access-command-tuple-number (cddar cmd-wrld))
command-number-baseline))
; We prevent ubt and ubu from going into prehistory, thus burning users due to
; typos. But sometimes developers need to do it. Here is how from within the
; ACL2 loop:
; (set-state-ok t)
; (defun my-ubt-ubu-fn (inclp x state) (declare (xargs :guard t)) (value x))
; :q
; Grab this defun, rename it to my-ubt-ubu-fn, edit out the cond clause
; containing this comment and define my-ubt-ubu-fn in raw lisp.
; (lp)
; (my-ubt-ubu-fn t 'sys-fn state), where sys-fn is the desired target of the
; ubt.
(cond
((let ((command-number-baseline-original
(access command-number-baseline-info
(global-val 'command-number-baseline-info wrld)
:original)))
(if (eq kwd :ubt)
(<= (access-command-tuple-number (cddar cmd-wrld))
command-number-baseline-original)
(< (access-command-tuple-number (cddar cmd-wrld))
command-number-baseline-original)))
(er soft kwd "Can't undo into system initialization."))
(t (er soft kwd
"Can't undo into prehistory. See :DOC ~
reset-prehistory."))))
((and (eq kwd :ubu) (equal wrld cmd-wrld))
(er soft kwd
"Can't undo back to where we already are!"))
(t
(let ((pred-wrld (if (eq kwd :ubt)
(scan-to-command (cdr cmd-wrld))
cmd-wrld)))
(ubt-ubu-fn1 kwd wrld pred-wrld state)))))))
(defun ubt!-ubu!-fn (kwd cd state)
; Kwd is :ubt or :ubu.
(state-global-let*
((ld-query-control-alist
(list* `(,kwd :n!)
'(:ubt-defaults :n)
(@ ld-query-control-alist)))
(inhibit-output-lst
(union-equal '(observation warning error)
(@ inhibit-output-lst))))
(mv-let (erp val state)
(ubt-ubu-fn kwd cd state)
(declare (ignore erp val))
(value :invisible))))
(defmacro ubt-prehistory ()
(list 'ubt-prehistory-fn 'state))
(defun ubt-prehistory-fn (state)
(let* ((ctx 'ubt-prehistory)
(wrld (w state))
(command-number-baseline-info
(global-val 'command-number-baseline-info wrld))
(command-number-baseline
(access command-number-baseline-info
command-number-baseline-info
:current)))
(cond ((eql command-number-baseline
(access command-number-baseline-info
command-number-baseline-info
:original))
(er soft ctx
"There is no reset-prehistory event to undo."))
((access command-number-baseline-info
command-number-baseline-info
:permanent-p)
(er soft ctx
"It is illegal to undo a reset-prehistory event that had its ~
permanent-p flag set to t. See :DOC reset-prehistory."))
(t (er-let* ((val (ubt-ubu-fn1
:ubt-prehistory
wrld
(scan-to-command
(cdr (lookup-world-index
'command command-number-baseline wrld)))
state)))
(er-progn
(reset-kill-ring t state)
(prog2$ #-acl2-loop-only
(pop *checkpoint-world-len-and-alist-stack*)
#+acl2-loop-only
nil
(value val))))))))
(defun oops-warning (state)
; If the set of Lisps that compile all functions changes from {sbcl, ccl}, then
; change the #+/#- below accordingly.
#+(or sbcl ccl)
(fms "Installing the requested world.~|~%"
nil (f-get-global 'standard-co state) state nil)
#-(or sbcl ccl)
(fms "Installing the requested world. Note that functions being re-defined ~
during this procedure will not have compiled definitions, even if ~
they had compiled definitions before the last :ubt or :u.~|~%"
nil (f-get-global 'standard-co state) state nil))
(defun oops-fn (state)
(mv-let (new-wrld new-kill-ring)
(rotate-kill-ring (f-get-global 'undone-worlds-kill-ring state)
(w state))
(cond ((null new-wrld)
(cond ((null (f-get-global 'undone-worlds-kill-ring state))
(er soft :oops
"Oops has been disabled in this ACL2 session. ~
See :DOC reset-kill-ring"))
(t
(er soft :oops
"ACL2 cannot execute :oops at this time, ~
presumably because you have never executed :ubt ~
or :u during this ACL2 session (at least not ~
since the last invocation of reset-kill-ring)."))))
(t (er-progn
(revert-world-on-error
(pprogn
(oops-warning state)
(set-w! new-wrld state)
(er-progn (pcs-fn :x :x nil state)
(value nil))))
(pprogn
(f-put-global 'undone-worlds-kill-ring
new-kill-ring state)
(value :invisible)))))))
(defmacro oops nil
'(oops-fn state))
(defmacro i-am-here ()
'(mv-let (col state)
(fmt1 "~ I-AM-HERE~|" nil 0 (standard-co state) state nil)
(declare (ignore col))
(mv t nil state)))
(defun rebuild-fn-read-filter (file state)
(state-global-let*
((standard-oi *standard-oi*)
(standard-co *standard-co*))
(er-let*
((ans
(acl2-query
:rebuild
'("How much of ~x0 do you want to process?"
:t :all :all :all :query :query :until :until
:? ("If you answer T or ALL, then the entire file will be ~
loaded. If you answer QUERY, then you will be asked ~
about each command in the file. If you answer UNTIL, ~
then you should also type some name after the UNTIL ~
and we will then proceed to process all of the events ~
in file until that name has been introduced. Rebuild ~
automatically stops if any command causes an error. ~
When it stops, it leaves the logical world in the ~
state it was in immediately before the erroneous ~
command. Thus, another way to use rebuild is to get ~
into the habit of planting (i-am-here) -- or any other ~
form that causes an error when executed -- and then ~
using the filter T or ALL when you rebuild."
:t :all :all :all :query :query :until :until))
(list (cons #\0 file))
state)))
(cond ((eq ans :until)
(state-global-let*
((infixp nil))
(read-object *standard-oi* state)))
(t (value ans))))))
(defun rebuild-fn (file filter filterp dir state)
(er-let*
((filter
(if filterp
(value (if (eq filter t) :all filter))
(rebuild-fn-read-filter file state))))
(mv-let (erp val state)
(ld file
:dir dir
:standard-co *standard-co*
:proofs-co *standard-co*
:ld-skip-proofsp t
:ld-prompt nil
:ld-missing-input-ok nil
:ld-pre-eval-filter filter
:ld-pre-eval-print nil
:ld-post-eval-print :command-conventions
:ld-evisc-tuple (abbrev-evisc-tuple state)
:ld-error-triples t
:ld-error-action :return!
:ld-query-control-alist '((:filter . nil) . t)
:ld-verbose t)
(declare (ignore erp val))
(value t))))
(defmacro rebuild (file &optional (filter 'nil filterp)
&key dir)
`(rebuild-fn ,file ,filter ,filterp ,dir state))
; The Tall Texas Tale about BIG-CLOCK
; Like any Lisp system, it may be said, loosely speaking, that ACL2
; typically reads a form, evaluates it in the current state, and
; prints the result. This read-eval-print activity in ACL2 is done by
; the function ld-fn. When the user enters ACL2 by invoking (LP),
; ld-fn is called to do the work.
; The read phase of the read-eval-print activity is done with the
; read-object function, which calls the Common Lisp read function.
; This read is influenced by *package*, *readtable*, and *features*,
; as described in acl2.lisp.
; The semantics of an ACL2 read-eval-print cycles is best desribed
; from the logical point of view via the logic programming pradigm, to
; which we degress momentarity. In the Lisp paradigm, one thinks
; of an interaction as always being something like
; > (fact 3) = ?
; wherein a variable free term is evaluated to obtain a suitable
; value, say 6. In logic programming, as in Baroque or Prolog, one
; can ask a question like:
; ? (fact x) = 6
; i.e. does there exist an x whose factorial is 6? The system then
; attempts to answer the question and may find one or several values for
; x that does the job, e.g. 3. In fact, one can even imagine asking
; ? (fact x) = y
; to obtain a variety of values of x and y that satisfy the relation.
; Or might might merely be informed that that, yes, there do exist
; values of x and y satisfying the relation, without being given x and
; y explicitly.
; The point of this digression is merely to mention the well-known
; (but non-Lispish) idea that the input to a computation need not
; always be given entirely in advance of the commencement of a
; computation. In truth, even in regular Common Lisp, the input is not
; really always given entirely in advance because the charcters that
; may appear in *standard-input* or the file system need not be known
; before evaluation commences. ACL2 employs this ``incompletely
; specified at evaluation commencement'' idea.
; From the logical point of view, an ACL2 ``state'' is any object in
; the logic satifying the state-p predicate, q.v. in axioms.lisp.
; There is a long comment in axioms.lisp under the heading STATE which
; describes the many fields that a state has.
; At the beginning of any interaction with the top-level ACL2 ld-fn,
; there is a ``partial current state'', which may be partially
; perceived, without side-effect, in Common Lisp, but outside of ACL2,
; by invoking (what-is-the-global-state). This partial current-state
; includes (a) the names, types, and times of the open input and
; output channels (but not the characters read or written to those
; channels), (b) the symbols in the global table, (c) the t-stack, (d)
; the 32-bit stack, and (e) the file clock. We say that an object o
; satisfying state-p is ``consistent with the current paritial state''
; provided that every fact revealed by (what-is-the-global-state) and
; by examination of the bound globals is true about o.
; In Lisp (as opposed to Prolog) the input form has no explicit free
; variable. In ACL2, however, one free variable is permitted, and
; this variable, always named STATE, refers, loosely speaking to the
; ``value of the state at the time of input''. In ACL2, the variable
; STATE includes the input via files and channels.
; Common LISP IO
; If we have a Common Lisp system that is connected to an IO system,
; then at each tick of time, the system may (a) print a character,
; byte, or object to any of the open streams, (b) read a character,
; byte, or object from any of the open streams, (c) open a file for
; reading or writing and (c) close an open stream.
; Suppose that old and new are two objects satisfying state-p and that
; we have an implementation of ACL2 in a Common Lisp which is
; connected to an IO system. We say that old and new are ``IO
; consistent with the Common Lisp IO system's behavior in the time
; period between old and new'' provided that the relationships between
; the various io fields of old and new are just what happened. For
; example, suppose that old and new are different only in that in new
; on one input character channel one character has been consumed.
; Then that is consistent with a Common Lisp IO system in which the
; stream corresponding to the channel was read to get just one
; character. As another example, suppose that old and new are
; different only because a file is now on read-files that was not
; there before and file-clock has been ticked twice and the two most
; recent values of the file clock are the open and close time of the
; read file. Then that is consistent with a Common Lisp IO system in
; which a stream for a file of the read file's name was opened and
; consumed and the characters read were exactly the characters
; associated with the file name in readable-files at the file-clock
; upon open. This concept needs to be completely and fully spelled
; out, but we believe it is all boring and obvious: the file clock is
; to keep track of the opening and closing times. The read-files and
; written-files entries record closing times and contents. The
; readable-files and input channels entries record characters actually
; consumed.
; In the extremely important degenerate case, old and new are
; consistent with the Common Lisp IO system's behavior over a time
; interval if all the fields of old and new are identical, excepting
; only the global-table, stacks, and big-clock entries, and no IO
; occurred in the time interval.
; The ACL2 ld theorem
; Let us suppose, without loss of generality, that run is a function
; of one argument, state, that has been defined by the user, and
; accepted by ACL2. Let us further suppose that run returns a single
; state value. (There is no loss of generality here because any
; particular arguments or output value that the user wishes to provide
; or see can be placed in state globals. For example, one could add
; two to three by defining run as (defun run (state) (f-set-global
; 'foo (+ 2 3)))). Let us suppose that an ACL2 interaction of the
; form
; ACL2 !> (run state)
; completes. What is the theorem that describes the relationship
; between the old current partial state and the new current partial
; state? The theorem is that (a) there exists an object, old, which
; satisfies the predicate statep and an object, new, which also
; satisfies the predicate statep such that old is consistent with the
; partial current state at the time of the input and new is consistent
; with the partial current state at the time of the output (b) new and
; old are IO consistent with the Common Lisp IO system's behavior in
; the time period between the beginning and ending of the evaluation
; (c) new = (trans-eval '(run state) nil old t), and (d) (run old) =
; (trans-eval '(run state) nil old t) except in the big-clock field.
; In the important degenerate case in which no io occurs, this means
; essentially that there exists (in the constructive sense) a
; big-clock entry in old which is ``large enough'' to perform the
; trans-eval of the input form without ``running out of time''. ACL2
; does not reveal to the user how much ``time'' was required, but
; merely guarantees that there exists a sufficiently large amount of
; time. In fact, because we ``jump into compiled code'' in
; raw-ev-fncall, we have no way of efficiently keeping track of how
; much time has been used.
; Note that there is no commitment to a uniform value for big-clock
; across all ACL2 interactions. In particular, there obviously exists
; an infinite sequence of forms, say (fact 1), (fact 2), (fact 3),
; .... which would require an infinitely increasing series of
; big-clocks. An ACL2 evaluation effort may fail for a variety of
; reasons, including resource errors and certain design decisions,
; e.g. the detection that a function should not be clobbered because
; there is already a function by that name with a symbol-function
; property. If evaluation fails, some characters may nevertheless
; have been printed or read and state may have been changed.
(defconst *basic-sweep-error-str*
"The state back to which we have been asked to roll would contain an ~
object that is inconsistent with the requested resetting of the ~
ACL2 known-package-alist. Logical consistency would be imperiled ~
if the rollback were undertaken. Please get rid of pointers to ~
such objects before attempting such a rollback.~|~%")
(defun sweep-symbol-binding-for-bad-symbol (sym obj deceased-packages state)
(cond ((symbolp obj)
(cond ((member-equal (symbol-package-name obj) deceased-packages)
(er soft "undo consistency check"
"~@0In particular, the value of the global ~
variable ~x1 contains the symbol ~x2 in package ~
~x3, which we have been asked to remove. ~
Please reset ~x1, as with (assign ~x1 nil)."
*basic-sweep-error-str*
sym
obj
(symbol-package-name obj)))
(t (value nil))))
((atom obj) (value nil))
((equal obj (w state))
(value nil))
(t (er-progn (sweep-symbol-binding-for-bad-symbol
sym (car obj)
deceased-packages state)
(sweep-symbol-binding-for-bad-symbol
sym (cdr obj) deceased-packages state)))))
(defun sweep-global-lst (l deceased-packages state)
(cond ((null l) (value nil))
(t (er-progn
(sweep-symbol-binding-for-bad-symbol
(car l)
(get-global (car l) state)
deceased-packages state)
(sweep-global-lst (cdr l) deceased-packages state)))))
(defun sweep-stack-entry-for-bad-symbol (name i obj deceased-packages state)
(cond ((symbolp obj)
(cond ((member-equal (symbol-package-name obj) deceased-packages)
(er soft "undo consistency check"
"~@0In particular, the entry in the ~@1 at ~
location ~x2 contains the symbol ~x3 in package ~
~x4, which we have been asked to undo. Please ~
change the ~@1 entry at location ~x2 or ~
shrink the ~@1."
*basic-sweep-error-str*
name
i
obj
(symbol-package-name obj)))
(t (value nil))))
((atom obj) (value nil))
((equal obj (w state))
(value nil))
(t (er-progn (sweep-stack-entry-for-bad-symbol
name i (car obj) deceased-packages state)
(sweep-stack-entry-for-bad-symbol
name i (cdr obj) deceased-packages state)))))
(defun sweep-t-stack (i deceased-packages state)
(cond ((> i (t-stack-length state))
(value nil))
(t (er-progn
(sweep-stack-entry-for-bad-symbol
"t-stack" i (aref-t-stack i state) deceased-packages state)
(sweep-t-stack (+ 1 i) deceased-packages state)))))
(defun sweep-acl2-oracle (i deceased-packages state)
; A valid measure is (- (len (acl2-oracle state)) if we want to admit this
; function in logic mode, since read-acl2-oracle replaces the acl2-oracle of
; the state with its cdr.
(mv-let
(nullp car-oracle state)
(read-acl2-oracle state)
(cond (nullp (value nil))
(t (er-progn
(sweep-stack-entry-for-bad-symbol
"acl2-oracle" i car-oracle deceased-packages state)
(sweep-acl2-oracle (+ 1 i) deceased-packages state))))))
(defun sweep-global-state-for-lisp-objects (deceased-packages state)
; This function sweeps every component of the state represented by
; *the-live-state* to verify that no symbol is contained in a package that we
; are about to delete. This is sensible before we undo a defpkg, for example,
; which may ``orphan'' some objects held in, say, global variables in the
; state. We look in the global variables, the t-stack, and acl2-oracle. If a
; global variable, t-stack entry, or acl2-oracle entry contains such an object,
; we cause an error. This function is structurally similar to
; what-is-the-global-state in axioms.lisp.
; The components of the state and their disposition are:
; open-input-channels - there are no objects in the dynamic channels.
; Objects obtained from those channels will be
; read into an otherwise ok state.
; open-output-channels - there are no objects in the dynamic channels
; global-table - the global table is the most likely place we will find
; bad objects. However, we know that the value of
; 'current-acl2-world is not bad, because after an undo
; it is set to a previously approved value.
(er-progn
(sweep-global-lst (global-table-cars state) deceased-packages state)
; t-stack - this stack may contain bad objects.
(sweep-t-stack 0 deceased-packages state)
(sweep-acl2-oracle 0 deceased-packages state))
; The remaining fields contain no ``static'' objects. The fields are:
; 32-bit-integer-stack
; big-clock
; idates
; file-clock
; readable-files
; written-files
; read-files
; writeable-files
; list-all-package-names-lst
)
(defmacro wet (form &rest kwd-args)
(let* ((book-tail (member-eq :book kwd-args))
(kwd-args (if book-tail (remove-keyword :book kwd-args) kwd-args))
(book-form (if book-tail
(cond ((null book-tail)
nil)
((stringp (cadr book-tail))
(list 'include-book (cadr book-tail)))
(t (cons 'include-book (cadr book-tail))))
'(include-book "misc/wet" :dir :system))))
`(with-output
:off (summary event)
(make-event (mv-let (erp val state)
(progn
,@(and book-form (list book-form))
(wet! ,form ,@kwd-args))
(cond (erp (mv "WET failed!" nil state))
(t (value `(value-triple ',val)))))))))
(defmacro disassemble$ (fn &rest args
&key (recompile ':default)
; And, in case community book books/misc/disassemble.lisp changes between
; releases:
&allow-other-keys)
`(with-ubt!
(with-output
:off (event history summary proof-tree)
(progn
(include-book "misc/disassemble" :dir :system :ttags '(:disassemble$))
(value-triple (disassemble$-fn ,fn ,recompile (list ,@args)))))))
; Changes made March 9-16, 2009 (after v3-4), for more efficient handling of
; certificates, etc.:
; The Essay on Skip-proofs was redone, and a new Essay on Soundness Threats was
; added, that explain current handling of skip-proofs, redef, etc. The basic
; idea is that we have eliminated state globals 'skipped-proofsp and
; include-book-alist-state, instead tracking more in the world
; (e.g. include-book-alist-all). See in particular install-event, which
; handles such matters, and note that maybe-add-command-landmark no longer does
; so. (We also changed include-book-fn and encapsulate-fn for this purpose.)
; We added state global 'skip-proofs-by-system to help (again, see
; install-event).
; Of course, there were miscellaneous supporting changes, some in comments. In
; particular, we (about a month later) eliminated chk-certification-worldxxx.
; Also, eval-event-lst now returns an extra element, which can be a natural
; number we can supply to nthcdr to eliminate some expense from our call of
; expansion-alist-pkg-names in certify-book-fn. This value is passed to
; process-embedded-events, and back from it in the case that the caller is
; 'certify-book.
; We also changed the use of check-sum so that we don't include the
; expansion-alist with the events from the actual book. For calls of
; check-sum-obj on event lists that support the handling of certificates, we
; now use only the events from the book ev-lst and no longer include events in
; the expansion-alist. Instead, we rely on the check-sum of the cert-obj,
; which is still incorporated in the certificate, for ensuring that we have the
; right expansion-alist.
#-acl2-loop-only
(defun-one-output compiled-function-p! (fn)
; In CMU Lisp, compiled-function-p is braindead. It seems that the
; symbol-function of every defun'd function is a ``compiled'' object.
; Some are #<Interpreted Function ...> and others are #<Function ...>.
; I think the following test works. Fn is assumed to be a symbol.
#+cmu
(not (eq (type-of (symbol-function fn)) 'eval:interpreted-function))
#-cmu
(compiled-function-p (symbol-function fn)))
(defun compile-function (ctx fn0 state)
; Fn0 can either be a symbol, (:raw sym), or (:exec sym).
(declare (xargs :guard
(and (or (symbolp fn0)
(and (consp fn0)
(member-eq (car fn0) '(:raw :exec))
(consp (cdr fn0))
(null (cddr fn0))))
(state-p state))))
(let ((wrld (w state))
(fn (if (consp fn0)
(cadr fn0)
fn0)))
(cond
((not (eq (f-get-global 'compiler-enabled state) t))
(value (er hard ctx
"Implementation error: Compile-function called when ~x0."
'(not (eq (f-get-global 'compiler-enabled state) t)))))
((eq (getprop fn 'formals t 'current-acl2-world wrld)
t)
(er soft ctx
"~x0 is not a defined function in the current ACL2 world."
fn))
(t
(state-global-let*
((trace-specs (f-get-global 'trace-specs state))
(retrace-p t))
(prog2$
#+acl2-loop-only
nil
#-acl2-loop-only
(let ((trace-spec
(assoc-eq fn (f-get-global 'trace-specs state))))
(when trace-spec
(untrace$-fn (list fn) state))
(let* ((form (cltl-def-from-name fn wrld))
(*1*fn (*1*-symbol fn))
(raw-only-p (and (consp fn0) (eq (car fn0) :raw)))
(exec-only-p (and (consp fn0) (eq (car fn0) :exec))))
(cond
((not (or exec-only-p
(compiled-function-p! fn)))
(cond (form
(eval (make-defun-declare-form fn form))))
(compile fn)))
(cond
((and (not raw-only-p)
(fboundp *1*fn)
(not (compiled-function-p! *1*fn)))
#-acl2-mv-as-values ; may delete this restriction in the future
(eval
(make-defun-declare-form
fn
(cons 'defun (oneified-def fn wrld))))
(compile *1*fn)))
(when trace-spec
(trace$-fn trace-spec ctx state))))
(value fn)))))))
#-acl2-loop-only
(defun getpid$ ()
; This function is intended to return the process id. But it may return nil
; instead, depending on the underlying lisp platform.
(let ((fn
#+allegro 'excl::getpid
#+gcl 'si::getpid
#+sbcl 'sb-unix::unix-getpid
#+cmu 'unix::unix-getpid
#+clisp (or (let ((fn0 (find-symbol "PROCESS-ID" "SYSTEM")))
(and (fboundp fn0) ; CLISP 2.34
fn0))
(let ((fn0 (find-symbol "PROGRAM-ID" "SYSTEM")))
(and (fboundp fn0) ; before CLISP 2.34
fn0)))
#+ccl 'ccl::getpid
#+lispworks 'system::getpid
#-(or allegro gcl sbcl cmu clisp ccl lispworks) nil))
(and fn
(fboundp fn)
(funcall fn))))
#-acl2-loop-only
(defun-one-output tmp-filename (dir suffix)
; Warning: If this function is changed, look at its call in save-gprof.lsp.
; Dir should be a filename in Unix-style syntax, possibly "". We return a
; filename in Unix-style syntax.
(let ((pid (and (not (eq (f-get-global 'keep-tmp-files *the-live-state*)
:no-pid))
(getpid$)))
(dir (if (and (not (equal dir ""))
(not (eql (char dir (1- (length dir)))
*directory-separator*)))
(concatenate 'string dir *directory-separator-string*)
dir)))
(coerce (packn1 (list* dir
"TMP"
(if pid
(if suffix
(list "@" pid "@" suffix)
(list "@" pid "@"))
(if suffix
(list suffix)
nil))))
'string)))
(defun keep-tmp-files (state)
(f-get-global 'keep-tmp-files state))
(defun comp-fn (fns gcl-flg tmp-suffix state)
; Gcl-flg should only be used with GCL, and causes .c and .h files to be left
; around after compilation.
(declare (xargs :guard (and (state-p state)
(or (and (true-listp fns) fns)
(symbolp fns))
(stringp tmp-suffix)
(not (equal tmp-suffix ""))))
#+acl2-loop-only
(ignore tmp-suffix))
(cond
((eql 0 (f-get-global 'ld-level state))
(pprogn (warning$ 'comp "Comp"
"Comp is ignored outside the ACL2 loop.")
(value nil)))
#-gcl
(gcl-flg
(er soft 'comp
"Comp-gcl may only be used in GCL implementations."))
((not (eq (f-get-global 'compiler-enabled state) t))
(value nil))
(t
(let ((fns (cond
((or (and (symbolp fns)
(not (eq fns t))
(not (eq fns :raw))
(not (eq fns :exec))
(not (eq fns nil)))
(and (consp fns)
(member-eq (car fns) '(:raw :exec))
(consp (cdr fns))
(null (cddr fns))))
(list fns))
(t fns))))
(cond
((and (consp fns)
(null (cdr fns))
(not gcl-flg))
(compile-function 'comp (car fns) state))
((null fns)
(er soft 'comp
"We do not allow the notion of compiling the empty list of ~
functions. Perhaps you meant to do something else."))
(t
#+acl2-loop-only
(value t)
#-acl2-loop-only
(state-global-let*
((retrace-p t))
(let ((*package* *package*)
(dir (or (f-get-global 'tmp-dir state)
(f-get-global 'connected-book-directory state)
""))
(raw-fns nil)
(exec-fns nil)
(trace-specs nil))
(cond
((consp fns)
(dolist (fn fns)
(cond
((and (consp fn)
(member-eq (car fn) '(:raw :exec)))
(cond ((and (consp (cdr fn))
(null (cddr fn))
(symbolp (cadr fn)))
(cond ((eq (car fn) :raw)
(setq raw-fns (cons (cadr fn) raw-fns)))
(t ; :exec
(setq exec-fns (cons (cadr fn) exec-fns)))))
(t
(er hard 'comp
"Unexpected function specifier, ~x0."
fn))))
((symbolp fn)
(setq raw-fns (cons fn raw-fns))
(setq exec-fns (cons fn exec-fns)))
(t (er hard 'comp
"Unexpected function specifier, ~x0."
fn)))
(setq raw-fns (nreverse raw-fns))
(setq exec-fns (nreverse exec-fns))))
(t (setq raw-fns fns)
(setq exec-fns fns)))
(when (not (eq fns :exec))
(setq trace-specs
(f-get-global 'trace-specs state))
(untrace$)
(let ((tmpfile (tmp-filename dir nil)))
(compile-uncompiled-defuns
tmpfile
(if (or (eq fns t)
(eq fns :raw))
:some
raw-fns)
gcl-flg)))
(when (not (eq fns :raw))
(when (and (null trace-specs)
(f-get-global 'trace-specs state))
(setq trace-specs
(f-get-global 'trace-specs state))
(untrace$))
(let ((tmpfile (tmp-filename dir tmp-suffix)))
(compile-uncompiled-*1*-defuns
tmpfile
(if (member-eq fns '(t :exec))
:some
exec-fns)
gcl-flg)))
(when trace-specs
(trace$-lst trace-specs 'comp state))
(value t)))))))))
#-acl2-loop-only
(defmacro comp (fns)
(declare (ignore fns))
nil)
#+acl2-loop-only
(defmacro comp (fns)
`(comp-fn ,fns nil "1" state))
(defmacro comp-gcl (fns)
`(comp-fn ,fns t "1" state))
(defun scan-past-deeper-event-landmarks (depth wrld)
; We scan down wrld until either it is exhausted or we find a command-landmark
; or we find an event-landmark whose access-event-tuple-depth is depth or less.
; Thus, the world we return is either nil or begins with a command-landmark or
; event-landmark.
(cond
((or (null wrld)
(and (eq (car (car wrld)) 'command-landmark)
(eq (cadr (car wrld)) 'global-value)))
wrld)
((and (eq (car (car wrld)) 'event-landmark)
(eq (cadr (car wrld)) 'global-value))
(cond
((> (access-event-tuple-depth (cddr (car wrld))) depth)
(scan-past-deeper-event-landmarks depth (cdr wrld)))
(t wrld)))
(t (scan-past-deeper-event-landmarks depth (cdr wrld)))))
(defun puffable-encapsulate-p (cddr-car-wrld)
(and (eq (access-event-tuple-type cddr-car-wrld) 'encapsulate)
(let ((last-form (car (last (access-event-tuple-form cddr-car-wrld)))))
(case-match last-form
(('table
'trusted-clause-processor-table
&
('quote (& . t))) ; t indicates a dependent clause processor
nil)
(& t)))))
(defun puffable-command-blockp (wrld cmd-form)
; Initially, wrld should be the cdr of a world starting at some
; command-landmark. Cmd-form should be the command-tuple form of that landmark
; (note that it will be nil for the very first command-landmark ever laid down,
; the one with access-command-tuple-number -1).
; This function returns nil except in the following cases.
; (a) Cmd-form is an include-book: return 'include-book.
; (b) Cmd-form is an encapsulate and the first event form in wrld is a puffable
; encapsulate: return 'encapsulate.
; (c) Cmd-form is neither an include-book nor an encapsulate, and it differs
; from the first event form in world: return t.
(cond
((or (null wrld)
(and (eq (car (car wrld)) 'command-landmark)
(eq (cadr (car wrld)) 'global-value)))
nil)
((and (eq (car (car wrld)) 'event-landmark)
(eq (cadr (car wrld)) 'global-value))
(cond ((atom cmd-form) ; perhaps impossible except for first command
nil)
((eq (car cmd-form) 'certify-book)
'certify-book)
((eq (car cmd-form) 'include-book)
(assert$
(eq (car (access-event-tuple-form (cddr (car wrld))))
'include-book)
'include-book))
((eq (car cmd-form) 'encapsulate)
(and (puffable-encapsulate-p
(cddr (car wrld)))
'encapsulate))
(t (not (equal cmd-form
(access-event-tuple-form (cddr (car wrld))))))))
(t (puffable-command-blockp (cdr wrld) cmd-form))))
(defun puffable-command-numberp (i state)
; Let i be a legal relative command number for (w state). We determine whether
; the command at i is puffable.
(mv-let (flg n)
(normalize-absolute-command-number
(relative-to-absolute-command-number i (w state))
(w state))
(and (null flg)
(let ((wrld (lookup-world-index 'command n (w state))))
(puffable-command-blockp
(cdr wrld)
(access-command-tuple-form (cddr (car wrld))))))))
(defun puff-include-book (wrld final-cmds ctx state)
; We puff an include-book simply by going to the file named by the include-book
; and return the events in it. Recursive include-books are not flattened here.
(let ((full-book-name (access-event-tuple-namex (cddr (car wrld)))))
(er-progn
(chk-input-object-file full-book-name ctx state)
(chk-book-name full-book-name full-book-name ctx state)
(er-let*
((ev-lst (read-object-file full-book-name ctx state))
(cert-obj (chk-certificate-file
full-book-name
nil
'puff
ctx
state
'((:uncertified-okp . t)
(:defaxioms-okp t)
(:skip-proofs-okp t))
nil)))
(let* ((old-chk-sum
; The assoc-equal just below is of the form (full-book-name user-book-name
; familiar-name cert-annotations . ev-lst-chk-sum).
(cddddr (assoc-equal full-book-name
(global-val 'include-book-alist
(w state)))))
(expansion-alist
; We include the expansion-alist only if the book appears to be certified.
(and old-chk-sum
(and cert-obj
(access cert-obj cert-obj :expansion-alist))))
(ev-lst-chk-sum
(check-sum-cert (and cert-obj
(access cert-obj cert-obj
:cmds))
expansion-alist
ev-lst)))
(cond
((not (integerp ev-lst-chk-sum))
; This error should never arise because check-sum-obj is only called on
; something produced by read-object, which checks that the object is ACL2
; compatible. And if it somehow did happen, it is presumably not because of
; the expansion-alist, which must be well-formed since it is in the book's
; certificate.
(er soft ctx
"The file ~x0 is not a legal list of embedded event forms ~
because it contains an object, ~x1, which check sum was ~
unable to handle."
full-book-name ev-lst-chk-sum))
((and old-chk-sum
(not (equal ev-lst-chk-sum old-chk-sum)))
(er soft ctx
"When the certified book ~x0 was included, its check sum ~
was ~x1. The check sum for ~x0 is now ~x2. The file has ~
thus been modified since it was last included and we ~
cannot now recover the events that created the current ~
logical world."
full-book-name
old-chk-sum
ev-lst-chk-sum))
(t (value
(append
(cons `(set-cbd ,(get-directory-of-file full-book-name))
(cons (assert$
(and (consp (car ev-lst))
(eq (caar ev-lst) 'in-package))
(car ev-lst))
(subst-by-position expansion-alist
(cdr ev-lst)
1)))
`((maybe-install-acl2-defaults-table
',(table-alist 'acl2-defaults-table wrld)
state))
`((set-cbd ,(cbd)))
final-cmds)))))))))
(defun puff-command-block1 (wrld immediate ans ctx state)
; Wrld is a world that starts just after a command landmark. We scan down to
; the next command landmark and return the list of events in this command
; block. We replace every encapsulate and include-book by the events in its
; body or file, which exposes the LOCAL events that are not actually part of
; wrld now. However, we do not recursively flatten the encapsulates and
; include-books that are exposed by this flattening.
; Immediate is non-nil when we are puffing a certify-book command (immediate =
; 'certify-book) or encapsulate command (immediate = 'encapsulate). In the
; certify-book case, if the first event encountered is an include-book of the
; same book, we puff that include-book command. In the encapsulate case, we
; expect the first event encountered to be an encapsulate event, and we use its
; event-tuple instead of the command-tuple so that make-event expansions are
; used, as is the case for other resulting from :puff.
(cond
((or (null wrld)
(and (eq (car (car wrld)) 'command-landmark)
(eq (cadr (car wrld)) 'global-value)))
(value ans))
((and (eq (car (car wrld)) 'event-landmark)
(eq (cadr (car wrld)) 'global-value))
(let* ((event-tuple (cddr (car wrld)))
(event-type (access-event-tuple-type event-tuple)))
(cond
((and (eq immediate 'certify-book)
(eq event-type 'include-book)
(equal (caar (global-val 'include-book-alist wrld))
(access-event-tuple-namex event-tuple)))
; The include-book here represents the evaluation of all events after the final
; local event in the book common to the certify-book command and the current
; include-book event landmark. We ignore all events in the current world that
; precede that final local event, instead doing a direct collection of all
; events in the book.
(puff-include-book wrld ans ctx state))
((eq immediate 'encapsulate)
; In the case of an encapsulate event, flattening means to do the body of the
; encapsulate -- including the LOCAL events. Note that this destroys the sense
; of those encapsulates that introduce constrained functions! After flattening
; the constrained functions are defined as their witnesses! We cannot recover
; the LOCAL events by a scan through wrld since they are not in wrld. We must
; instead re-execute the body of the encapsulate. Therefore, we just return
; the body of the encapsulate.
(assert$
(eq event-type 'encapsulate)
(value (append (cddr (access-event-tuple-form (cddr (car wrld))))
ans))))
(t
(puff-command-block1
(cond ((member-eq event-type
'(encapsulate include-book))
(scan-past-deeper-event-landmarks
(access-event-tuple-depth event-tuple)
(cdr wrld)))
(t (cdr wrld)))
nil ; already found the immediate match
(cons (access-event-tuple-form event-tuple)
ans)
ctx state)))))
(t (puff-command-block1 (cdr wrld) immediate ans ctx state))))
(defun puff-command-block (cmd-type wrld final-cmds ctx state)
; Wrld is a world that starts just after a command landmark. We scan down to
; the next command landmark and return the list of events in this command
; block. We replace every encapsulate and include-book by the events in its
; body or file, which exposes the LOCAL events that are not actually part of
; wrld now. However, we do not recursively flatten the encapsulates and
; include-books that are exposed by this flattening.
(case cmd-type
(encapsulate (puff-command-block1 wrld 'encapsulate final-cmds ctx state))
(include-book (puff-include-book wrld final-cmds ctx state))
(certify-book (puff-command-block1 wrld 'certify-book final-cmds ctx state))
(otherwise (puff-command-block1 wrld nil final-cmds ctx state))))
(defun commands-back-to (wrld1 wrld2 ans)
; Wrld2 is a tail of wrld1. Each starts with a command-landmark initially. We
; collect all the non-eviscerated commands back to (but not including) the one
; at wrld2.
(cond
((equal wrld1 wrld2) ans)
((and (eq (car (car wrld1)) 'command-landmark)
(eq (cadr (car wrld1)) 'global-value))
(commands-back-to (cdr wrld1) wrld2
(cons (access-command-tuple-form (cddr (car wrld1)))
ans)))
(t (commands-back-to (cdr wrld1) wrld2 ans))))
(defun puffed-command-sequence (cd ctx wrld state)
; Cd is a command descriptor. We puff up the command at cd, into the list of
; immediate subevents, and then append to that list the commands in wrld that
; chronologically followed cd.
(er-let* ((cmd-wrld (er-decode-cd cd wrld ctx state)))
(let ((cmd-type (puffable-command-blockp
(cdr cmd-wrld)
(access-command-tuple-form (cddr (car cmd-wrld)))))
(final-cmds (commands-back-to wrld cmd-wrld nil)))
(cond
(cmd-type
(puff-command-block cmd-type (cdr cmd-wrld) final-cmds ctx state))
(t (er soft ctx
"The command at ~x0, namely ~X12, cannot be puffed. See :DOC ~
puff."
cd
(access-command-tuple-form (cddr (car cmd-wrld)))
;;; (evisc-tuple 2 3 nil nil)
'(nil 2 3 nil)))))))
(defun puff-fn1 (cd state)
; This function is essentially :puff except that it does no printing.
; It returns a pair, (i . j), where i and j are the relative command numbers
; delineating the region inserted by the puff. In particular, cd points to
; the command with relative command number i, that command got puffed up,
; and the new commands have the numbers i through j, inclusive.
(state-global-let*
((modifying-include-book-dir-alist
; The Essay on Include-book-dir-alist explains that the above state global must
; be t in order to set the include-book-dir!-table or the
; :include-book-dir-alist field of the acl2-defaults-table. The idea is to
; enforce the rule that these are used for the include-book-dir-alist when in
; the ACL2 loop, but state globals 'raw-include-book-dir-alist and
; 'raw-include-book-dir!-alist are used instead when in raw Lisp (see for
; example change-include-book-dir). Here, we are presumably evaluating puff or
; puff* in the loop rather than inside include-book, since these are not
; embedded event forms. So we need not worry about puff being evaluated inside
; an event inside a book. (Note that make-event is not legal inside a book
; except with a check-expansion argument that is used as the expansion.) Now,
; with raw mode one can in principle call all sorts of ACL2 system functions in
; raw Lisp that we never intended to be called there -- but that requires a
; trust tag, so it's not our problem!
t))
(let ((wrld (w state))
(ctx 'puff))
(er-let* ((cmd-wrld (er-decode-cd cd wrld :puff state)))
(cond ((<= (access-command-tuple-number (cddar cmd-wrld))
(access command-number-baseline-info
(global-val 'command-number-baseline-info wrld)
:current))
; See the similar comment in ubt-ubu-fn.
(cond
((<= (access-command-tuple-number (cddar cmd-wrld))
(access command-number-baseline-info
(global-val 'command-number-baseline-info wrld)
:original))
(er soft :puff
"Can't puff a command within the system initialization."))
(t
(er soft :puff
"Can't puff a command within prehistory. See :DOC ~
reset-prehistory."))))
(t
(er-let*
((cmds (puffed-command-sequence cd :puff wrld state)))
(let* ((pred-wrld (scan-to-command (cdr cmd-wrld)))
(i (absolute-to-relative-command-number
(max-absolute-command-number cmd-wrld)
(w state)))
(k (- (absolute-to-relative-command-number
(max-absolute-command-number (w state))
(w state))
i)))
(pprogn
(set-w 'retraction pred-wrld state)
(er-let*
((defpkg-items
(defpkg-items
(global-val 'known-package-alist cmd-wrld)
(global-val 'known-package-alist pred-wrld)
ctx pred-wrld state)))
(er-progn
(state-global-let*
((guard-checking-on nil)) ; agree with include-book
(ld (append (let ((kpa (global-val
'known-package-alist
pred-wrld)))
(new-defpkg-list defpkg-items kpa kpa))
cmds)
:ld-skip-proofsp 'include-book-with-locals
:ld-verbose nil
:ld-prompt nil
:ld-missing-input-ok nil
:ld-pre-eval-filter :all
:ld-pre-eval-print :never
:ld-post-eval-print nil
:ld-error-triples t
:ld-error-action :error
:ld-query-control-alist
(cons '(:redef :y)
(ld-query-control-alist state))))
(value (cons i
(- (absolute-to-relative-command-number
(max-absolute-command-number (w state))
(w state))
k))))))))))))))
(defun puff-report (caller new-cd1 new-cd2 cd state)
(cond ((eql new-cd1 (1+ new-cd2))
(pprogn (io? history nil state
(caller cd)
(fms "Note: ~x0 is complete, but no events were ~
executed under the given command descriptor, ~
~x1.~|"
(list (cons #\0 caller)
(cons #\1 cd))
(standard-co state) state nil))
(value :invisible)))
(t (pcs-fn new-cd1 new-cd2 t state))))
(defun puff-fn (cd state)
(er-let* ((pair (puff-fn1 cd state)))
(puff-report :puff (car pair) (cdr pair) cd state)))
(defun puff*-fn11 (ptr k i j state)
; If there is a command whose relative command number, n, is i<=n<=j, then we
; puff the command with the smallest such n. Then, we iterate, over the
; interval [ptr, max-k], where max is the maximum relative command number in
; the puffed world. This function must be protected with
; revert-world-on-error.
(cond
((> i j) (value (cons ptr j)))
((puffable-command-numberp i state)
(er-progn
(puff-fn1 i state)
(puff*-fn11 ptr k
ptr (- (absolute-to-relative-command-number
(max-absolute-command-number (w state))
(w state))
k)
state)))
(t (puff*-fn11 ptr k (1+ i) j state))))
(defun puff*-fn1 (ptr k state)
; Ptr is a relative command number. K is an integer. Let max be the maximum
; relative command number in (w state). We are to recursively puff all the
; commands whose relative command numbers lie between ptr and max-k,
; inclusively. Thus, for example, if ptr is 12, max is 21 and k is 2, we are
; to puff all the commands that lie in the interval [12, 19]. Observe that
; this means we leave the last k commands of (w state) unpuffed. Observe that
; every time we puff a command in the interval, max grows (or stays fixed) and
; the width of the region to be puffed grows (weakly). See the comment in
; puff*-fn for an example.
; We therefore find the first command (the command with the smallest number) in
; the region that is puffable, we puff it, and we iterate. We stop when no
; command in the region is puffable. This function uses
; revert-world-on-error because it is possible that the attempt to puff some
; command will cause an error (e.g., because some book's check sum no longer
; agrees with include-book-alist).
(revert-world-on-error
(puff*-fn11 ptr k
ptr
(- (absolute-to-relative-command-number
(max-absolute-command-number (w state))
(w state))
k)
state)))
(defun puff*-fn (cd state)
(let ((wrld (w state)))
(er-let* ((cmd-wrld (er-decode-cd cd wrld :puff* state)))
(cond ((<= (access-command-tuple-number (cddar cmd-wrld))
(access command-number-baseline-info
(global-val 'command-number-baseline-info wrld)
:current))
; See the similar comment in ubt-ubu-fn.
(cond
((<= (access-command-tuple-number (cddar cmd-wrld))
(access command-number-baseline-info
(global-val 'command-number-baseline-info wrld)
:original))
(er soft :puff*
"Can't puff* a command within the system ~
initialization."))
(t
(er soft :puff*
"Can't puff* a command within prehistory. See :DOC ~
reset-prehistory."))))
(t
(let* ((mx (absolute-to-relative-command-number
(max-absolute-command-number wrld)
wrld))
(ptr (absolute-to-relative-command-number
(max-absolute-command-number cmd-wrld)
wrld))
(k (- mx ptr)))
(er-let*
((pair (puff*-fn1 ptr k state)))
; The difference between puff and puff* is that puff* iterates puff across the
; region generated by the first puff until there are no more commands that are
; puffable. Before continuing, we illustrate how we determine the bounds of
; the region in question. We bound the region with relative command numbers.
; Suppose we are asked to puff* cd, where cd points to relative command number
; 12 below.
; 12 cmd1 ; ptr = 12 = the relative command number indicated by cd
; 13 cmd2
; 14 cmd3 ; mx = latest command
; Then mx, above, will be 14 and ptr will be 12. Observe that there are two
; commands then that are not part of the region to be puffed, namely commands
; 13 and 14. Now after puffing once, we will have something like:
; 12 cmd1a
; 13 cmd1b
; ...
; 19 cmd1h
; 20 cmd2
; 21 cmd3
; Observe that the new max command number is 21. The region to be recursively
; puffed now lies between 12 and 19, inclusive. The last two commands, now
; numbered 20 and 21, are outside the region.
; Let k be (- mx ptr), i.e., 2 in this example and, in general, the number of
; commands not in the region. Then in general we should recursively puff
; commands whose numbers are between ptr and (- max k), where max is the
; current maximum relative command number, inclusive. Initially this region
; contains just one command, the one we are to puff first. ;
(puff-report :puff* (car pair) (cdr pair) cd
state))))))))
(defmacro puff (cd)
`(puff-fn ,cd state))
(defmacro puff* (cd)
`(puff*-fn ,cd state))
(defmacro mini-proveall nil
; ACL2 (a)>:mini-proveall
; will change the default-defun-mode to :logic and do a short proveall. The
; final defun-mode will be :logic.
'(ld
'(:logic
; We start with a nice example of forcing, involving primitive fns.
(thm (implies (and (true-listp x)
(true-listp y))
(equal (revappend (append x y) z)
(revappend y (revappend x z)))))
(defun app (x y)
(if (consp x)
(cons (car x) (app (cdr x) y))
y))
(defthm assoc-of-app
(equal (app (app a b) c) (app a (app b c))))
(defun rev (x)
(if (consp x)
(app (rev (cdr x)) (cons (car x) nil))
nil))
(defthm true-listp-rev
(true-listp (rev x))
:rule-classes (:REWRITE :GENERALIZE))
; Here we test the proof-checker using the same theorem as the one that
; follows (but not storing it as a :rewrite rule).
(defthm rev-app-proof-checker
(equal (rev (app a b)) (app (rev b) (rev a)))
:rule-classes nil
:instructions
(:induct :bash :induct :bash :split (:dv 1)
:x :nx (:dv 1)
:x :top :s :bash (:dive 1 1)
:= (:drop 2)
:top :bash))
(defthm rev-app
(equal (rev (app a b)) (app (rev b) (rev a))))
(defthm rev-rev
(implies (true-listp x) (equal (rev (rev x)) x)))
; The following events are the big example in deflabel equivalence.
(encapsulate (((lt * *) => *))
(local (defun lt (x y) (declare (ignore x y)) nil))
(defthm lt-non-symmetric (implies (lt x y) (not (lt y x)))))
(defun insert (x lst)
(cond ((atom lst) (list x))
((lt x (car lst)) (cons x lst))
(t (cons (car lst) (insert x (cdr lst))))))
(defun insert-sort (lst)
(cond ((atom lst) nil)
(t (insert (car lst) (insert-sort (cdr lst))))))
(defun del (x lst)
(cond ((atom lst) nil)
((equal x (car lst)) (cdr lst))
(t (cons (car lst) (del x (cdr lst))))))
(defun mem (x lst)
(cond ((atom lst) nil)
((equal x (car lst)) t)
(t (mem x (cdr lst)))))
(defun perm (lst1 lst2)
(cond ((atom lst1) (atom lst2))
((mem (car lst1) lst2)
(perm (cdr lst1) (del (car lst1) lst2)))
(t nil)))
(defthm perm-reflexive
(perm x x))
(defthm perm-cons
(implies (mem a x)
(equal (perm x (cons a y))
(perm (del a x) y)))
:hints (("Goal" :induct (perm x y))))
(defthm perm-symmetric
(implies (perm x y) (perm y x)))
(defthm mem-del
(implies (mem a (del b x)) (mem a x))
:rule-classes ((:rewrite :match-free :once)))
(defthm perm-mem
(implies (and (perm x y)
(mem a x))
(mem a y))
:rule-classes ((:rewrite :match-free :once)))
(defthm mem-del2
(implies (and (mem a x)
(not (equal a b)))
(mem a (del b x))))
(defthm comm-del
(equal (del a (del b x)) (del b (del a x))))
(defthm perm-del
(implies (perm x y)
(perm (del a x) (del a y))))
(defthm perm-transitive
(implies (and (perm x y) (perm y z)) (perm x z))
:rule-classes ((:rewrite :match-free :once)))
(defequiv perm)
(in-theory (disable perm perm-reflexive perm-symmetric perm-transitive))
(defcong perm perm (cons x y) 2)
(defcong perm iff (mem x y) 2)
(defthm atom-perm
(implies (not (consp x)) (perm x nil))
:rule-classes :forward-chaining
:hints (("Goal" :in-theory (enable perm))))
(defthm insert-is-cons
(perm (insert a x) (cons a x)))
(defthm insert-sort-is-id
(perm (insert-sort x) x))
(defcong perm perm (app x y) 2)
(defthm app-cons
(perm (app a (cons b c)) (cons b (app a c))))
(defthm app-commutes
(perm (app a b) (app b a)))
(defcong perm perm (app x y) 1 :hints (("Goal" :induct (app y x))))
(defthm rev-is-id (perm (rev x) x))
(defun == (x y)
(if (consp x)
(if (consp y)
(and (equal (car x) (car y))
(== (cdr x) (cdr y)))
nil)
(not (consp y))))
(defthm ==-symmetric (== x x))
(defthm ==-reflexive (implies (== x y) (== y x)))
(defequiv ==)
(in-theory (disable ==-symmetric ==-reflexive))
(defcong == == (cons x y) 2)
(defcong == iff (consp x) 1)
(defcong == == (app x y) 2)
(defcong == == (app x y) 1)
(defthm rev-rev-again (== (rev (rev x)) x))
; This next block tests forcing.
(defun ends-in-a-0 (x)
(declare (xargs :guard t))
(if (consp x) (ends-in-a-0 (cdr x)) (equal x 0)))
(defun app0 (x y)
(declare (xargs :guard (ends-in-a-0 x)))
(if (ends-in-a-0 x)
(if (equal x 0) y (cons (car x) (app0 (cdr x) y)))
'default))
(defun rev0 (x)
(declare (xargs :guard (ends-in-a-0 x)))
(if (ends-in-a-0 x)
(if (equal x 0) 0 (app0 (rev0 (cdr x)) (cons (car x) 0)))
'default))
(defthm app0-right-id
(implies (force (ends-in-a-0 x)) (equal (app0 x 0) x)))
(defun ends-in-a-zero (x) (ends-in-a-0 x))
(defthm ends-in-a-zero-app0
(implies (force (ends-in-a-zero x)) (ends-in-a-0 (app0 x (cons y 0)))))
(in-theory (disable ends-in-a-zero))
; The following theorem causes two forcing rounds. In the first, there
; are three goals, all variants of one another. An inductive proof of one
; of them is done and generates the second forcing round.
(defthm force-test
(and (implies (ends-in-a-0 x) (equal (app0 (rev0 x) 0) (rev0 x)))
(implies (ends-in-a-0 y) (equal (app0 (rev0 y) 0) (rev0 y)))
(implies (ends-in-a-0 z) (equal (app0 (rev0 z) 0) (rev0 z))))
:hints (("[2]Goal" :in-theory (enable ends-in-a-zero))))
; This defun does a lot of proving for both termination and guard verification.
(defun proper-cons-nest-p (x)
(declare (xargs :guard (pseudo-termp x)))
(cond ((symbolp x) nil)
((fquotep x) (true-listp (cadr x)))
((eq (ffn-symb x) 'cons)
(proper-cons-nest-p (fargn x 2)))
(t nil)))
; This defthm has two forcing rounds and is very realistic.
(defthm ordered-symbol-alistp-delete-assoc-eq-test
(implies (and (ordered-symbol-alistp l)
(symbolp key)
(assoc-eq key l))
(ordered-symbol-alistp (delete-assoc-eq key l)))
:hints (("Goal" :in-theory (disable ordered-symbol-alistp-delete-assoc-eq))))
(value-triple "Mini-proveall completed successfully.")
)
:ld-skip-proofsp nil
:ld-redefinition-action nil
:ld-pre-eval-print t
:ld-error-action :return!))
(defmacro set-guard-checking (flg)
(declare (xargs :guard
(let ((flg (if (and (consp flg)
(eq (car flg) 'quote)
(consp (cdr flg)))
(cadr flg)
flg)))
(member-eq flg *guard-checking-values*))))
`(let ((current-flg (f-get-global 'guard-checking-on state))
(flg ,(if (and (consp flg) (eq (car flg) 'quote) (consp (cdr flg)))
(cadr flg)
flg)))
(cond
((and (raw-mode-p state) flg)
(er soft 'set-guard-checking
"It is illegal (and anyhow, would be useless) to attempt to modify ~
guard checking while in raw mode, since guards are not checked in ~
raw mode."))
((eq flg current-flg)
(pprogn
(fms "Guard-checking-on already has value ~x0.~%~%"
(list (cons #\0 flg))
*standard-co* state nil)
(value :invisible)))
((null flg)
(pprogn (f-put-global 'guard-checking-on nil state)
(fms "Masking guard violations but still checking guards ~
except for self-recursive calls. To avoid guard ~
checking entirely, :SET-GUARD-CHECKING :NONE. See :DOC ~
set-guard-checking.~%~%"
nil *standard-co* state nil)
(value :invisible)))
((eq flg :none)
(pprogn (f-put-global 'guard-checking-on :none state)
(fms "Turning off guard checking entirely. To allow execution ~
in raw Lisp for functions with guards other than T, ~
while continuing to mask guard violations, ~
:SET-GUARD-CHECKING NIL. See :DOC ~
set-guard-checking.~%~%"
nil *standard-co* state nil)
(value :invisible)))
(t (pprogn
(f-put-global 'guard-checking-on flg state)
(assert$ (and flg (not (eq flg current-flg)))
(cond ((member-eq current-flg '(nil :none))
(fms "Turning guard checking on, value ~x0.~%~%"
(list (cons #\0 flg))
*standard-co* state nil))
(t
(fms "Leaving guard checking on, but changing value ~
to ~x0.~%~%"
(list (cons #\0 flg))
*standard-co* state nil))))
(value :invisible))))))
; Next: dmr
(defun dmr-stop-fn (state)
(declare (xargs :guard (state-p state)))
(let ((dmrp (f-get-global 'dmrp state)))
(cond (dmrp #-acl2-loop-only
(dmr-stop-fn-raw)
(pprogn (f-put-global 'dmrp nil state)
(if (consp dmrp)
(set-debugger-enable-fn (car dmrp) state)
state)))
(t (observation 'dmr-stop
"Skipping dmr-stop (dmr is already stopped).")))))
(defmacro dmr-stop ()
'(dmr-stop-fn #+acl2-loop-only state
#-acl2-loop-only *the-live-state*))
(defun dmr-start-fn (state)
(declare (xargs :guard (state-p state)))
(cond ((f-get-global 'dmrp state)
(observation 'dmr-start
"Skipping dmr-start (dmr is already started)."))
(t (let* ((old-debugger-enable (f-get-global 'debugger-enable state))
(new-debugger-enable ; for interactive use of dmr-flush
(case old-debugger-enable
((nil) t)
(:bt :break-bt))))
(pprogn
(if new-debugger-enable
(set-debugger-enable-fn new-debugger-enable state)
state)
#-acl2-loop-only
(dmr-start-fn-raw state)
(f-put-global 'dmrp
(if new-debugger-enable
(list old-debugger-enable)
t)
state))))))
(defmacro dmr-start ()
'(dmr-start-fn #+acl2-loop-only state
#-acl2-loop-only *the-live-state*))
; Essay on Metafunction Support, Part 2
; For the first part of this essay, see ``Metafunction Support, Part
; 1'' in axioms.lisp. This code is here at the end of ld so that it
; can use all our utilities and functions.
; We here turn to the problem of defining the uninterpreted functions
; that can actually be executed within a meta-level function. Review Part 1 of
; the essay for the background and basic strategy. We take up from there.
; Note: You can add other uninterpreted functions linked to theorem
; prover :program functions. However, you should obey the following
; rules.
; (1) Of course, the metafunction context must be rich enough (or made
; rich enough) to provide the necessary arguments. If you change the
; structure of metafunction-context, you must modify the accessors
; defined above mfc-clause, in axioms.lisp, or else the build will fail
; with a redefinition error.
; (2) Include STATE as an argument to the uninterpreted symbol,
; whether it is otherwise needed or not.
(defconst *meta-level-function-problem-1*
"~%~%Meta-level function Problem: Some meta-level function applied ~x0 to the ~
non-term ~x1. The meta-level function computation was ignored.~%~%")
(defconst *meta-level-function-problem-1a*
"~%~%Meta-level function Problem: Some meta-level function applied ~x0 to an ~
alist argument with ~@1. The meta-level function computation was ignored.~%~%")
(defconst *meta-level-function-problem-1b*
"~%~%Meta-level function Problem: Some meta-level function applied ~x0 to ~
the non-rune ~x1 for the rune argument. The meta-level function ~
computation was ignored.~%~%")
(defconst *meta-level-function-problem-1c*
"~%~%Meta-level function Problem: Some meta-level function applied ~x0 to ~
the expression ~x1 for the target argument. This expression must be a ~
term that is the application of a function symbol; but it is not. The ~
meta-level function computation was ignored.~%~%")
(defconst *meta-level-function-problem-1d*
"~%~%Meta-level function Problem: Some meta-level function applied ~x0 to ~
the rune ~x1 and the target ~x2. This is illegal, because there is no ~
rewrite, definition, meta, or linear lemma named ~x1 whose top-level ~
function symbol is ~x3. The meta-level function computation was ~
ignored.~%~%")
(defconst *meta-level-function-problem-1e*
"~%~%Meta-level function Problem: Some meta-level function applied ~x0 to ~
the ~x1 for the bkptr argument, which is not a valid one-based index into ~
the hypothesis list of the lemma named by rune ~x2. The meta-level ~
function computation was ignored.~%~%")
(defconst *meta-level-function-problem-2*
"~%~%Meta-level function Problem: Some meta-level function applied ~x0 to a ~
context different from the one passed to the meta-level function ~
itself. We cannot authenticate manufactured contexts. The ~
manufactured context was ~X12. The meta-level function computation ~
was ignored.~%~%")
(defconst *meta-level-function-problem-3*
"~%~%Meta-level function Problem: You or some meta-level function applied ~x0 but not ~
from within the theorem prover's meta-level function handler. This ~
suggests you are trying to test a meta-level function and have evidently ~
manufactured an allegedly suitable context. Perhaps so. But that ~
is so difficult to check that we don't bother. Instead we cause ~
this error and urge you to test your meta-level function by having the ~
meta-level function handler invoke it as part of a test proof-attempt. To ~
do this, assume the metatheorem that you intend eventually to ~
prove. You may do this by executing the appropriate DEFTHM event ~
embedded in a SKIP-PROOFS form. Then use THM to submit ~
conjectures for proof and observe the behavior of your ~
metafunction. Remember to undo the assumed metatheorem before you ~
attempt genuine proofs! If this suggestion isn't applicable to ~
your situation, contact the authors.~%~%")
; We next introduce uninterpreted :logic mode functions with
; execute-only-in-meta-level-functions semantics, as per defun-overrides calls
; for mfc-ts-fn and such.
(defun acl2-magic-mfc (x)
; This function is a sort of placeholder, used in a
; define-trusted-clause-processor event for noting that various mfc functions
; have unknown constraints.
(declare (xargs :guard t))
(list x))
#+acl2-loop-only
(encapsulate
()
(define-trusted-clause-processor
acl2-magic-mfc
(mfc-ts-fn mfc-ts-ttree mfc-rw-fn mfc-rw-ttree mfc-rw+-fn mfc-rw+-ttree
mfc-relieve-hyp-fn mfc-relieve-hyp-ttree mfc-ap-fn)
:partial-theory
(encapsulate
(((mfc-ap-fn * * state *) => *)
((mfc-relieve-hyp-fn * * * * * * state *) => *)
((mfc-relieve-hyp-ttree * * * * * * state *) => (mv * *))
((mfc-rw+-fn * * * * * state *) => *)
((mfc-rw+-ttree * * * * * state *) => (mv * *))
((mfc-rw-fn * * * * state *) => *)
((mfc-rw-ttree * * * * state *) => (mv * *))
((mfc-ts-fn * * state *) => *)
((mfc-ts-ttree * * state *) => (mv * *)))
(logic)
(set-ignore-ok t)
(set-irrelevant-formals-ok t)
(local (defun mfc-ts-fn (term mfc state forcep)
t))
(local (defun mfc-ts-ttree (term mfc state forcep)
(mv t t)))
(local (defun mfc-rw-fn (term obj equiv-info mfc state forcep)
t))
(local (defun mfc-rw-ttree (term obj equiv-info mfc state forcep)
(mv t t)))
(local (defun mfc-rw+-fn (term alist obj equiv-info mfc state forcep)
t))
(local (defun mfc-rw+-ttree (term alist obj equiv-info mfc state forcep)
(mv t t)))
(local (defun mfc-relieve-hyp-fn (hyp alist rune target bkptr mfc state
forcep)
t))
(local (defun mfc-relieve-hyp-ttree (hyp alist rune target bkptr mfc state
forcep)
(mv t t)))
(local (defun mfc-ap-fn (term mfc state forcep)
t)))))
#-acl2-loop-only
(progn
(defun mfc-ts-raw (term mfc state forcep)
(declare (xargs :guard (state-p state)))
; Type-set doesn't really use state. We originally used the presence of the
; live state as authorization to execute, believing that the live state object
; cannot arise in an execution on behalf of an evaluation of a subexpression in
; a theorem or proof. We now know that this is not the case; see the
; "soundness bug involving system function canonical-pathname" in :doc
; note-6-1. However, we keep state around for legacy reasons. If a reason is
; brought to our attention why it would be useful to remove state as a
; parameter, we can consider doing so.
(let ((ev-fncall-val `(ev-fncall-null-body-er nil mfc-ts ,term mfc state)))
(cond
((not (live-state-p state))
; This function acts like an undefined function unless it is applied to the
; live state. See comment above.
(throw-raw-ev-fncall ev-fncall-val))
(*metafunction-context*
; We are within the application of a meta-level function by the theorem prover.
(cond
((eq mfc *metafunction-context*)
(cond
((termp term (access metafunction-context mfc :wrld))
; At this point we can code freely. In general, any data used below
; (i.e., any actuals passed in above) must be vetted as shown above.
; There is absolutely no reason to believe that the user has called
; mfc-ts correctly, even in a verified meta-level function and we must defend
; against hard errors.
; Note by the way that even though we have access to the mfc-ancestors, we do
; not use this data. The reason is that type-set does not use the ancestors
; provided by the rewriter either. Put another way: Type-set does not take
; ancestors as an argument, and calls of type-set-rec occur (at least as of
; this writing) only in the mutual-recursion nest where type-set is defined.
(type-set term
(mfc-force-flg forcep mfc)
nil ;;; dwp
(access metafunction-context mfc :type-alist)
(access rewrite-constant
(access metafunction-context mfc :rcnst)
:current-enabled-structure)
(access metafunction-context mfc :wrld)
nil ;;; ttree
nil nil))
(t (cw *meta-level-function-problem-1* 'mfc-ts term)
(throw-raw-ev-fncall ev-fncall-val))))
(t (cw *meta-level-function-problem-2* 'mfc-ts mfc
(abbrev-evisc-tuple *the-live-state*))
(throw-raw-ev-fncall ev-fncall-val))))
; We are not within the application of a meta-level function by the theorem
; prover. We don't actually know if we are in the theorem prover. This could
; be a proof-time evaluation of a subterm of a conjecture about MFC-TS (e.g.,
; the proof of the metatheorem justifying a metafunction using MFC-TS, or the
; proof of a lemma involved in that metatheorem proof). Or, this could be a
; top-level call of MFC-TS or some function using it, as part of the user's
; testing of a meta-level function's development.
(*hard-error-returns-nilp*
; This evaluation is part of a conjecture being proved. Quietly act as though
; mfc-ts is an undefined function. It is believed that this can never happen,
; because STATE is live.
(throw-raw-ev-fncall ev-fncall-val))
(t
; This is a top-level call of mfc-ts or some function using it. Cause an error
; no matter what context the user has supplied. See the error message.
(cw *meta-level-function-problem-3* 'mfc-ts)
(throw-raw-ev-fncall ev-fncall-val)))))
(defun mfc-rw-raw (term alist obj equiv-info mfc fn state forcep)
(declare (xargs :guard (state-p state)))
(let ((ev-fncall-val `(ev-fncall-null-body-er nil mfc-rw-raw ,term ,alist
',obj ,equiv-info mfc ,fn
state)))
(cond
((not (live-state-p state))
(throw-raw-ev-fncall ev-fncall-val))
(*metafunction-context*
(cond
((eq mfc *metafunction-context*)
(let ((wrld (access metafunction-context mfc :wrld))
(rcnst (access metafunction-context mfc :rcnst)))
(cond
((not (termp term wrld))
(cw *meta-level-function-problem-1* fn term)
(throw-raw-ev-fncall ev-fncall-val))
((let ((msg (term-alistp-failure-msg alist wrld)))
(when msg
(cw *meta-level-function-problem-1a* fn msg)
(throw-raw-ev-fncall ev-fncall-val))))
((member-eq obj '(t nil ?))
(sl-let
(rw ttree)
(let ((gstack (access metafunction-context mfc :gstack))
(rcnst (update-rncst-for-forcep forcep rcnst)))
(rewrite-entry
(rewrite term alist 'meta)
:rdepth (access metafunction-context mfc :rdepth)
:step-limit (initial-step-limit wrld state)
:type-alist (access metafunction-context mfc :type-alist)
:geneqv (cond ((eq equiv-info t)
*geneqv-iff*)
((eq equiv-info nil)
nil) ; nil means EQUAL
((and (symbolp equiv-info)
(equivalence-relationp equiv-info wrld)
(car (geneqv-lst
equiv-info nil
(access rewrite-constant rcnst
:current-enabled-structure)
wrld))))
(t (prog2$ (or (congruence-rule-listp
equiv-info
wrld)
(er hard! fn
"~x0 has been passed an ~
equiv-info argument that is ~
neither t, nil, a known ~
equivalence relation, nor a ~
list of congruence rules:~| ~
~x1"
fn
equiv-info))
equiv-info)))
:pequiv-info nil
:wrld wrld
:fnstack (access metafunction-context mfc :fnstack)
:ancestors (access metafunction-context mfc :ancestors)
:backchain-limit (access metafunction-context mfc
:backchain-limit)
:simplify-clause-pot-lst (access metafunction-context mfc
:simplify-clause-pot-lst)
:rcnst rcnst
:gstack gstack
:ttree nil))
(declare (ignore step-limit))
(mv rw ttree)))
(t (cw "~%~%Meta-level function Problem: Some meta-level function ~
called ~x0 with the OBJ argument set to ~x1. That ~
argument must be one of the three symbols ?, T, or NIL."
fn
obj)
(throw-raw-ev-fncall ev-fncall-val)))))
(t (cw *meta-level-function-problem-2* fn mfc
(abbrev-evisc-tuple *the-live-state*))
(throw-raw-ev-fncall ev-fncall-val))))
(*hard-error-returns-nilp*
(throw-raw-ev-fncall ev-fncall-val))
(t
(cw *meta-level-function-problem-3* fn)
(throw-raw-ev-fncall ev-fncall-val)))))
(defun mfc-relieve-hyp-raw (hyp alist rune target bkptr mfc state
forcep)
; We ignore issues concerning memoization and free variables below.
; As we gain experience with the use of this function, we may want
; to reconsider this.
(declare (xargs :guard (state-p state)))
(let ((ev-fncall-val `(ev-fncall-null-body-er nil mfc-relieve-hyp ,hyp ,alist
,rune ,target ,bkptr mfc
state)))
(cond
((not (live-state-p state))
(throw-raw-ev-fncall ev-fncall-val))
(*metafunction-context*
(cond
((eq mfc *metafunction-context*)
(let ((wrld (access metafunction-context mfc :wrld))
(rcnst (access metafunction-context mfc :rcnst))
(ancestors (access metafunction-context mfc :ancestors)))
(cond
((not (termp hyp wrld))
(cw *meta-level-function-problem-1* 'mfc-relieve-hyp hyp)
(throw-raw-ev-fncall ev-fncall-val))
((let ((msg (term-alistp-failure-msg alist wrld)))
(when msg
(cw *meta-level-function-problem-1a* 'mfc-relieve-hyp msg)
(throw-raw-ev-fncall ev-fncall-val))))
((not (runep rune wrld))
(cw *meta-level-function-problem-1b* 'mfc-relieve-hyp rune)
(throw-raw-ev-fncall ev-fncall-val))
((not (and (termp target wrld)
(nvariablep target)
(not (fquotep target))
(symbolp (ffn-symb target))))
(cw *meta-level-function-problem-1c* 'mfc-relieve-hyp target)
(throw-raw-ev-fncall ev-fncall-val))
(t
(let* ((linearp (eq (car rune) :linear))
(lemmas (getprop (ffn-symb target)
(if linearp 'linear-lemmas 'lemmas)
nil 'current-acl2-world wrld))
(lemma (if linearp
(find-runed-linear-lemma rune lemmas)
(find-runed-lemma rune lemmas))))
(cond ((null lemma)
(cw *meta-level-function-problem-1d*
'mfc-relieve-hyp rune target (ffn-symb target))
(throw-raw-ev-fncall ev-fncall-val))
((not (and (posp bkptr)
(<= bkptr
(length (if linearp
(access linear-lemma lemma
:hyps)
(access rewrite-rule lemma
:hyps))))))
(cw *meta-level-function-problem-1e*
'mfc-relieve-hyp
bkptr
rune)
(throw-raw-ev-fncall ev-fncall-val)))
(sl-let
(wonp failure-reason new-unify-subst ttree memo)
(rewrite-entry
(relieve-hyp rune target hyp alist bkptr nil)
:rdepth (access metafunction-context mfc :rdepth)
:step-limit (initial-step-limit wrld state)
:type-alist (access metafunction-context mfc :type-alist)
:obj nil ; ignored
:geneqv nil ; ignored
:pequiv-info nil ; ignored
:wrld wrld
:fnstack (access metafunction-context mfc :fnstack)
:ancestors ancestors
:backchain-limit
(new-backchain-limit (if (and (not linearp)
(eq (access rewrite-rule lemma
:subclass)
'meta))
(access rewrite-rule lemma
:backchain-limit-lst)
(nth (1- bkptr)
(if linearp
(access linear-lemma lemma
:backchain-limit-lst)
(access rewrite-rule lemma
:backchain-limit-lst))))
(access metafunction-context mfc
:backchain-limit)
ancestors)
:simplify-clause-pot-lst (access metafunction-context mfc
:simplify-clause-pot-lst)
:rcnst (update-rncst-for-forcep forcep rcnst)
:gstack (access metafunction-context mfc :gstack)
:ttree nil)
(declare (ignore step-limit failure-reason new-unify-subst
memo))
(if (member-eq wonp '(t :unify-subst-list))
(mv t ttree)
(mv nil nil))))))))
(t (cw *meta-level-function-problem-2* 'mfc-relieve-hyp mfc
(abbrev-evisc-tuple *the-live-state*))
(throw-raw-ev-fncall ev-fncall-val))))
(*hard-error-returns-nilp*
(throw-raw-ev-fncall ev-fncall-val))
(t
(cw *meta-level-function-problem-3* 'mfc-relieve-hyp)
(throw-raw-ev-fncall ev-fncall-val)))))
(defun-one-output mfc-ap-raw (term mfc state forcep)
(declare (xargs :guard (state-p state)))
(let ((ev-fncall-val `(ev-fncall-null-body-er nil mfc-ap ,term mfc state)))
(cond
((not (live-state-p state))
(throw-raw-ev-fncall ev-fncall-val))
(*metafunction-context*
(cond
((eq mfc *metafunction-context*)
(cond
((termp term (access metafunction-context mfc :wrld))
(let* ((force-flg (mfc-force-flg forcep mfc))
(linearized-list
(linearize term
t ;;; positivep
(access metafunction-context mfc :type-alist)
(access rewrite-constant
(access metafunction-context mfc :rcnst)
:current-enabled-structure)
force-flg
(access metafunction-context mfc :wrld)
nil ;;; ttree
state)))
(cond ((null linearized-list)
nil)
((null (cdr linearized-list))
(mv-let (contradictionp new-arith-db)
(add-polys (car linearized-list)
(access metafunction-context
mfc :simplify-clause-pot-lst)
(access rewrite-constant
(access metafunction-context
mfc :rcnst)
:pt)
(access rewrite-constant
(access metafunction-context
mfc :rcnst)
:nonlinearp)
(access metafunction-context
mfc :type-alist)
(access rewrite-constant
(access metafunction-context
mfc :rcnst)
:current-enabled-structure)
force-flg
(access metafunction-context mfc :wrld))
(declare (ignore new-arith-db))
contradictionp))
(t
(mv-let (contradictionp1 new-arith-db)
(add-polys (car linearized-list)
(access metafunction-context
mfc :simplify-clause-pot-lst)
(access rewrite-constant
(access metafunction-context
mfc :rcnst)
:pt)
(access rewrite-constant
(access metafunction-context
mfc :rcnst)
:nonlinearp)
(access metafunction-context
mfc :type-alist)
(access rewrite-constant
(access metafunction-context
mfc :rcnst)
:current-enabled-structure)
force-flg
(access metafunction-context mfc :wrld))
(declare (ignore new-arith-db))
(if contradictionp1
(mv-let (contradictionp2 new-arith-db)
(add-polys (cadr linearized-list)
(access metafunction-context
mfc :simplify-clause-pot-lst)
(access rewrite-constant
(access metafunction-context
mfc :rcnst)
:pt)
(access rewrite-constant
(access metafunction-context
mfc :rcnst)
:nonlinearp)
(access metafunction-context
mfc :type-alist)
(access rewrite-constant
(access metafunction-context
mfc :rcnst)
:current-enabled-structure)
force-flg
(access metafunction-context mfc :wrld))
(declare (ignore new-arith-db))
contradictionp2)
nil))))))
(t (cw *meta-level-function-problem-1* 'mfc-ap term)
(throw-raw-ev-fncall ev-fncall-val))))
(t (cw *meta-level-function-problem-2* 'mfc-ap mfc
(abbrev-evisc-tuple *the-live-state*))
(throw-raw-ev-fncall ev-fncall-val))))
(*hard-error-returns-nilp*
(throw-raw-ev-fncall ev-fncall-val))
(t
(cw *meta-level-function-problem-3* 'mfc-ap)
(throw-raw-ev-fncall ev-fncall-val)))))
)
(defmacro mfc-ts (term mfc st &key
(forcep ':same)
ttreep)
(declare (xargs :guard (and (member-eq forcep '(t nil :same))
(booleanp ttreep))))
(if ttreep
`(mfc-ts-ttree ,term ,mfc ,st ,forcep)
`(mfc-ts-fn ,term ,mfc ,st ,forcep)))
(defmacro mfc-rw (term obj equiv-info mfc st &key
(forcep ':same)
ttreep)
; We introduced mfc-rw+ after Version_3.0.1. It was tempting to eliminate
; mfc-rw altogether (and then use the name mfc-rw for what we now call
; mfc-rw+), but we decided to leave mfc-rw unchanged for backward
; compatibility. Worth mentioning: An attempt to replace mfc-rw by
; corresponding calls of mfc-rw+ in community book books/arithmetic-3/ resulted
; in a failed proof (of floor-floor-integer in community book
; books/arithmetic-3/floor-mod/floor-mod.lisp).
(declare (xargs :guard (and (member-eq forcep '(t nil :same))
(booleanp ttreep))))
(if ttreep
`(mfc-rw-ttree ,term ,obj ,equiv-info ,mfc ,st ,forcep)
`(mfc-rw-fn ,term ,obj ,equiv-info ,mfc ,st ,forcep)))
(defmacro mfc-rw+ (term alist obj equiv-info mfc st &key
(forcep ':same)
ttreep)
(declare (xargs :guard (and (member-eq forcep '(t nil :same))
(booleanp ttreep))))
(if ttreep
`(mfc-rw+-ttree ,term ,alist ,obj ,equiv-info ,mfc ,st ,forcep)
`(mfc-rw+-fn ,term ,alist ,obj ,equiv-info ,mfc ,st ,forcep)))
(defmacro mfc-relieve-hyp (hyp alist rune target bkptr mfc st &key
(forcep ':same)
ttreep)
(declare (xargs :guard (and (member-eq forcep '(t nil :same))
(booleanp ttreep))))
(if ttreep
`(mfc-relieve-hyp-ttree ,hyp ,alist ,rune ,target ,bkptr ,mfc ,st
,forcep)
`(mfc-relieve-hyp-fn ,hyp ,alist ,rune ,target ,bkptr ,mfc ,st
,forcep)))
(defmacro mfc-ap (term mfc st &key
(forcep ':same))
(declare (xargs :guard (member-eq forcep '(t nil :same))))
`(mfc-ap-fn ,term ,mfc ,st ,forcep))
(defun congruence-rule-listp (x wrld)
(if (atom x)
(null x)
(and (let ((rule (car x)))
(case-match rule
((nume equiv . rune)
(and (equivalence-relationp equiv wrld)
(or (runep rune wrld)
(equal rune
*fake-rune-for-anonymous-enabled-rule*))
(eql (fnume rune wrld) nume)))))
(congruence-rule-listp (cdr x) wrld))))
(defun term-alistp-failure-msg (alist wrld)
; Returns nil if alist is an alist binding variables to terms. Otherwise,
; returns a message suitable for use in *meta-level-function-problem-1a*.
(cond ((atom alist)
(and alist
(msg "a non-nil final cdr")))
((atom (car alist))
(msg "a non-consp element, ~x0" (car alist)))
((not (and (termp (caar alist) wrld)
(variablep (caar alist))))
(msg "an element, ~p0, whose car is not a variable" (caar alist)))
((not (termp (cdar alist) wrld))
(msg "an element, ~p0, whose cdr is not a term" (cdar alist)))
(t (term-alistp-failure-msg (cdr alist) wrld))))
(defun find-runed-linear-lemma (rune lst)
; Lst must be a list of lemmas. We find the first one with :rune rune (but we
; make no assumptions on the form of rune).
(cond ((null lst) nil)
((equal rune
(access linear-lemma (car lst) :rune))
(car lst))
(t (find-runed-linear-lemma rune (cdr lst)))))
(defun mfc-force-flg (forcep mfc)
(cond ((eq forcep :same)
(ok-to-force (access metafunction-context mfc :rcnst)))
(t forcep)))
(defun update-rncst-for-forcep (forcep rcnst)
(cond ((or (eq forcep :same)
(iff forcep
(ok-to-force rcnst)))
rcnst)
(t (change rewrite-constant rcnst
:force-info
(if forcep
t
'weak)))))
; Essay on Saved-output
; Starting with Version_2.9.2, ACL2 has the capability of running not only with
; output inhibited but also with output saved, to be printed upon demand by pso
; and pso! (see their documentation). This capability is controlled by state
; global variables whose names start with SAVED-OUTPUT-, namely:
; 'saved-output-reversed, 'saved-output-token-lst, and 'saved-output-p. State
; global 'print-clause-ids was also introduced at the same time, in order to
; allow printing of clause ids with output inhibited in order that the user can
; observe progress of the proof.
; Why do we need both 'saved-output-p and 'saved-output-token-lst? The latter
; records the output that the user wants saved (typically, :all or nil). The
; former activates the saving of output, which is why it is bound to t in
; with-ctx-summarized. The idea is that we do not want to save output that
; comes from top-level calls by the user that are not event forms, so
; 'saved-output-p remains nil at the top level.
; Perhaps we should add a mechanical check that there are no nested calls of
; io?, since such calls could confuse our mechanism for saving output.
; Implementation note: Calls of io? on a given body take as an argument a
; listing of all the free variables of that body. After the definitions below,
; a macro call (av body) will print out such a list.
; (defun all-vars-untrans (form state)
; (declare (xargs :mode :program :stobjs state))
; (mv-let (erp val bindings state)
; (translate1 form
; :stobjs-out
; '((:stobjs-out . :stobjs-out))
; t 'top-level
; (w state) state)
; (declare (ignore erp bindings))
; (value (remove1-eq 'state (all-vars val)))))
;
; (defmacro av (form)
; `(all-vars-untrans ',form state))
(defun trans-eval-lst (lst ctx state aok)
(cond ((endp lst)
(value :invisible))
(t (er-progn (trans-eval (car lst) ctx state aok)
(trans-eval-lst (cdr lst) ctx state aok)))))
(defun print-saved-output (inhibit-output-lst gag-mode state)
(let ((saved-output
(reverse (io-record-forms (f-get-global 'saved-output-reversed
state))))
(channel (standard-co state))
(ctx 'print-saved-output))
(cond
((or (null saved-output)
(and (null (cdr saved-output))
(eq (access io-record
(car (f-get-global 'saved-output-reversed state))
:io-marker)
:ctx)))
(er-progn (if saved-output
(trans-eval (car saved-output) ctx state t)
(value nil))
(pprogn (fms "There is no saved output to print. ~
See :DOC set-saved-output.~|"
nil
channel state nil)
(value :invisible))))
(t (let ((old-gag-state (f-get-global 'gag-state state)))
(state-global-let*
((saved-output-reversed nil) ; preserve this (value doesn't matter)
(inhibit-output-lst inhibit-output-lst)
(gag-mode gag-mode)
(gag-state-saved (f-get-global 'gag-state-saved state)))
(pprogn (initialize-summary-accumulators state)
(save-event-state-globals
(pprogn
(if old-gag-state
state
; Otherwise we set gag-state to nil after saving the gag-state in
; gag-state-saved.
(f-put-global 'gag-state
(f-get-global 'gag-state-saved state)
state))
(state-global-let*
((saved-output-p nil))
(trans-eval-lst saved-output ctx state t)))))))))))
(defmacro pso ()
'(print-saved-output '(proof-tree) nil state))
(defmacro psog ()
'(print-saved-output '(proof-tree) t state))
(defmacro pso! ()
'(print-saved-output nil nil state))
(defmacro set-saved-output (save-flg inhibit-flg)
(let ((save-flg-original save-flg)
(save-flg (if (and (consp save-flg)
(eq (car save-flg) 'quote))
(cadr save-flg)
save-flg))
(inhibit-flg-original inhibit-flg)
(inhibit-flg (if (and (consp inhibit-flg)
(eq (car inhibit-flg) 'quote))
(cadr inhibit-flg)
inhibit-flg)))
`(prog2$
(and (gag-mode)
(er hard 'set-saved-output
"It is illegal to call set-saved-output explicitly while ~
gag-mode is active. First evaluate ~x0."
'(set-gag-mode nil)))
(pprogn ,(cond ((eq save-flg t)
'(f-put-global 'saved-output-token-lst :all state))
((null save-flg)
'(f-put-global 'saved-output-token-lst nil state))
((true-listp save-flg)
`(f-put-global 'saved-output-token-lst ',save-flg state))
(t (er hard 'set-saved-output
"Illegal first argument to set-saved-output (must ~
be ~x0 or a true-listp): ~x1."
t save-flg-original)))
,(if (eq inhibit-flg :same)
'state
`(f-put-global 'inhibit-output-lst
,(cond ((eq inhibit-flg t)
'(add-to-set-eq 'prove
(f-get-global
'inhibit-output-lst
state)))
((eq inhibit-flg :all)
'(set-difference-eq
*valid-output-names*
(set-difference-eq
'(error warning!)
(f-get-global
'inhibit-output-lst
state))))
((eq inhibit-flg :normal)
''(proof-tree))
((true-listp inhibit-flg)
(list 'quote inhibit-flg))
(t (er hard 'set-saved-output
"Illegal second argument to ~
set-saved-output (must be ~v0, ~
or a true-listp): ~x1."
'(t :all :normal :same)
inhibit-flg-original)))
state))))))
(defmacro set-raw-proof-format (flg)
(declare (xargs :guard (member-equal flg '(t 't nil 'nil))))
(let ((flg (if (atom flg)
(list 'quote flg)
flg)))
`(f-put-global 'raw-proof-format ,flg state)))
(defmacro set-print-clause-ids (flg)
(declare (xargs :guard (member-equal flg '(t 't nil 'nil))))
(let ((flg (if (atom flg)
(list 'quote flg)
flg)))
`(f-put-global 'print-clause-ids ,flg state)))
(defun set-standard-co-state (val state)
(declare (xargs :stobjs state :mode :program))
(mv-let (erp x state)
(set-standard-co val state)
(declare (ignore x))
(prog2$ (and erp (er hard? 'set-standard-co-state
"See above for error message."))
state)))
(defun set-proofs-co-state (val state)
(declare (xargs :stobjs state :mode :program))
(mv-let (erp x state)
(set-proofs-co val state)
(declare (ignore x))
(prog2$ (and erp (er hard? 'set-proofs-co-state
"See above for error message."))
state)))
(defmacro with-standard-co-and-proofs-co-to-file (filename form)
`(mv-let
(wof-chan state)
(open-output-channel ,filename :character state)
(cond
((null wof-chan)
(er soft 'with-standard-co-and-proofs-co-to-file
"Unable to open file ~x0 for output."
,filename))
(t
(pprogn
(princ$ "-*- Mode: auto-revert -*-" wof-chan state)
(newline wof-chan state)
(mv-let (erp val state)
(state-global-let*
((standard-co wof-chan set-standard-co-state)
(proofs-co wof-chan set-proofs-co-state))
(check-vars-not-free
(wof-chan)
,form))
(pprogn (close-output-channel wof-chan state)
(cond (erp (silent-error state))
(t (value val))))))))))
(defmacro wof (filename form) ; Acronym: With Output File
`(with-standard-co-and-proofs-co-to-file ,filename ,form))
(defmacro psof (filename)
(declare (xargs :guard (or (stringp filename)
(and (consp filename)
(consp (cdr filename))
(null (cddr filename))
(eq (car filename) 'quote)
(stringp (cadr filename))))))
`(cond #+acl2-par
((f-get-global 'waterfall-parallelism state)
(er soft 'psof
"The PSOF command is disabled with waterfall-parallelism ~
enabled, because in that case most prover output is printed to ~
*standard-co* (using wormholes), so cannot be redirected."))
(t (wof ,(if (consp filename) (cadr filename) filename)
(pso)))))
(defun set-gag-mode-fn (action state)
; Warning: Keep this in sync with with-output-fn, in particular with respect to
; the legal values for action and for the state-global-let* generated there.
(let ((action (if (and (consp action)
(consp (cdr action))
(eq (car action) 'quote))
(cadr action)
action)))
(pprogn
(f-put-global 'gag-mode nil state) ; to allow set-saved-output
(case action
((t)
(pprogn (set-saved-output t :same)
(f-put-global 'gag-mode action state)
(set-print-clause-ids nil)))
(:goals
(pprogn (set-saved-output t :same)
(f-put-global 'gag-mode action state)
(set-print-clause-ids t)))
((nil)
(pprogn ; (f-put-global 'gag-mode nil state) ; already done
(set-saved-output nil :same)
(set-print-clause-ids nil)))
(otherwise
(prog2$ (er hard 'set-gag-mode
"Unknown set-gag-mode argument, ~x0"
action)
state))))))
(defmacro set-gag-mode (action)
`(set-gag-mode-fn ,action state))
; We now develop code for without-evisc.
(defun defun-for-state-name (name)
(add-suffix name "-STATE"))
(defmacro defun-for-state (name args)
`(defun ,(defun-for-state-name name)
,args
(mv-let (erp val state)
(,name ,@args)
(declare (ignore val))
(prog2$ (and erp (er hard 'top-level
"See error message above."))
state))))
(defun set-ld-evisc-tuple (val state)
(set-evisc-tuple val
:sites :ld
:iprint :same))
(defun-for-state set-ld-evisc-tuple (val state))
(defun set-abbrev-evisc-tuple (val state)
(set-evisc-tuple val
:sites :abbrev
:iprint :same))
(defun-for-state set-abbrev-evisc-tuple (val state))
(defun set-gag-mode-evisc-tuple (val state)
(set-evisc-tuple val
:sites :gag-mode
:iprint :same))
(defun-for-state set-gag-mode-evisc-tuple (val state))
(defun set-term-evisc-tuple (val state)
(set-evisc-tuple val
:sites :term
:iprint :same))
(defun-for-state set-term-evisc-tuple (val state))
(defun without-evisc-fn (form state)
(state-global-let*
((abbrev-evisc-tuple nil set-abbrev-evisc-tuple-state)
(gag-mode-evisc-tuple nil set-gag-mode-evisc-tuple-state)
(term-evisc-tuple nil set-term-evisc-tuple-state))
(er-progn (ld (list form)
:ld-verbose nil
:ld-prompt nil
:ld-evisc-tuple nil)
(value :invisible))))
(defmacro without-evisc (form)
`(without-evisc-fn ',form state))
|