This file is indexed.

/usr/share/acl2-7.1/books/tools/flag.lisp is in acl2-books-source 7.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
; Make-flag -- Introduce induction scheme for mutually recursive functions.
; Copyright (C) 2008-2010 Centaur Technology
;
; Contact:
;   Centaur Technology Formal Verification Group
;   7600-C N. Capital of Texas Highway, Suite 300, Austin, TX 78731, USA.
;   http://www.centtech.com/
;
; License: (An MIT/X11-style license)
;
;   Permission is hereby granted, free of charge, to any person obtaining a
;   copy of this software and associated documentation files (the "Software"),
;   to deal in the Software without restriction, including without limitation
;   the rights to use, copy, modify, merge, publish, distribute, sublicense,
;   and/or sell copies of the Software, and to permit persons to whom the
;   Software is furnished to do so, subject to the following conditions:
;
;   The above copyright notice and this permission notice shall be included in
;   all copies or substantial portions of the Software.
;
;   THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
;   IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
;   FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
;   AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
;   LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
;   FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
;   DEALINGS IN THE SOFTWARE.
;
; Original authors: Sol Swords and Jared Davis
;                   {sswords,jared}@centtech.com

#||  for interactive development, you'll need to ld the package first:

(ld ;; fool dependency scanner
 "flag-package.lsp")

||#

(in-package "FLAG")
(include-book "xdoc/top" :dir :system)

(defxdoc make-flag
  :parents (mutual-recursion)
  :short "Create a flag-based @(see acl2::induction) scheme for a @(see
mutual-recursion)."

  :long "<p>The @('make-flag') macro lets you quickly introduce:</p>

<ul>

<li>a \"flag function\" that mimics a @(see mutual-recursion), and</li>

<li>a macro for proving properties by induction according to the flag
function.</li>

</ul>

<p>Generally speaking, writing a corresponding flag function is the first step
toward proving any inductive property about mutually recursive definitions;
more discussion below.</p>

<h3>Using @('make-flag')</h3>

<p>Example:</p>

@({
 (make-flag flag-pseudo-termp               ; flag function name
            pseudo-termp                    ; any member of the clique
            ;; optional arguments:
            :flag-mapping ((pseudo-termp      . term)
                           (pseudo-term-listp . list))
            :defthm-macro-name defthm-pseudo-termp
            :flag-var flag
            :hints ((\"Goal\" ...))         ; for the measure theorem
                                          ; usually not necessary
            )
})

<p>Here @('pseudo-termp') is the name of a function in a mutually recursive
clique.  In this case, the clique has two functions, @('pseudo-termp') and
@('pseudo-term-listp').  name of the newly generated flag function will be
@('flag-pseudo-termp').</p>

<p>The other arguments are optional:</p>

<ul>

<li>@(':flag-mapping') specifies short names to identify with each of the
functions of the clique.  By default we just use the function names themselves,
but it's usually nice to pick shorter names since you'll have to mention them
in the theorems you prove.</li>

<li>@(':defthm-macro-name') lets you name the new macro that will be generated
for proving theorems by inducting with the flag function.  By default it is
named @('defthm-[flag-function-name]'), i.e., for the above example, it would
be called @('defthm-flag-psuedo-termp').</li>

<li>@(':flag-var') specifies the name of the variable to use for the flag.  By
default it is just called @('flag'), and we rarely change it.  To be more
precise, it is @('pkg::flag') where @('pkg') is the package of the new flag
function's name; usually this means you don't have to think about the
package.</li>

<li>@(':ruler-extenders') lets you give a value for the @(see
acl2::ruler-extenders) of the new flag function.</li>

</ul>


<h3>Proving Theorems with @('make-flag')</h3>

<p>To prove an inductive theorem about a mutually-recursive function, usually
one has to effectively prove a big ugly formula that has a different case for
different theorem about each function in the clique.</p>

<p>Normally, even with the flag function written for you, this would be a
tedious process.  Here is an example of how you might prove by induction that
@('pseudo-termp') and @('pseudo-term-listp') return Booleans:</p>

@({
 ;; ACL2 can prove these are Booleans even without induction due to
 ;; type reasoning, so for illustration we'll turn these off so that
 ;; induction is required:

 (in-theory (disable (:type-prescription pseudo-termp)
                     (:type-prescription pseudo-term-listp)
                     (:executable-counterpart tau-system)))

 ;; Main part of the proof, ugly lemma with cases.  Note that we
 ;; have to use :rule-classes nil here because this isn't a valid
 ;; rewrite rule.

 (local (defthm crux
          (cond ((equal flag 'term)
                 (booleanp (pseudo-termp x)))
                ((equal flag 'list)
                 (booleanp (pseudo-term-listp lst)))
                (t
                 t))
          :rule-classes nil
          :hints((\"Goal\" :induct (flag-pseudo-termp flag x lst)))))

 ;; Now we have to re-prove each part of the lemma so that we can use
 ;; it as a proper rule.

 (defthm type-of-pseudo-termp
   (booleanp (pseudo-termp x))
   :rule-classes :type-prescription
   :hints((\"Goal\" :use ((:instance crux (flag 'term))))))

 (defthm type-of-pseudo-term-listp
   (booleanp (pseudo-term-listp lst))
   :rule-classes :type-prescription
   :hints((\"Goal\" :use ((:instance crux (flag 'list))))))
})

<p>Obviously this is tedious and makes you say everything twice.  Since the
steps are so standard, @('make-flag') automatically gives you a macro to
automate the process.  Here's the same proof, done with the new macro:</p>

@({
 (defthm-pseudo-termp
   (defthm type-of-pseudo-termp
     (booleanp (pseudo-termp x))
     :rule-classes :type-prescription
     :flag term)
   (defthm type-of-pseudo-term-listp
     (booleanp (pseudo-term-listp lst))
     :rule-classes :type-prescription
     :flag list))
})

<p>It's worth understanding some of the details of what's going on here.</p>

<p>The macro automatically tries to induct using the induction scheme.  But
<color rgb=\"#ff0000\">this only works if you're using the formals of the
flag function as the variable names in the theorems.</color>  In the case of
@('pseudo-termp'), this is pretty subtle: ACL2's definition uses different
variables for the term/list cases, i.e.,</p>

@({
 (mutual-recursion
   (defun pseudo-termp (x) ...)
   (defun pseudo-term-listp (lst) ...))
})

<p>So the theorem above only works without hints because we happened to choose
@('x') and @('lst') as our variables.  If, instead, we wanted to use different
variable names in our theorems, we'd have to give an explicit induction hint.
For example:</p>

@({
 (defthm-pseudo-termp
   (defthm type-of-pseudo-termp
     (booleanp (pseudo-termp term))
     :rule-classes :type-prescription
     :flag term)
   (defthm type-of-pseudo-term-listp
     (booleanp (pseudo-term-listp termlist))
     :rule-classes :type-prescription
     :flag list)
   :hints((\"Goal\" :induct (flag-pseudo-termp flag term termlist))))
})


<h3>Bells and Whistles</h3>

<p>Sometimes you may only want to export one of the theorems.  For instance, if
we only want to add a rule about the term case, but no the list case, we could
do this:</p>

@({
 (defthm-pseudo-termp
   (defthm type-of-pseudo-termp
     (booleanp (pseudo-termp x))
     :rule-classes :type-prescription
     :flag term)
   (defthm type-of-pseudo-term-listp
     (booleanp (pseudo-term-listp lst))
     :flag list
     :skip t))
})

<p>Sometimes the theorem you want is inductive in such a way that some
functions are irrelevant; nothing needs to be proved about them in order to
prove the desired theorem about the others.  The :skip keyword can be used with
a theorem of T to do this:</p>
@({
 (defthm-pseudo-termp
   (defthm type-of-pseudo-termp
     (booleanp (pseudo-termp x))
     :rule-classes :type-prescription
     :flag term)
   (defthm type-of-pseudo-term-listp
     t
     :flag list
     :skip t))
})
<p>Alternatively, you can provide the :skip-others keyword to the top-level
macro and simply leave out the trivial parts:</p>
@({
 (defthm-pseudo-termp
   (defthm type-of-pseudo-termp
     (booleanp (pseudo-termp x))
     :rule-classes :type-prescription
     :flag term)
   :skip-others t)
})

<p>You may also have more than one defthm form for a given flag.  For the main
inductive proof, these are all simply conjoined together (and their hints are
simply appended together), but they are exported as separate theorems and may
have different rule-classes.</p>

<p>There is an older, alternate syntax for @('make-flag') that is still
available.  To encourage transitioning to the new syntax, the old syntax is not
documented and should usually not be used.</p>

<h3>Advanced Hints</h3>

<p>For advanced users, note that each individual \"theorem\" can have its own
computed hints.  For instance we can write:</p>

@({
 (defthm-pseudo-termp
   (defthm type-of-pseudo-termp
     (booleanp (pseudo-termp term))
     :rule-classes :type-prescription
     :flag term
     :hints ('(:expand ((pseudo-termp x))))
   (defthm type-of-pseudo-term-listp
     (booleanp (pseudo-term-listp termlist))
     :rule-classes :type-prescription
     :flag list
     :hints ('(:expand ((pseudo-term-listp lst)))))
   :hints((\"Goal\" :induct (flag-pseudo-termp flag term termlist))))
})

<p>These hints are used <b>during the mutually inductive proof</b>.  Under the
top-level induction, we check the clause for the current subgoal to determine
the hypothesized setting of the flag variable, and provide the computed hints
for the appropriate case.</p>

<p>If you provide both a top-level hints form and hints on some or all of the
separate theorems, both sets of hints have an effect; try @(':trans1') on such
a defthm-flag-fn form to see what you get.</p>

<p>You may use subgoal hints as well as computed hints, but they will not have
any effect if the particular subgoal does not occur when those hints are in
effect.  We simply translate subgoal hints to computed hints:</p>

@({
 (\"Subgoal *1/5.2\" :in-theory (theory 'foo))
   --->
 (and (equal id (parse-clause-id \"Subgoal *1/5.2\"))
      '(:in-theory (theory 'foo)))
})

<p>As mentioned above, if there is more than one defthm form for a given flag,
the hints for all such forms are simply appended together; the hints given to
one such form may affect what you might think of as the proof of another.</p>
")

; Examples
#|
(include-book  ;; this newline is so that this is ignored in dependency scanning
 "tools/flag" :dir :system)

(FLAG::make-flag flag-pseudo-termp
                 pseudo-termp
                 :flag-var flag
                 :flag-mapping ((pseudo-termp . term)
                                (pseudo-term-listp . list))
                 ;; :hints {for the measure theorem}
                 :defthm-macro-name defthm-pseudo-termp
                 ;; make everything local but the defthm macro
                 :local t
                 )

; This introduces (flag-pseudo-termp flag x lst)
; Theorems equating it with pseudo-termp and pseudo-term-listp
; And the macro shown below.

(in-theory (disable (:type-prescription pseudo-termp)
                    (:type-prescription pseudo-term-listp)))

(defthm-pseudo-termp type-of-pseudo-termp
  (term (booleanp (pseudo-termp x))
        :rule-classes :rewrite
        :doc nil)
  (list (booleanp (pseudo-term-listp lst))
        )
  :hints(("Goal"
          :induct (flag-pseudo-termp flag x lst))))


(defstobj term-bucket
  (terms))

(mutual-recursion

 (defun terms-into-bucket (x term-bucket)
   ;; Returns (mv number of terms added, term-bucket)
   (declare (xargs :stobjs (term-bucket)
                   :verify-guards nil))
   (cond ((or (atom x)
              (quotep x))
          (let ((term-bucket (update-terms (cons x (terms term-bucket)) term-bucket)))
            (mv 1 term-bucket)))
         (t
          (mv-let (numterms term-bucket)
                  (terms-into-bucket-list (cdr x) term-bucket)
                  (let ((term-bucket (update-terms (cons x (terms term-bucket)) term-bucket)))
                    (mv (+ numterms 1) term-bucket))))))

 (defun terms-into-bucket-list (x term-bucket)
   (declare (xargs :stobjs (term-bucket)))
   (if (atom x)
       (mv 0 term-bucket)
     (mv-let (num-car term-bucket)
             (terms-into-bucket (car x) term-bucket)
             (mv-let (num-cdr term-bucket)
                     (terms-into-bucket-list (cdr x) term-bucket)
                     (mv (+ num-car num-cdr) term-bucket))))))

(terms-into-bucket '(f x y z) term-bucket)

(FLAG::make-flag flag-terms-into-bucket
                 terms-into-bucket)
|#


(defthmd expand-all-hides
  (equal (hide x) x)
  :hints (("goal" :expand ((hide x)))))


(defun acl2::flag-is (x)
  (declare (ignore x))
  t)

(in-theory (disable acl2::flag-is (acl2::flag-is) (:type-prescription acl2::flag-is)))

(defevaluator flag-is-cp-ev flag-is-cp-ev-lst ((if a b c) (acl2::flag-is x) (not x)))

(defun flag-is-cp (clause name)
  (declare (xargs :guard t))
  (list (cons `(not (acl2::flag-is ',name))
              clause)))

(defthm flag-is-cp-correct
  (implies (and (pseudo-term-listp clause)
                (alistp al)
                (flag-is-cp-ev (acl2::conjoin-clauses
                                (flag-is-cp clause name))
                               al))
           (flag-is-cp-ev (acl2::disjoin clause) al))
  :hints (("goal" :expand ((:free (a b) (acl2::disjoin (cons a b))))
           :in-theory (enable acl2::disjoin2 acl2::flag-is)
           :do-not-induct t))
  :rule-classes :clause-processor)




(program)





(defmacro id (form) form)

(defun get-clique-members (fn world)
  (or (getprop fn 'recursivep nil 'current-acl2-world world)
      (er hard 'get-clique-members "Expected ~s0 to be in a mutually-recursive nest.~%"
          fn)))

(defun get-formals (fn world)
  (getprop fn 'formals :none 'current-acl2-world world))

(defun get-body (fn world)
  ;; This gets the original, normalized or non-normalized body based on what
  ;; the user typed for the :normalize xarg.  The use of "last" skips past
  ;; any other :definition rules that have been added since then.
  (access def-body
          (car (last (getprop fn 'def-bodies nil 'current-acl2-world world)))
          :concl))

(defun get-measure (fn world)
  (access justification
          (getprop fn 'justification nil 'current-acl2-world world)
          :measure))

(defun get-wfr (fn world)
  (access justification
          (getprop fn 'justification nil 'current-acl2-world world)
          :rel))

(defun make-flag-measure-aux (alist world)
  (cond ((and (consp alist)
              (consp (cdr alist)))
         (cons `(,(cdar alist) ,(get-measure (caar alist) world))
               (make-flag-measure-aux (cdr alist) world)))
        ((consp alist)
         (list `(otherwise ,(get-measure (caar alist) world))))
        (t
         (er hard 'make-flag-measure-aux "Never get here."))))

(defun make-flag-measure (flag-var alist world)
  (declare (xargs :guard (symbolp flag-var)
                  :mode :program))
  `(case ,flag-var
     . ,(make-flag-measure-aux alist world)))

(defun merge-formals (alist world)
  (if (consp alist)
      (union-eq (get-formals (caar alist) world)
                (merge-formals (cdr alist) world))
    nil))

(defun merge-actuals (alist formals)
  ;; The alist has in it (orig-formal . actual) pairs.  Walk through formals
  ;; and replace any orig-formal with its actual; replace any unbound new
  ;; formals with nil.
  (if (consp formals)
      (cons (cdr (assoc-eq (car formals) alist))
            (merge-actuals alist (cdr formals)))
    nil))

(mutual-recursion

 (defun mangle-body (body fn-name alist formals world)
   (cond ((atom body)
          body)
         ((eq (car body) 'quote)
          body)
         ((symbolp (car body))
          (let ((lookup   (assoc-eq (car body) alist))
                (new-args (mangle-body-list (cdr body) fn-name alist formals world)))
            (if lookup
                (let* ((orig-formals (get-formals (car lookup) world))
                       (new-actuals (merge-actuals (pairlis$ orig-formals new-args) formals)))
                  `(,fn-name ',(cdr lookup) . ,new-actuals))
              (cons (car body) new-args))))
         (t
          (let ((lformals (cadar body))
                (lbody    (caddar body))
                (largs    (cdr body)))
            (cons (list 'lambda
                        lformals
                        (mangle-body lbody  fn-name alist formals world))
                  (mangle-body-list largs fn-name alist formals world))))))

 (defun mangle-body-list (list fn-name alist formals world)
   (if (consp list)
       (cons (mangle-body (car list) fn-name alist formals world)
             (mangle-body-list (cdr list) fn-name alist formals world))
     nil)))


(defun make-flag-body-aux (flag-var fn-name formals alist full-alist world)
  (if (consp alist)
      (let* ((orig-body (get-body (caar alist) world))
             (new-body (mangle-body orig-body fn-name full-alist formals world)))
        (cond ((consp (cdr alist))
               (cons `((equal ,flag-var ',(cdar alist)) ,new-body)
                     (make-flag-body-aux flag-var fn-name formals (cdr alist) full-alist world)))
              (t
               (list `(t ,new-body)))))
    (er hard 'make-flag-body-aux "Never get here.")))

(defun make-flag-body (fn-name flag-var alist hints ruler-extenders world)
  (let ((formals (merge-formals alist world)))
  `(defun-nx ,fn-name (,flag-var . ,formals)
     (declare (xargs :verify-guards nil
                     :normalize nil
                     :measure ,(make-flag-measure flag-var alist world)
                     :hints ,hints
                     ,@(and ruler-extenders
                            `(:ruler-extenders ,ruler-extenders))
                     :well-founded-relation ,(get-wfr (caar alist)
                                                      world)
                     :mode :logic)
              (ignorable . ,formals))
     (cond
       .
       ,(make-flag-body-aux flag-var fn-name formals alist alist world)))))

(defun extract-keyword-from-args (kwd args)
  (if (consp args)
      (if (eq (car args) kwd)
          (if (consp (cdr args))
              (cadr args)
            (er hard "Expected something to follow ~s0.~%" kwd))
        (extract-keyword-from-args kwd (cdr args)))
    nil))

(defun throw-away-keyword-parts (args)
  (if (consp args)
      (if (keywordp (car args))
          nil
        (cons (car args)
              (throw-away-keyword-parts (cdr args))))
    nil))





(defun translate-subgoal-to-computed-hints (hints)
  (declare (xargs :mode :program))
  (if (atom hints)
      nil
    (cons (if (and (consp (car hints))
                   (stringp (caar hints)))
              (let ((id (acl2::parse-clause-id (caar hints))))
                `(and (equal id ',id)
                      ',(cdar hints)))
            (car hints))
          (translate-subgoal-to-computed-hints (cdr hints)))))

(defun find-flag-hyps (flagname clause)
  (declare (xargs :mode :program))
  (if (atom clause)
      (mv nil nil)
    (let ((lit (car clause)))
      (flet ((eql-hyp-case
              (a b flagname clause)
              (cond ((and (equal a flagname) (quotep b))
                     (mv b nil))
                    ((and (equal b flagname) (quotep a))
                     (mv a nil))
                    (t (find-flag-hyps flagname (cdr clause)))))
             (uneql-hyp-case
              (a b flagname clause)
              (mv-let (equiv rest)
                (find-flag-hyps flagname (cdr clause))
                (if equiv
                    (mv equiv nil)
                  (cond ((and (equal a flagname) (quotep b))
                         (mv nil (cons b rest)))
                        ((and (equal b flagname) (quotep a))
                         (mv nil (cons a rest)))
                        (t (mv nil rest)))))))
      (case-match lit
        (('not ('equal a b))
         (eql-hyp-case a b flagname clause))
        (('not ('eql a b))
         (eql-hyp-case a b flagname clause))
        (('equal a b)
         (uneql-hyp-case a b flagname clause))
        (('eql a b)
         (uneql-hyp-case a b flagname clause))
        (& (find-flag-hyps flagname (cdr clause))))))))

(defun flag-hint-cases-fn (flagname cases clause)
  (declare (xargs :mode :program))
  (mv-let (equiv inequivs)
    (find-flag-hyps flagname clause)
    (let ((flagval (or equiv
                       (let* ((possibilities (strip-cars cases))
                              (not-ruled-out
                               (set-difference-eq possibilities
                                                  (acl2::strip-cadrs inequivs))))
                         (and (eql (len not-ruled-out) 1)
                              (list 'quote (car not-ruled-out))))))
          (first (extract-keyword-from-args :first cases))
          (cases (throw-away-keyword-parts cases)))
      (and flagval
           (let ((hints (cdr (assoc (cadr flagval) cases))))
             `(:computed-hint-replacement
               (,@first . ,(translate-subgoal-to-computed-hints hints))
               :clause-processor (flag-is-cp clause ,flagval)))))))

(defmacro flag-hint-cases (flagname &rest cases)
  `(flag-hint-cases-fn ',flagname ',cases clause))




(defun flag-from-thmpart (thmpart)
  (if (eq (car thmpart) 'defthm)
      (extract-keyword-from-args :flag thmpart)
    (car thmpart)))

(defun body-from-thmpart (thmpart)
  (cond ((not thmpart) t)
        ((eq (car thmpart) 'defthm)
         ;; (defthm name body ...)
         (caddr thmpart))
        (t ;; (flag body ...)
         (cadr thmpart))))



(defun collect-thmparts-for-flag (flag thmparts)
  (if (atom thmparts)
      nil
    (if (eq (flag-from-thmpart (car thmparts)) flag)
        (cons (car thmparts)
              (collect-thmparts-for-flag flag (cdr thmparts)))
      (collect-thmparts-for-flag flag (cdr thmparts)))))



(defun thmparts-collect-bodies (thmparts)
  (if (atom thmparts)
      nil
    (cons (body-from-thmpart (car thmparts))
          (thmparts-collect-bodies (cdr thmparts)))))

(defun thmparts-collect-hints (thmparts)
  (if (atom thmparts)
      nil
    (append (extract-keyword-from-args :hints (car thmparts))
            (thmparts-collect-hints (cdr thmparts)))))



(defun pair-up-cases-with-thmparts (flag-var alist thmparts skip-ok)
  ;; Each thmpart is an thing like
  ;; _either_ (flag <thm-body> :name ... :rule-classes ... :doc ...)
  ;;;    (for backwards compatibility)
  ;; _or_  (defthm <thmname> <thm-body> :flag ... :rule-classes ... :doc ...)

  (if (consp alist)
      (let* ((flag   (cdar alist))
             (flag-thmparts (collect-thmparts-for-flag flag thmparts)))
        (if (and (not flag-thmparts) (not skip-ok))
            (er hard 'pair-up-cases-with-thmparts
                "Expected there to be a case for the flag ~s0.~%" flag)
          (let* ((bodies (thmparts-collect-bodies flag-thmparts))
                 (body (if (eql (len bodies) 1)
                           (car bodies)
                         `(and . ,bodies))))
            (if (consp (cdr alist))
                (cons `((equal ,flag-var ',flag) ,body)
                      (pair-up-cases-with-thmparts flag-var (cdr alist) thmparts skip-ok))
              (list `(t ,body))))))
    (er hard 'pair-up-cases-with-thmparts
        "Never get here.")))


(defun pair-up-cases-with-hints (alist thmparts skip-ok)
  ;; Each thmpart is an thing like
  ;; _either_ (flag <thm-body> :name ... :rule-classes ... :doc ...)
  ;;;    (for backwards compatibility)
  ;; _or_  (defthm <thmname> <thm-body> :flag ... :rule-classes ... :doc ...)

  (if (consp alist)
      (let* ((flag   (cdar alist))
             (flag-thmparts (collect-thmparts-for-flag flag thmparts)))
        (if (not flag-thmparts)
            (if skip-ok
                (cons (cons flag nil)
                      (pair-up-cases-with-hints (cdr alist) thmparts skip-ok))
              (er hard 'pair-up-cases-with-hints
                  "Expected there to be a case for the flag ~s0.~%" flag))
          (let ((hints (thmparts-collect-hints flag-thmparts)))
            (cons (cons flag hints)
                  (pair-up-cases-with-hints (cdr alist) thmparts skip-ok)))))
    nil))

(defun flag-thm-entry-thmname (explicit-name flag entry)
  (if (eq (car entry) 'defthm)
      (cadr entry)
    (or (extract-keyword-from-args :name (cddr entry))
        (if explicit-name
            (intern-in-package-of-symbol
             (concatenate 'string
                          (symbol-name explicit-name)
                          "-"
                          (symbol-name flag))
             explicit-name)
          (er hard 'flag-thm-entry-thmname
              "~
Expected an explicit name for each theorem, since no general name was
given.  The following theorem does not have a name: ~x0~%" entry)))))


(defun flag-defthm-corollaries (lemma-name explicit-name flag-var thmparts)
  (if (atom thmparts)
      nil
    (if (extract-keyword-from-args :skip (car thmparts))
        (flag-defthm-corollaries lemma-name explicit-name flag-var (cdr thmparts))
      (let* ((thmpart (car thmparts))
             (flag    (flag-from-thmpart thmpart))
             ;; note: this can sometimes cause name conflicts when names are
             ;; generated from the flags
             (thmname (flag-thm-entry-thmname explicit-name flag thmpart))
             (body (body-from-thmpart thmpart))
             (rule-classes-look (member :rule-classes thmpart))
             (doc (extract-keyword-from-args :doc thmpart)))
        (cons `(with-output :stack :pop
                 (defthm ,thmname
                   ,body
                   ,@(and rule-classes-look
                          `(:rule-classes ,(cadr rule-classes-look)))
                   :doc ,doc
                   :hints(("Goal"
                           :in-theory (theory 'minimal-theory)
                           :use ((:instance ,lemma-name (,flag-var ',flag)))))))
              (flag-defthm-corollaries lemma-name explicit-name flag-var (cdr thmparts)))))))
              

(defun find-first-thm-name (thmparts)
  (if (atom thmparts)
      (er hard? 'find-first-thm-name
          "No explicit name given, and no theorems are given names?")
    (if (extract-keyword-from-args :skip (cddr (car thmparts)))
        (find-first-thm-name (cdr thmparts))
      (flag-thm-entry-thmname
       nil (flag-from-thmpart (car thmparts)) (car thmparts)))))
       



(defun flag-defthm-fn (args alist flag-var flag-fncall)
  (let* ((explicit-name (and (symbolp (car args)) (car args)))
         (args (if explicit-name (cdr args) args))
         (thmparts (throw-away-keyword-parts args))
         (name (if explicit-name
                   (intern-in-package-of-symbol
                    (concatenate 'string "FLAG-LEMMA-FOR-"
                                 (symbol-name explicit-name))
                    explicit-name)
                 (intern-in-package-of-symbol
                  (concatenate 'string "FLAG-LEMMA-FOR-"
                               (symbol-name
                                (find-first-thm-name thmparts)))
                  (car flag-fncall))))
         (instructions (extract-keyword-from-args :instructions args))
         (user-hints (extract-keyword-from-args :hints args))
         (no-induction-hint (extract-keyword-from-args :no-induction-hint args))
         (skip-ok (extract-keyword-from-args :skip-others args))
         (hints (and (not instructions)
                     (append
                      (cond (no-induction-hint user-hints)
                            ((and (consp (car user-hints))
                                  (stringp (caar user-hints))
                                  (equal (string-upcase (caar user-hints))
                                         "GOAL"))
                             ;; First hint is for goal.
                             (if (extract-keyword-from-args :induct (car user-hints))
                                 ;; Explicit induct hint is provided; do not override.
                                 user-hints
                               ;; Provide our induct hint in addition to the hints
                               ;; provided in goal.
                               (cons `("Goal" :induct ,flag-fncall
                                       . ,(cdar user-hints))
                                     (cdr user-hints))))
                            ;; No goal hint; cons our induction hint onto the rest.
                            (t (cons `("Goal" :induct ,flag-fncall)
                                     user-hints)))
                      (list
                       `(flag-hint-cases
                         ,flag-var
                         . ,(pair-up-cases-with-hints alist thmparts skip-ok)))))))

    `(with-output :off :all :on (error) :stack :push
       (progn
         (encapsulate
           ()
           (local
            (with-output :stack :pop
              (defthm ,name
                (cond . ,(pair-up-cases-with-thmparts
                          flag-var alist thmparts skip-ok))
                :rule-classes nil
                :hints ,hints
                :instructions ,instructions
                :otf-flg ,(extract-keyword-from-args :otf-flg args))))

           . ,(flag-defthm-corollaries name explicit-name flag-var thmparts))
         (with-output :stack :pop (value-triple ',name))))))


(defun make-defthm-macro (real-macro-name alist flag-var flag-fncall)
  `(defmacro ,real-macro-name (&rest args) ;; was (name &rest args)
     (flag-defthm-fn args ',alist ',flag-var ',flag-fncall)))

(defun make-cases-for-equiv (alist world)
  (if (consp alist)
      (let* ((fn   (caar alist))
             (flag (cdar alist))
             (fn-formals (get-formals fn world)))
        (if (consp (cdr alist))
            (cons `(,flag (,fn . ,fn-formals))
                  (make-cases-for-equiv (cdr alist) world))
          (list `(otherwise (,fn . ,fn-formals)))))
    nil))


(defun equiv-theorem-cases (flag-fn formals alist world)
  (if (consp alist)
      (let* ((fn   (caar alist))
             (flag (cdar alist))
             (fn-formals (get-formals fn world)))
        (cons `(equal (,flag-fn ',flag . ,formals)
                      (,fn . ,fn-formals))
              (equiv-theorem-cases flag-fn formals (cdr alist) world)))
    nil))



; NOTE: Expand-calls-computed-hint moved to std/util/support.

; NEW HINT: this more limited hint seems to be better.

(defun flag-expand-computed-hint (stable-under-simplificationp clause fns)
  (and stable-under-simplificationp
       (let ((conclusion (car (last clause))))
         (case-match conclusion
           (('equal lhs rhs)
            (let* ((expands (if (and (consp lhs)
                                     (member (car lhs) fns))
                                (list lhs)
                              nil))
                   (expands (if (and (consp rhs)
                                     (member (car rhs) fns))
                                (cons rhs expands)
                              expands)))
              (and expands
                   `(:expand ,expands))))
           (&
            nil)))))

(defun flag-table-events (alist entry)
  (if (atom alist)
      nil
    (cons `(table flag-fns ',(caar alist) ',entry)
          (flag-table-events (cdr alist) entry))))

(defun apply-formals-subst (formals subst)
  (if (atom formals)
      nil
    (let ((look (assoc (car formals) subst)))
      (if look
          (cons (cdr look) (apply-formals-subst (cdr formals) subst))
        (cons (car formals) (apply-formals-subst (cdr formals) subst))))))

(defun thm-macro-name (flag-fn-name)
  (intern-in-package-of-symbol
   (concatenate 'string "DEFTHM-" (symbol-name flag-fn-name))
   flag-fn-name))

(defun make-flag-fn (flag-fn-name clique-member-name flag-var flag-mapping hints
                                  defthm-macro-name
                                  formals-subst
                                  local ruler-extenders world)
  (let* ((flag-var (or flag-var
                       (intern-in-package-of-symbol "FLAG" flag-fn-name)))
         (alist (or flag-mapping
                    (pairlis$ (get-clique-members clique-member-name world)
                              (get-clique-members clique-member-name world))))
         (defthm-macro-name (or defthm-macro-name
                                (thm-macro-name flag-fn-name)))
         (equiv-thm-name (intern-in-package-of-symbol
                          (concatenate 'string (symbol-name flag-fn-name) "-EQUIVALENCES")
                          flag-fn-name))
         (formals        (merge-formals alist world)))
    `(,@(if local '(progn) '(encapsulate nil))
      ;; use encapsulate instead of progn so set-ignore-ok is local to this
      (logic)
      (set-ignore-ok t) ;; can't wrap this in local --- fubar!

      (,(if local 'local 'id)
       ,(make-flag-body flag-fn-name flag-var alist hints ruler-extenders world))
      ,(make-defthm-macro defthm-macro-name alist flag-var
                          `(,flag-fn-name ,flag-var
                                          . ,(apply-formals-subst formals formals-subst)))

      (,(if local 'local 'id)
       (with-output
        :off (prove event) ;; hides induction scheme, too
        (encapsulate nil
          (logic)
          (local (defthm flag-equiv-lemma
                   (equal (,flag-fn-name ,flag-var . ,formals)
                          (case ,flag-var
                            ,@(make-cases-for-equiv alist world)))
                   :hints (("Goal"
                            :induct
                            (,flag-fn-name ,flag-var . ,formals)
                            :in-theory
                            '((:induction ,flag-fn-name))
                            ;; (set-difference-theories
                            ;;  (union-theories (theory 'minimal-theory)
                            ;;                  '((:induction ,flag-fn-name)
                            ;;                    (:rewrite expand-all-hides)))
                            ;;  '(;; Jared found mv-nth to be slowing down a couple of flag
                            ;;    ;; function admissions.  Take it out of the minimal theory.
                            ;;    (:definition mv-nth)
                            ;;    ;; Jared found a case where "linear" forced some goals
                            ;;    ;; from an equality, which were unprovable.  So, turn
                            ;;    ;; off forcing.
                            ;;    (:executable-counterpart force)
                            ;;    ;; Turn of NOT to prevent case-splitting and 
                            ;;    ))
                            )
                           (flag-expand-computed-hint stable-under-simplificationp
                                                      ACL2::clause
                                                      ',(cons flag-fn-name
                                                              (strip-cars
                                                               alist))))))
          (defthm ,equiv-thm-name
            (and . ,(equiv-theorem-cases flag-fn-name formals alist world))))))

      (progn . ,(flag-table-events alist `(,flag-fn-name
                                           ,alist
                                           ,defthm-macro-name
                                           ,equiv-thm-name)))
      (,(if local 'local 'id)
       (in-theory (disable (:definition ,flag-fn-name)))))))

(defmacro make-flag (flag-fn-name clique-member-name
                     &key
                     flag-var
                     flag-mapping
                     formals-subst
                     hints
                     defthm-macro-name
                     local
                     ruler-extenders)
  `(make-event (make-flag-fn ',flag-fn-name
                             ',clique-member-name
                             ',flag-var
                             ',flag-mapping
                             ',hints
                             ',defthm-macro-name
                             ',formals-subst
                             ',local
                             ',ruler-extenders
                             (w state))))



;; Accessors for the records stored in the flag-fns table
(defun flag-present (fn world)
  (consp (assoc-eq fn (table-alist 'flag::flag-fns world))))

(defun flag-fn-name (fn world)
  (nth 0 (cdr (assoc-eq fn (table-alist 'flag::flag-fns world)))))

(defun flag-alist (fn world)
  (nth 1 (cdr (assoc-eq fn (table-alist 'flag::flag-fns world)))))

(defun flag-defthm-macro (fn world)
  (nth 2 (cdr (assoc-eq fn (table-alist 'flag::flag-fns world)))))

(defun flag-equivs-name (fn world)
  (nth 3 (cdr (assoc-eq fn (table-alist 'flag::flag-fns world)))))





(logic) ;; so local events aren't skipped

#!ACL2
(local

; A couple tests to make sure things are working.

 (encapsulate
  ()

  (FLAG::make-flag flag-pseudo-termp
                   pseudo-termp
                   :flag-var flag
                   :flag-mapping ((pseudo-termp . term)
                                  (pseudo-term-listp . list))
                   ;; :hints {for the measure theorem}
                   :defthm-macro-name defthm-pseudo-termp
                   )

; This introduces (flag-pseudo-termp flag x lst)
; Theorems equating it with pseudo-termp and pseudo-term-listp
; And the macro shown below.

  (in-theory (disable (:type-prescription pseudo-termp)
                      (:type-prescription pseudo-term-listp)))

  ;; A few syntactic variations on defining the same theorems:
  (encapsulate
   nil
   (value-triple 1)
   (local (defthm-pseudo-termp type-of-pseudo-termp
            (term (booleanp (pseudo-termp x))
                  :rule-classes :rewrite
                  :doc nil)
            (list (booleanp (pseudo-term-listp lst))))))

  (encapsulate
   nil
   (value-triple 2)
   (local (defthm-pseudo-termp type-of-pseudo-termp2
            (defthm booleanp-of-pseudo-termp
              (booleanp (pseudo-termp x))
              :rule-classes :rewrite
              :doc nil
              :flag term)
            :skip-others t)))


  (encapsulate
   nil
   (value-triple 3)
   (local (in-theory (disable pseudo-termp pseudo-term-listp)))
   (local (defthm-pseudo-termp type-of-pseudo-termp
            (term (booleanp (pseudo-termp x))
                  :hints ('(:expand ((pseudo-termp x))))
                  :rule-classes :rewrite
                  :doc nil)
            (list (booleanp (pseudo-term-listp lst))
                  :hints ('(:expand ((pseudo-term-listp lst))))))))

  (encapsulate
   nil
   (value-triple 4)
   (local (defthm-pseudo-termp
            (term (booleanp (pseudo-termp x))
                  :rule-classes :rewrite
                  :doc nil
                  :name type-of-pseudo-termp)
            (list (booleanp (pseudo-term-listp lst))
                  :skip t))))

  (encapsulate
   nil
   (value-triple 5)
   (local (defthm-pseudo-termp
            (defthm type-of-pseudo-termp
              (booleanp (pseudo-termp x))
              :rule-classes :rewrite
              :doc nil
              :flag term)
            (defthm type-of-pseudo-term-listp
              (booleanp (pseudo-term-listp lst))
              :flag list
              :skip t))))

  (encapsulate
   nil
   (value-triple 6)
   (local (defthm-pseudo-termp
            (defthm type-of-pseudo-termp
              (booleanp (pseudo-termp x))
              :rule-classes :type-prescription
              :doc nil
              :flag term)
            (defthm pseudo-termp-equal-t
              (equal (equal (pseudo-termp x) t)
                     (pseudo-termp x))
              :rule-classes :rewrite
              :doc nil
              :flag term)
            (list
              (booleanp (pseudo-term-listp lst))
              :skip t))))



  (defstobj term-bucket
    (terms))

  (mutual-recursion

   (defun terms-into-bucket (x term-bucket)
     ;; Returns (mv number of terms added, term-bucket)
     (declare (xargs :stobjs (term-bucket)
                     :verify-guards nil))
     (cond ((or (atom x)
                (quotep x))
            (let ((term-bucket (update-terms (cons x (terms term-bucket)) term-bucket)))
              (mv 1 term-bucket)))
           (t
            (mv-let (numterms term-bucket)
                    (terms-into-bucket-list (cdr x) term-bucket)
                    (let ((term-bucket (update-terms (cons x (terms term-bucket)) term-bucket)))
                      (mv (+ numterms 1) term-bucket))))))

   (defun terms-into-bucket-list (x term-bucket)
     (declare (xargs :stobjs (term-bucket)))
     (if (atom x)
         (mv 0 term-bucket)
       (mv-let (num-car term-bucket)
               (terms-into-bucket (car x) term-bucket)
               (mv-let (num-cdr term-bucket)
                       (terms-into-bucket-list (cdr x) term-bucket)
                       (mv (+ num-car num-cdr) term-bucket))))))

  (FLAG::make-flag flag-terms-into-bucket
                   terms-into-bucket)


  ;; previously this didn't work, now we set-ignore-ok to fix it.
  (encapsulate
   ()
   (set-ignore-ok t)
   (mutual-recursion
    (defun ignore-test-f (x)
      (if (consp x)
          (let ((y (+ x 1)))
            (ignore-test-g (cdr x)))
        nil))
    (defun ignore-test-g (x)
      (if (consp x)
          (ignore-test-f (cdr x))
        nil))))

  (FLAG::make-flag flag-ignore-test
                   ignore-test-f)

  ))




(defxdoc def-doublevar-induction
  :parents (mutual-recursion)
  :short "Create an induction scheme that adds a duplicate variable to the substitution."
  :long "<p>Certain types of proofs require inductions that are rather simple
modifications of existing induction schemes.  For example, to prove a
congruence on some recursive function, typically you want to induct
<em>almost</em> on that function, but with the simple modification that for
each substitution in the induction scheme, you want to basically copy the
substitution of an existing variable into a new variable.</p>

<p>For example, consider our attempt to prove that sum-pairs-list is nat-list congruent:</p>
@({
 (defun nat-list-equiv (x y)
   (if (atom x)
       (atom y)
     (and (consp y)
          (equal (nfix (car x)) (nfix (car y)))
          (nat-list-equiv (cdr x) (cdr y)))))
 
 (defun sum-pairs-list (x)
   (if (atom x)
       nil
     (if (atom (cdr x))
         (list (nfix (car x)))
       (cons (+ (nfix (car x)) (nfix (cadr x)))
             (sum-pairs-list (cddr x))))))
 
 (defequiv nat-list-equiv)

 (defthm sum-pairs-list-nat-list-equiv-congruence
   (implies (nat-list-equiv x y)
            (equal (sum-pairs-list x) (sum-pairs-list y)))
   :rule-classes :congruence)
})

<p>The proof of the congruence rule fails with no hint, and neither of the
following induction hints don't help either:</p>

@({
  :hints ((\"goal\" :induct (nat-list-equiv x y))))
  :hints ((\"goal\" :induct (list (sum-pairs-list x)
                                  (sum-pairs-list y))))
})

<p>What we really want is an induction scheme that inducts as sum-pairs-list
on (say) x, but does a similar substitution on y, e.g.,</p>

@({
 (defun sum-pairs-list-double-manual (x y)
   (declare (ignorable y))
   (if (atom x)
       nil
     (if (atom (cdr x))
         (list (nfix (car x)))
       (cons (+ (nfix (car x)) (nfix (cadr x)))
             (sum-pairs-list-double-manual (cddr x) (cddr y))))))
 
 (defthm sum-pairs-list-nat-list-equiv-congruence ;; sum-pairs-list-double-manual works
   (implies (nat-list-equiv x y)
            (equal (sum-pairs-list x) (sum-pairs-list y)))
   :hints ((\"goal\" :induct (sum-pairs-list-double-manual x y)))
   :rule-classes :congruence)
})

<p>Def-doublevar-ind automatically generates a function like this, e.g.:</p>

@({
 (def-doublevar-induction sum-pairs-list-double
   :orig-fn sum-pairs-list
   :old-var x :new-var y)
 
 (defthm sum-pairs-list-nat-list-equiv-congruence ;; sum-pairs-list-double works
   (implies (nat-list-equiv x y)
            (equal (sum-pairs-list x) (sum-pairs-list y)))
   :hints ((\"goal\" :induct (sum-pairs-list-double x y)))
   :rule-classes :congruence)
})

<p>This can be used with flag functions and their defthm macros (see @(see make-flag)): use def-doublevar-ind to define a new induction scheme based on the flag function, and give a hint to the flag defthm macro to use that induction scheme. For example,</p>
@({
 (flag::make-flag foo-flag foo-mutualrec ...)

 (flag::def-doublevar-ind foo-doublevar-ind
   :orig-fn foo-flag
   :old-var x :new-var y)

 (defthm-foo-flag
  (defthm foo1-thm ...)
  (defthm foo2-thm ...)
  :hints ((\"goal\" :induct (foo-doublevar-ind flag x a b y))))
})
")


(defun doublevar-transform-calls (calls fnname old-var-index old-var new-var)
  (if (atom calls)
      nil
    (let ((actuals (cdr (car calls))))
      (cons (cons fnname (append actuals
                                 (list
                                  (acl2::subst-var new-var old-var (nth old-var-index actuals)))))
            (doublevar-transform-calls (cdr calls) fnname old-var-index old-var new-var)))))

(defun doublevar-different-equals-p (test1 test2)
  (and (consp test1)
       (consp test2)
       (eq (car test1) 'equal)
       (eq (car test2) 'equal)
       (let* ((quote1 (if (quotep (cadr test1))
                          (cadr test1)
                        (and (quotep (caddr test1))
                             (caddr test1))))
              (quote2 (if (quotep (cadr test2))
                          (cadr test2)
                        (and (quotep (caddr test2))
                             (caddr test2)))))
         (and quote1
              quote2
              (not (equal quote1 quote2))
              (or (equal (cadr test1) (cadr test2))
                  (equal (cadr test1) (caddr test2))
                  (equal (caddr test1) (cadr test2))
                  (equal (caddr test1) (caddr test2)))))))

(defun do-both (x y)
  (declare (xargs :mode :logic))
  (list x y))

(defmacro do-all (&rest args)
  (cond ((atom args) nil)
        ((atom (cdr args)) (car args))
        (t (xxxjoin 'do-both args))))

(defun doublevar-make-simple-tests/calls (tests calls)
  (declare (xargs :mode :program))
  (if (atom tests)
      calls
    (let* ((negp (and (consp (car tests))
                      (eq (caar tests) 'not)))
           (test-term (if negp (cadar tests) (car tests)))
           (rest (doublevar-make-simple-tests/calls (cdr tests) calls)))
      (if negp
          `(if ,test-term nil (do-all ,rest))
        `(if ,test-term (do-all ,rest) nil)))))
           
           

(mutual-recursion
 (defun doublevar-place-calls-in-body (tests calls-term term)
   (declare (xargs :measure (make-ord 1 (+ 1 (acl2-count term))
                                      (acl2-count tests))
                   :mode :program))
   ;; The existing term is of type DOTERM in the following schema:
   ;;  DOTERM ::= (DO-ALL IFTERM ... IFTERM) | NIL
   ;;  IFTERM  ::=  (if TEST DOTERM DOTERM)
   ;;               | recursive-call
   
   ;; The simplest way to write this function would be:
   ;; `(do-both (and ,@tests ,calls-term) ,term)
   ;; But this would replicate a lot of the IF structure in a lot of different
   ;; places and make a mess.  We instead try to reuse the same IF structure as
   ;; much as possible.

  ;; For a given DOTERM, we look through the various subterms for an IF whose
  ;; test is compatible with the first one in TESTS.  That is, it's the same
  ;; condition modulo negation, or is checking equality of the same term with
  ;; different constants.
   (if (atom term)
       `(do-all ,(doublevar-make-simple-tests/calls tests calls-term))
     ;; term is (do-all . ,subterms)
     (cons 'do-all (doublevar-find-if-to-place-calls tests calls-term (cdr term)))))

 (defun doublevar-find-if-to-place-calls (tests calls-term subterms)
   ;; Returns a list of IFTERMs, including the existing subterms and the tests/calls.
   (if (atom subterms)
       (list (doublevar-make-simple-tests/calls tests calls-term))
     (if (not (eq (caar subterms) 'if))
         (cons (car subterms)
               (doublevar-find-if-to-place-calls tests calls-term (cdr subterms)))
       (let* ((negp (and (consp (car tests))
                         (eq (caar tests) 'not)))
              (test-term (if negp (cadar tests) (car tests)))

              (subterm-test (second (car subterms)))

              (diff-equals (and (not negp)
                                (doublevar-different-equals-p test-term subterm-test)))
              (compatible (or (equal test-term subterm-test)
                              diff-equals)))
         (if (not compatible)
             (cons (car subterms)
                   (doublevar-find-if-to-place-calls tests calls-term (cdr subterms)))
           (let* ((then-branchp (and (not diff-equals) (not negp)))
                  (rest-tests (if diff-equals tests (cdr tests)))
                  (sub-branch 
                   (doublevar-place-calls-in-body
                    rest-tests calls-term
                    (if then-branchp
                        (third (car subterms))
                      (fourth (car subterms))))))
             (cons (if then-branchp
                       `(if ,subterm-test
                            ,sub-branch
                          ,(fourth (car subterms)))
                     `(if ,subterm-test
                          ,(third (car subterms))
                        ,sub-branch))
                   (cdr subterms)))))))))


(defun doublevar-ind-body (ind-machine fnname old-var-index old-var new-var term)
  (declare (xargs :mode :program))
  (if (atom ind-machine)
      term
    (let* ((tests (access acl2::tests-and-calls (car ind-machine) :tests))
           (calls (access acl2::tests-and-calls (car ind-machine) :calls))
           (calls-term `(list ,(len ind-machine)
                              . ,(doublevar-transform-calls
                                  calls fnname old-var-index old-var new-var)))
           (new-term (doublevar-place-calls-in-body tests calls-term term)))
      (doublevar-ind-body (cdr ind-machine) fnname old-var-index old-var new-var new-term))))


(defun def-doublevar-induction-fn (name f old-var new-var hints take w)
  (declare (xargs :mode :program))
  (let* ((formals (get-formals f w))
         (ind-machine (getprop f 'acl2::induction-machine :none 'current-acl2-world w)))
    (cond ((eq formals :none)
           (er hard? 'def-doublevar-induction-fn "Not a function -- no formals~%"))
          ((not (member-eq old-var formals))
           (er hard? 'def-doublevar-induction-fn "~x0 is not an existing formal of ~x1~%"
               old-var f))
          ((eq ind-machine :none)
           (er hard? 'def-doublevar-induction-fn "No induction machine -- not singly recursive?~%"))
          (t
           (let* ((measure (get-measure f w))
                  (wfr (get-wfr f w))
                  (old-var-index (search (list old-var) formals))
                  (all-formals (append formals (list new-var))))
             `(defun-nx ,name ,all-formals
                (declare (xargs :verify-guards nil
                                :measure ,measure
                                :hints ,hints
                                :well-founded-relation ,wfr
                                :ruler-extenders (do-both mv-list return-last)
                                :mode :logic)
                         (ignorable . ,all-formals))
                ,(doublevar-ind-body (if take
                                         (take take ind-machine)
                                       ind-machine)
                                     name old-var-index old-var new-var nil)))))))

(defmacro def-doublevar-induction (name &key orig-fn old-var new-var hints take)
  `(make-event
    (def-doublevar-induction-fn ',name ',orig-fn ',old-var ',new-var ',hints ',take (w state))))


(local
 (progn

   (defun nat-list-equiv (x y)
     (if (atom x)
         (atom y)
       (and (consp y)
            (equal (nfix (car x)) (nfix (car y)))
            (nat-list-equiv (cdr x) (cdr y)))))

   (defun sum-pairs-list (x)
     (if (atom x)
         nil
       (if (atom (cdr x))
           (list (nfix (car x)))
         (cons (+ (nfix (car x)) (nfix (cadr x)))
               (sum-pairs-list (cddr x))))))

   ;; It is a *MIRACLE* that this works given how many sub-inductions it does.
   (defequiv nat-list-equiv)

   ;; ;; no hint fails
   ;; (defthm sum-pairs-list-nat-list-equiv-congruence 
   ;;   (implies (nat-list-equiv x y)
   ;;            (equal (sum-pairs-list x) (sum-pairs-list y)))
   ;;   :rule-classes :congruence)

   ;; ;; induct equiv hint fails
   ;; (defthm sum-pairs-list-nat-list-equiv-congruence
   ;;   (implies (nat-list-equiv x y)
   ;;            (equal (sum-pairs-list x) (sum-pairs-list y)))
   ;;   :rule-classes :congruence
   ;;   :hints (("goal" :induct (nat-list-equiv x y))))

   ;; ;; induct both hint fails
   ;; (defthm sum-pairs-list-nat-list-equiv-congruence
   ;;   (implies (nat-list-equiv x y)
   ;;            (equal (sum-pairs-list x) (sum-pairs-list y)))
   ;;   :rule-classes :congruence
   ;;   :hints (("goal" :induct (list (sum-pairs-list x) (sum-pairs-list y)))))

   ;; (defun sum-pairs-list-double-manual (x y)
   ;;   (declare (ignorable y))
   ;;   (if (atom x)
   ;;       nil
   ;;     (if (atom (cdr x))
   ;;         (list (nfix (car x)))
   ;;       (cons (+ (nfix (car x)) (nfix (cadr x)))
   ;;             (sum-pairs-list-double-manual (cddr x) (cddr y))))))

   ;; ;; sum-pairs-list-double-manual works but is not what we want to test
   ;; (defthm sum-pairs-list-nat-list-equiv-congruence
   ;;   (implies (nat-list-equiv x y)
   ;;            (equal (sum-pairs-list x) (sum-pairs-list y)))
   ;;   :rule-classes :congruence
   ;;   :hints (("goal" :induct (sum-pairs-list-double-manual x y))))

   (def-doublevar-induction sum-pairs-list-double
     :orig-fn sum-pairs-list
     :old-var x :new-var y)

   (defthm sum-pairs-list-nat-list-equiv-congruence ;; sum-pairs-list-double works
     (implies (nat-list-equiv x y)
              (equal (sum-pairs-list x) (sum-pairs-list y)))
     :rule-classes :congruence
     :hints (("goal" :induct (sum-pairs-list-double x y))))))