/usr/share/acl2-7.1/books/demos/patterned-congruences.lisp is in acl2-books-source 7.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 | ; Copyright (C) 2013, ForrestHunt, Inc.
; Written by Matt Kaufmann, December, 2013
; License: A 3-clause BSD license. See the LICENSE file distributed with ACL2.
; This book illustrates the use of patterned congruence rules: congruence rules
; of the form (implies (inner-equiv y1 y2) (outer-equiv (fn ...) (fn ...)))
; argument lists for fn are not simply duplicate-free lists of variables. Some
; of the examples are lower-level than others, so this file serves several
; purposes, as follows.
; - It provides a demo of congruence-based reasoning and patterned congruences.
; - It serves as a regression test for patterned congruences.
; - It augments the user-level documentation.
; - It contains some lower-level discussion that can help ACL2 implementors
; understand issues that might arise.
; We start with a demo, and then proceed with what are essentially regression
; tests.
(in-package "ACL2")
(include-book "misc/eval" :dir :system)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; Demo
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; In this demo we introduce a notion of tree equivalence, where two binary
; trees are equivalent if one can be obtained by the other by a sequence of
; "flips", swapping left and right child at a subtree. It is split into the
; following sections.
; Demo Section 1: A tree equivalence
; Demo Section 2: An equivalence-based rewrite rule
; Demo Section 3: Traditional congruence-based reasoning example
; Demo Section 4: Patterned congruence example
;;;;;;;;;;
; Demo Section 1: A tree equivalence
;;;;;;;;;;
; We begin with some macros to assist those not fluent in Lisp.
(defmacro leaf-p (x) ; a leaf of a binary CONS tree
`(atom ,x))
(defmacro left (x)
`(car ,x))
(defmacro right (x)
`(cdr ,x))
; The following equivalence relation on binary trees holds, roughly speaking,
; when one tree can be transformed to the other by a sequence of "flips":
; switching left and right children of a node.
(defun tree-equiv (t1 t2)
(cond ((or (leaf-p t1) (leaf-p t2))
(equal t1 t2))
(t (or (and (tree-equiv (left t1) (left t2))
(tree-equiv (right t1) (right t2)))
(and (tree-equiv (left t1) (right t2))
(tree-equiv (right t1) (left t2)))))))
; An induction hint is needed to prove transitivity (below):
(defun defequiv-tree-equiv-induction-hint (t1 t2 t3)
(cond
((or (leaf-p t1) (leaf-p t2) (leaf-p t3))
t)
(t (and (defequiv-tree-equiv-induction-hint (left t1) (left t2) (left t3))
(defequiv-tree-equiv-induction-hint (left t1) (left t2) (right t3))
(defequiv-tree-equiv-induction-hint (left t1) (right t2) (left t3))
(defequiv-tree-equiv-induction-hint (left t1) (right t2) (right t3))
(defequiv-tree-equiv-induction-hint (right t1) (left t2) (left t3))
(defequiv-tree-equiv-induction-hint (right t1) (left t2) (right t3))
(defequiv-tree-equiv-induction-hint (right t1) (right t2) (left t3))
(defequiv-tree-equiv-induction-hint (right t1) (right t2) (right t3))))))
(defequiv tree-equiv
:hints (("Goal" :induct (defequiv-tree-equiv-induction-hint x y z))))
;;;;;;;;;;
; Demo Section 2: An equivalence-based rewrite rule
;;;;;;;;;;
; The following function swaps every pair of children in a binary tree.
(defun mirror (tree)
(cond ((leaf-p tree) tree)
(t (cons (mirror (right tree))
(mirror (left tree))))))
; Notice that the following rewrite rule is based on tree-equiv, not equal. It
; will replace (mirror x) by x at a subterm occurrence for which it is
; sufficient to preserve the tree-equiv relation.
(defthm tree-equiv-mirror
(tree-equiv (mirror x)
x))
;;;;;;;;;;
; Demo Section 3: Traditional congruence-based reasoning example
;;;;;;;;;;
(defun tree-product (tree)
; Returns the product of the numeric fringe of tree.
(cond ((acl2-numberp tree)
tree)
((leaf-p tree)
1)
(t (* (tree-product (left tree))
(tree-product (right tree))))))
; Just a test (proved by evaluation):
(defthm test-tree-product
(equal (tree-product '((3 (4 (5 3 a 6) 7 b (4 2)))))
(* 3 4 5 3 6 7 4 2))
:rule-classes nil)
; This congruence rule says that the argument of tree-product can be rewritten
; to preserve the tree-equiv relation.
(defthm tree-equiv-->-equal-tree-product
(implies (tree-equiv x y)
(equal (tree-product x)
(tree-product y)))
:rule-classes :congruence)
; This little example is proved automatically by rewriting the term (mirror x).
; Of course, it is easy to prove this theorem directly, without
; tree-equiv-mirror or tree-equiv-->-equal-tree-product; here, we are just
; giving a simple illustration of congruence-based rewriting.
(defthm tree-product-mirror
(equal (tree-product (mirror y))
(tree-product y))
:rule-classes nil)
;;;;;;;;;;
; Demo Section 4: Patterned congruence example
;;;;;;;;;;
; Now suppose we want to sweep the tree to collect not only the product of the
; numeric leaves, but additional information as well. Function tree-data does
; that, using function combine-tree-data to combine recursive calls.
(defun combine-tree-data (t1 t2)
(list (* (first t1) (first t2))
(append (second t1) (second t2))))
(defun tree-data (tree)
; Returns (list product leaves), where leaves is the numeric fringe of tree and
; product is the product of those leaves.
(cond ((acl2-numberp tree)
(list tree (list tree)))
((leaf-p tree)
(list 1 nil))
(t (combine-tree-data (tree-data (left tree))
(tree-data (right tree))))))
; Test (proved by evaluation):
(defthm tree-data-test
(equal (tree-data '((3 (4 (5 3 a 6) 7 b (4 2)))))
(list (* 3 4 5 3 6 7 4 2)
'(3 4 5 3 6 7 4 2)))
:rule-classes nil)
; Here comes a patterned congruence rule.
(defthm tree-equiv-->-equal-first-tree-data
(implies (tree-equiv x y)
(equal (first (tree-data x))
(first (tree-data y))))
:rule-classes :congruence)
; The following example is proved by the rewrite of (mirror x) to x. While
; this example is trivial, imagine that there are k1 functions like mirror and
; k2 like tree-data. If we prove k1 rules like tree-equiv-mirror and k2 rules
; like tree-equiv-->-equal-first-tree-data, then these k1+k2 rules set us
; up to perform automatically all k1*k2 rewrites like first-tree-data-mirror.
(defthm first-tree-data-mirror
(equal (first (tree-data (mirror y)))
(first (tree-data y)))
:rule-classes nil)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; General utilities for displaying pequivs and such
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(defun anon (termlist)
(subst-var-lst '_ *anonymous-var* termlist))
(defun show-pequiv-pattern (pat)
(declare (xargs :mode :program))
(list 'pequiv-pattern
:fn (access pequiv-pattern pat :fn)
:posn (access pequiv-pattern pat :posn)
:pre-rev (anon (access pequiv-pattern pat :pre-rev))
:post (anon (access pequiv-pattern pat :post))
:next (let ((next (access pequiv-pattern pat :next)))
(cond ((symbolp next) :next-var)
(t (show-pequiv-pattern next))))))
(defun show-pequiv (pequiv)
(declare (xargs :mode :program))
(list 'pequiv
:pattern
(show-pequiv-pattern (access pequiv pequiv :pattern))
:unify-subst (access pequiv pequiv :unify-subst)
:congruence-rule (access congruence-rule
(access pequiv pequiv :congruence-rule)
:rune)))
(defun show-pequiv-lst (pequiv-lst)
(declare (xargs :mode :program))
(cond ((atom pequiv-lst) ; could be :none
nil)
(t (cons (show-pequiv (car pequiv-lst))
(show-pequiv-lst (cdr pequiv-lst))))))
(defun show-pequiv-alist (pequiv-alist)
(declare (xargs :mode :program))
(cond ((endp pequiv-alist) nil)
(t (cons (cons (caar pequiv-alist)
(show-pequiv-lst (cdar pequiv-alist)))
(show-pequiv-alist (cdr pequiv-alist))))))
(defmacro show-pequivs (fn)
`(let* ((prop (getprop ',fn 'pequivs nil 'current-acl2-world (w state))))
(and prop
(list 'pequivs-property
:shallow
(show-pequiv-alist (access pequivs-property prop :shallow))
:deep
(show-pequiv-alist (access pequivs-property prop :deep))
:deep-pequiv-p
(access pequivs-property prop :deep-pequiv-p)))))
(defun show-pequiv-info (pequiv-info)
(declare (xargs :mode :program))
(and pequiv-info
(list 'pequiv-info
:rewritten-args-rev (access pequiv-info pequiv-info
:rewritten-args-rev)
:rest-args (access pequiv-info pequiv-info :rest-args)
:alist (access pequiv-info pequiv-info :alist)
:bkptr (access pequiv-info pequiv-info :bkptr)
:fn (access pequiv-info pequiv-info :fn)
:geneqv (access pequiv-info pequiv-info :geneqv)
:deep-pequiv-lst (access pequiv-info pequiv-info
:deep-pequiv-lst))))
(defmacro trace-pequivs (allp)
`(trace!
(rewrite :entry (list 'rewrite :term term :alist alist :bkptr bkptr
:geneqv geneqv
:pequiv-info (show-pequiv-info pequiv-info))
:notinline t)
(rewrite-args :entry (list 'rewrite-args
:args args
:alist alist
:bkptr bkptr
:rewritten-args-rev rewritten-args-rev
:deep-pequiv-lst
(show-pequiv-lst deep-pequiv-lst)
:shallow-pequiv-lst
(show-pequiv-lst shallow-pequiv-lst)
:parent-geneqv parent-geneqv
:fn fn
:geneqv geneqv)
:notinline t)
one-way-unify1-term-alist
one-way-unify1-term-alist-lst
,@(and allp
'(accumulate-shallow-pequiv-alist
geneqv-refinementp
(expand-abbreviations
:entry (list 'expand-abbreviations :term term :alist alist
:geneqv geneqv
:pequiv-info (show-pequiv-info pequiv-info))
:notinline t)
(expand-abbreviations-lst
:entry (list 'expand-abbreviations-lst
:lst lst
:alist alist
:bkptr bkptr
:rewritten-args-rev rewritten-args-rev
:deep-pequiv-lst
(show-pequiv-lst deep-pequiv-lst)
:shallow-pequiv-lst
(show-pequiv-lst shallow-pequiv-lst)
:parent-geneqv parent-geneqv
:fn fn
:geneqv-lst geneqv-lst)
:notinline t)))))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; Some basic tests for shallow pequivs
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(defun f1 (x y z)
(list x y z))
(defun f2 (x y)
(declare (ignore y))
x)
(defun e1 (x y)
(equal x y))
(defequiv e1)
(defthm e1-implies-iff-f1-cong-1
(implies (e1 y1 y2)
(iff (f1 3 y1 (cons x x))
(f1 3 y2 (cons x x))))
:rule-classes (:congruence))
(defconst *pequiv-1*
'(PEQUIV :PATTERN (PEQUIV-PATTERN :FN F1
:POSN 2
:PRE-REV ('3)
:POST ((CONS X X))
:NEXT :NEXT-VAR)
:UNIFY-SUBST NIL
:CONGRUENCE-RULE (:CONGRUENCE
E1-IMPLIES-IFF-F1-CONG-1)))
(assert-event
(equal (show-pequivs f1)
`(PEQUIVS-PROPERTY
:SHALLOW ((IFF ,*pequiv-1*))
:DEEP NIL
:DEEP-PEQUIV-P NIL)))
(assert-event
(equal (show-pequiv-lst
(find-rules-of-rune
'(:congruence e1-implies-iff-f1-cong-1)
(w state)))
(list *pequiv-1*)))
(defthm f2-returns-first-arg
(e1 (f2 a b) a))
(in-theory (disable f1 f2 e1
(tau-system)
(:type-prescription f1)
(:type-prescription f2)))
#+skip ; only for interactive use
(trace-pequivs nil)
; Rewriting in the proof-checker comprehends patterned congruences:
(defthm test-1-proof-checker
(iff (f1 3 (f2 z 8) (cons u u))
(f1 3 z (cons u u)))
:instructions ((:dv 1 2)
(:rewrite f2-returns-first-arg)
:top
:s-prop)
:rule-classes nil)
(defthm test-1
(iff (f1 3 (f2 z 8) (cons u u))
(f1 3 z (cons u u))))
#+skip ; only for interactive use
(trace-pequivs t)
(must-fail ; outer equiv equal is not preserved (only iff)
(thm
(equal (f1 3 (f2 z 8) (cons u u))
(f1 3 z (cons u u)))))
#+skip ; only for interactive use
(untrace$)
(defun e2 (x y)
(equal x y))
(defequiv e2)
(defrefinement e2 iff)
(in-theory (disable e2))
(must-fail ; e2 refines iff, not the other way around
(thm
(e2 (f1 3 (f2 z 8) (cons u u))
(f1 3 z (cons u u)))))
(defun e3 (x y)
(iff x y))
(defequiv e3)
(must-fail ; we need the refinement rule just below
(thm
(e3 (f1 3 (f2 z 8) (cons u u))
(f1 3 z (cons u u)))
:hints (("Goal" :in-theory (disable e3)))))
(defrefinement iff e3)
(in-theory (disable e3))
; Succeeds because of test-1 and refinement:
(defthm test-2
(e3 (f1 3 (f2 z 8) (cons u u))
(f1 3 z (cons u u)))
:rule-classes nil)
(in-theory (disable test-1))
; Pequiv applies because of refinement:
(defthm test-2-again
(e3 (f1 3 (f2 z 8) (cons u u))
(f1 3 z (cons u u)))
:rule-classes nil)
; Fails because unification fails (u and v are distinct):
(must-fail
(thm
(e3 (f1 3 (f2 z 8) (cons u v))
(f1 3 z (cons u v)))))
; Still fails, because we don't know about substituting into third arg.
(must-fail
(thm
(implies (e1 u v)
(e3 (f1 3 (f2 z 8) (cons u v))
(f1 3 z (cons u u))))))
(must-fail ; not a valid congruence rule
(defthm e1-implies-iff-f1-cong-2-try1
(implies (e1 z1 z2)
(iff (f1 x (f2 a b) z1)
(f1 x a z2)))
:hints (("Goal" :in-theory (enable f1 f2 e1)))
:rule-classes (:congruence)))
(defthm e1-implies-iff-f1-cong-2
(implies (e1 z1 z2)
(iff (f1 x (f2 a b) z1)
(f1 x (f2 a b) z2)))
:hints (("Goal" :in-theory (enable f1 f2 e1)))
:rule-classes (:congruence))
(defconst *pequiv-2*
'(PEQUIV :PATTERN (PEQUIV-PATTERN :FN F1
:POSN 3
:PRE-REV ((F2 _ _)
_)
:POST NIL
:NEXT :NEXT-VAR)
:UNIFY-SUBST NIL
:CONGRUENCE-RULE (:CONGRUENCE E1-IMPLIES-IFF-F1-CONG-2)))
(assert-event
(equal
(show-pequivs f1)
`(PEQUIVS-PROPERTY
:SHALLOW ((IFF ,*pequiv-2* ,*pequiv-1*))
:DEEP NIL
:DEEP-PEQUIV-P NIL)))
; Fails because v is under a cons, hence can't be replaced by u there:
(must-fail
(defthm test-3
(implies (e1 u v)
(e3 (f1 3 (f2 z 8) (cons u v))
(f1 3 z (cons u u))))
:rule-classes nil))
(defcong e1 e1 (cons x y) 2
:hints (("Goal" :in-theory (enable e1))))
; The following succeeds. Note however that v is not immediately replaced by u
; (in low-level speak, remove-trivial-equivalences does not remove v). Rather,
; rewriting replaces v with u (in low-level speak, rewrite-solidify does that
; replacement under (cons u v) because it suffices to preserve e1 there and (e1
; v 2) is true according to the type-alist). If you trace
; remove-trivial-equivalences, you'll see its failure below (until after v has
; been removed by rewriting), but you'll see success if instead you change (e1
; u v) to (equal u v).
(defthm test-3
(implies (e1 u v)
(e3 (f1 3 (f2 z 8) (cons u v))
(f1 3 z (cons u u))))
:rule-classes nil)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; Some basic tests for deep pequivs
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(defun f3 (x)
x)
(defthmd e1-implies-iff-f1-cong-3
(implies (e1 y1 y2)
(iff (f1 4 (f3 y1) (+ w w))
(f1 4 (f3 y2) (+ w w))))
:hints (("Goal" :in-theory (enable e1)))
:rule-classes (:congruence))
(assert-event
(equal
(show-pequivs f1) ; unchanged except :deep-pequiv-p is now t
`(PEQUIVS-PROPERTY
:SHALLOW ((IFF ,*pequiv-2* ,*pequiv-1*))
:DEEP NIL
:DEEP-PEQUIV-P T)))
(defconst *pequiv-3*
'(PEQUIV :PATTERN (PEQUIV-PATTERN :FN F1
:POSN 2
:PRE-REV ('4)
:POST ((BINARY-+ W W))
:NEXT (PEQUIV-PATTERN :FN F3
:POSN 1
:PRE-REV NIL
:POST NIL
:NEXT :NEXT-VAR))
:UNIFY-SUBST NIL
:CONGRUENCE-RULE (:CONGRUENCE E1-IMPLIES-IFF-F1-CONG-3)))
(assert-event
(equal
(show-pequivs f3)
`(PEQUIVS-PROPERTY
:SHALLOW NIL
:DEEP ((IFF ,*pequiv-3*))
:DEEP-PEQUIV-P NIL)))
(defun f4 (x)
x)
(defthm f4-is-f2
(e1 (f4 x)
(f2 x x)))
(in-theory (disable f3 f4 f2-returns-first-arg))
(must-fail ; need to enable e1-implies-iff-f1-cong-3
(defthm test-4
(implies (f1 4 (f3 (f2 a a)) (+ b b))
(f1 4 (f3 (f4 a)) (+ b b)))
:rule-classes nil))
(in-theory (enable e1-implies-iff-f1-cong-3))
(defthm test-4
(implies (f1 4 (f3 (f2 a a)) (+ b b))
(f1 4 (f3 (f4 a)) (+ b b)))
:rule-classes nil)
; Now let's try a variant of test-4 that requires some rewriting.
(defun f5 (x) ; avoid making this a simple rule; see below
(car (list 4 x x)))
; We insist on making just one pass through the rewriter, so that we can see
; that the matcher uses the rewritten-args. Since f5 is not a simple rule, we
; don't need a hint of :do-not '(preprocess) in order to ensure that the proof
; completes at "Goal".
(defthm test-5
(implies (f1 4 (f3 (f2 a a)) (+ b b))
(f1 (f5 x) (f3 (f4 a)) (+ b b)))
:hints ((and (not (equal id *initial-clause-id*))
'(:error "Didn't complete at main Goal!")))
:rule-classes nil)
; We next consider a variant of the test above that exercises simple rules
; only, thus showing that the "preprocess" process can handle patterned
; congruences.
(in-theory (disable f4-is-f2))
(defun f5-simple (x)
(car (list 4 x)))
(defthm f4-is-f2-simple
(e1 (f4 x)
(f2 x 7))
:hints (("Goal" :in-theory (enable f2 f4))))
; (trace-pequivs t)
#||
6> (EXPAND-ABBREVIATIONS
:TERM (F1 (F5-SIMPLE X)
(F3 (F4 A))
(BINARY-+ B B))
:ALIST NIL
:GENEQV ((NIL IFF
:FAKE-RUNE-FOR-ANONYMOUS-ENABLED-RULE NIL))
:PEQUIV-INFO NIL)
...
7> (EXPAND-ABBREVIATIONS-LST
:LST ((F5-SIMPLE X)
(F3 (F4 A))
(BINARY-+ B B))
:ALIST NIL
:BKPTR 1
:REWRITTEN-ARGS-REV NIL
:DEEP-PEQUIV-LST NIL
:SHALLOW-PEQUIV-LST
(...
(PEQUIV
:PATTERN (PEQUIV-PATTERN :FN F1
:POSN 3
:PRE-REV ((F2 _ _) _)
:POST NIL
:NEXT :NEXT-VAR)
:UNIFY-SUBST NIL
:CONGRUENCE-RULE (:CONGRUENCE E1-IMPLIES-IFF-F1-CONG-2)))
:PARENT-GENEQV
((NIL IFF
:FAKE-RUNE-FOR-ANONYMOUS-ENABLED-RULE NIL))
:FN F1
:GENEQV-LST NIL)
...
8> (EXPAND-ABBREVIATIONS-LST
:LST ((F3 (F4 A)) (BINARY-+ B B))
:ALIST NIL
:BKPTR 2
:REWRITTEN-ARGS-REV ('4)
:DEEP-PEQUIV-LST NIL
:SHALLOW-PEQUIV-LST
(...
(PEQUIV
:PATTERN (PEQUIV-PATTERN :FN F1
:POSN 3
:PRE-REV ((F2 _ _) _)
:POST NIL
:NEXT :NEXT-VAR)
:UNIFY-SUBST NIL
:CONGRUENCE-RULE (:CONGRUENCE E1-IMPLIES-IFF-F1-CONG-2)))
:PARENT-GENEQV
((NIL IFF
:FAKE-RUNE-FOR-ANONYMOUS-ENABLED-RULE NIL))
:FN F1
:GENEQV-LST NIL)
...
9> (EXPAND-ABBREVIATIONS
:TERM (F3 (F4 A))
:ALIST NIL
:GENEQV NIL
:PEQUIV-INFO
(PEQUIV-INFO
:REWRITTEN-ARGS-REV ('4)
:REST-ARGS ((BINARY-+ B B))
:ALIST NIL
:BKPTR 2
:FN F1
:GENEQV
((NIL IFF
:FAKE-RUNE-FOR-ANONYMOUS-ENABLED-RULE NIL))
:DEEP-PEQUIV-LST NIL))
...
10> (EXPAND-ABBREVIATIONS-LST
:LST ((F4 A))
:ALIST NIL
:BKPTR 1
:REWRITTEN-ARGS-REV NIL
:DEEP-PEQUIV-LST NIL
:SHALLOW-PEQUIV-LST
((PEQUIV :PATTERN (PEQUIV-PATTERN :FN F3
:POSN 1
:PRE-REV NIL
:POST NIL
:NEXT :NEXT-VAR)
:UNIFY-SUBST ((W . B))
:CONGRUENCE-RULE
(:CONGRUENCE E1-IMPLIES-IFF-F1-CONG-3)))
:PARENT-GENEQV NIL
:FN F3
:GENEQV-LST NIL)
...
11> (EXPAND-ABBREVIATIONS
:TERM (F4 A)
:ALIST NIL
:GENEQV ((3147 E1
:CONGRUENCE E1-IMPLIES-IFF-F1-CONG-3))
:PEQUIV-INFO NIL)
...
<11 (EXPAND-ABBREVIATIONS
536870884 (F2 A '7)
((LEMMA (:CONGRUENCE E1-IMPLIES-IFF-F1-CONG-3)
(:REWRITE F4-IS-F2-SIMPLE)
(:REWRITE CAR-CONS)
(:DEFINITION F5-SIMPLE))))
...
<10 (EXPAND-ABBREVIATIONS-LST
536870884 ((F2 A '7))
((LEMMA (:CONGRUENCE E1-IMPLIES-IFF-F1-CONG-3)
(:REWRITE F4-IS-F2-SIMPLE)
(:REWRITE CAR-CONS)
(:DEFINITION F5-SIMPLE))))
<9 (EXPAND-ABBREVIATIONS
536870884 (F3 (F2 A '7))
((LEMMA (:CONGRUENCE E1-IMPLIES-IFF-F1-CONG-3)
(:REWRITE F4-IS-F2-SIMPLE)
(:REWRITE CAR-CONS)
(:DEFINITION F5-SIMPLE))))
||#
(defthm test-5-simple
(implies (f1 4 (f3 (f2 a 7)) (+ b b))
(f1 (f5-simple x) (f3 (f4 a)) (+ b b)))
:hints (("Goal" :do-not '(simplify)))
:rule-classes nil)
; Undo the effects of the test just above.
(in-theory (e/d (f4-is-f2) (f4-is-f2-simple)))
; The next one succeeds but takes more than one pass, since we need to wait for
; the last argument to be rewritten.
(defthm times-2
(equal (* 2 x)
(+ x x)))
(must-fail
(defthm test-6
(implies (f1 4 (f3 (f2 a a)) (* 2 b))
(f1 (f5 x) (f3 (f4 a)) (* 2 b)))
:hints ((and (not (equal id *initial-clause-id*))
'(:error "Didn't complete at main Goal!")))
:rule-classes nil))
(defthm test-6
(implies (f1 4 (f3 (f2 a a)) (* 2 b))
(f1 (f5 x) (f3 (f4 a)) (* 2 b)))
:rule-classes nil)
; Next, we test the use of our matcher when the alist comes into play.
(defun f6 (k u y)
(f1 k (f3 (f4 u)) y))
; For the following, (trace-pequivs nil) shows:
#||
3> (REWRITE :TERM (F1 K (F3 (F4 U)) Y)
:ALIST ((Y BINARY-+ B B) (U . A) (K QUOTE 4))
:BKPTR RHS
:GENEQV ((NIL IFF
:FAKE-RUNE-FOR-ANONYMOUS-ENABLED-RULE NIL))
:PEQUIV-INFO NIL)
...
7> (ONE-WAY-UNIFY1-TERM-ALIST-LST ((BINARY-+ W W))
(Y)
((Y BINARY-+ B B) (U . A) (K QUOTE 4))
NIL)
...
<7 (ONE-WAY-UNIFY1-TERM-ALIST-LST T ((W . B)))
||#
(defthm test-7
(implies (f1 4 (f3 (f2 a a)) (* 2 b))
(f6 4 a (* 2 b)))
:hints (("Goal" :do-not '(preprocess)) ; defeat premature expansion of f6
(and (not (equal id *initial-clause-id*))
'(:error "Didn't complete at main Goal!")))
:rule-classes nil)
; We next construct an example for which our matching algorithm deals with
; alists that contain pairs of the form (v . (:sublis-var u . s)), where u is a
; term, meaning that v is bound to u/s.
(defun f6-a (k u y)
(f1 k (f3 (f4 u)) (+ (* y y) (* y y))))
; For the following, (trace-pequivs nil) shows:
#||
3> (REWRITE :TERM (F1 K (F3 (F4 U))
(BINARY-+ (BINARY-* Y Y)
(BINARY-* Y Y)))
:ALIST ((Y . B) (U . A) (K QUOTE 4))
:BKPTR BODY
:GENEQV ((NIL IFF
:FAKE-RUNE-FOR-ANONYMOUS-ENABLED-RULE NIL))
:PEQUIV-INFO NIL)
...
7> (ONE-WAY-UNIFY1-TERM-ALIST-LST ((BINARY-+ W W))
((BINARY-+ (BINARY-* Y Y)
(BINARY-* Y Y)))
((Y . B) (U . A) (K QUOTE 4))
NIL)
...
<7 (ONE-WAY-UNIFY1-TERM-ALIST-LST T
((W :SUBLIS-VAR (BINARY-* Y Y)
(Y . B)
(U . A)
(K QUOTE 4))))
||#
(defthm test-7-a
(implies (f1 4 (f3 (f2 a a)) (* 2 b b))
(f6-a 4 a b))
:hints (("Goal" :do-not '(preprocess)) ; defeat premature expansion of f6
(and (not (equal id *initial-clause-id*))
'(:error "Didn't complete at main Goal!")))
:rule-classes nil)
; A typical use will be mv-nth. Let's try such an example.
(defund f7 (y)
(mv (true-listp y) (len (append y y))))
(defun e4 (x y)
(equal (len x) (len y)))
(defequiv e4)
(in-theory (disable e4))
(defthm len-append
(equal (len (append x y))
(+ (len x) (len y))))
(defthm e4-implies-equal-mv-nth-cong
(implies (e4 y1 y2)
(equal (mv-nth 1 (f7 y1))
(mv-nth 1 (f7 y2))))
:hints (("Goal" :in-theory (enable e4 f7)))
:rule-classes :congruence)
(defthm len-revappend
(equal (len (revappend x y))
(+ (len x) (len y))))
(defthm len-reverse
(equal (len (reverse x))
(len x)))
(defthm reverse-is-id
(e4 (reverse x) x)
:hints (("Goal" :in-theory (enable e4))))
(defthm test-8
(equal (mv-nth 1 (f7 (reverse x)))
(mv-nth 1 (f7 x)))
:hints (("Goal" ; unnecessary hint, but avoids warning
:in-theory (disable reverse))))
(defun id (x)
x)
(in-theory (disable id (:type-prescription id)))
(defthm e4-implies-equal-mv-nth-cong-b
(implies (e4 y1 y2)
(equal (mv-nth 1 (id (f7 y1)))
(mv-nth 1 (id (f7 y2)))))
:hints (("Goal" :in-theory (enable e4 f7 id)))
:rule-classes :congruence)
(defthm test-8-b
(equal (append (mv-nth 1 (id (f7 (reverse x))))
(list u v))
(append (mv-nth 1 (id (f7 x)))
(list u v)))
:hints (("Goal" ; unnecessary hint, but avoids warning
:in-theory (disable reverse))))
(defconst *pequiv-4*
'(PEQUIV
:PATTERN
(PEQUIV-PATTERN
:FN MV-NTH
:POSN 2
:PRE-REV ('1)
:POST NIL
:NEXT (PEQUIV-PATTERN :FN ID
:POSN 1
:PRE-REV NIL
:POST NIL
:NEXT (PEQUIV-PATTERN :FN F7
:POSN 1
:PRE-REV NIL
:POST NIL
:NEXT :NEXT-VAR)))
:UNIFY-SUBST NIL
:CONGRUENCE-RULE (:CONGRUENCE E4-IMPLIES-EQUAL-MV-NTH-CONG-B)))
(assert-event
(equal
(show-pequivs id)
`(PEQUIVS-PROPERTY
:SHALLOW NIL
:DEEP ((EQUAL ,*pequiv-4*))
:DEEP-PEQUIV-P NIL)))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; Some soundness checks
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; We introduce the trivial coarsest equivalence relation, in which everything
; is equivalent.
(defun triv-equiv (x y)
(declare (ignore x y))
t)
(defequiv triv-equiv)
; We next do checks showing that we prevent some unsound congruence-based
; reasoning due to inappropriate independent rewrites.
; The following is certainly a theorem, since (equal (id1 a) a) is equal to t
; for all a. Now suppose the rewriter encounters the term (equal (identity b)
; b). The following congruence rule would make it sufficient to maintain
; triv-equiv when rewriting (identity x). But the following is a provable
; rewrite rule: (triv-equiv (identity x) 1). Applying this rule, we would
; reduce the original equality to (equal 1 b). We would have thus transformed
; a theorem into a non-theorem, from which we could easily prove nil. Hence
; the defthm just below should produce the following error:
; ACL2 Error in ( DEFTHM EQUIV-IMPLIES-EQUAL-EQUAL-2 ...):
; EQUIV-IMPLIES-EQUAL-EQUAL-2 is an unacceptable :CONGRUENCE rule because
; the variable X-EQUIV occurs more than once in
; (EQUAL (IDENTITY X-EQUIV) X-EQUIV). See :DOC congruence.
(must-fail
(defthm equiv-implies-equal-equal-2
(implies (triv-equiv x x-equiv)
(equal (equal (identity x) x)
(equal (identity x-equiv) x-equiv)))
:rule-classes (:congruence)))
; Here is another such example.
(defun some-consp (x y)
(or (consp x) (consp y)))
(defthm triv-equiv-implies-equal-some-consp-1
(implies (triv-equiv x x-equiv)
(equal (some-consp x (cons a b))
(some-consp x-equiv (cons a b))))
:rule-classes (:congruence))
(defthm triv-equiv-implies-equal-some-consp-2
(implies (triv-equiv y y-equiv)
(equal (some-consp (cons a b) y)
(some-consp (cons a b) y-equiv)))
:rule-classes (:congruence))
(defthm cons-is-nil
(triv-equiv (cons x y) nil))
(in-theory (disable some-consp (some-consp)))
(defthm some-consp-rewrite-1
(equal (some-consp (cons a b) (cons c d))
(some-consp nil (cons c d)))
:rule-classes nil)
(must-fail
; Notice that congruence rule triv-equiv-implies-equal-some-consp-1 allows rule
; cons-is-nil to rewrite the first some-consp call below to (some-consp nil
; (cons c d)), and at that point, congruence rule
; triv-equiv-implies-equal-some-consp-2 does not apply.
(defthm some-consp-rewrite-2
(equal (some-consp (cons a b) (cons c d))
(some-consp (cons a b) nil))
:rule-classes nil))
(defthm some-consp-rewrite-2
(equal (some-consp (cons a b) (cons c d))
(some-consp (cons a b) nil))
:hints (("Goal"
:in-theory (disable triv-equiv-implies-equal-some-consp-1)))
:rule-classes nil)
(must-fail
; [Same comment as for preceding must-fail form:]
; Notice that congruence rule triv-equiv-implies-equal-some-consp-1 allows rule
; cons-is-nil to rewrite the first some-consp call below to (some-consp nil
; (cons c d)), and at that point, congruence rule
; triv-equiv-implies-equal-some-consp-2 does not apply.
; [Additional comment:]
; Notice also that this alleged theorem is false: the left-hand side of the
; equality is true but the right-hand side is false. So it is good that the
; two arguments of the first some-consp call were not both rewritten using
; cons-is-nil! This shows why the set of relevant patterned equivalences for
; an argument (here, of some-consp) is computed with respect to sibling
; arguments to the left that have been rewritten and sibling arguments on the
; right to the right that have not yet been rewritten.
(thm (equal (some-consp (cons c1 c2) (cons d1 d2))
(some-consp nil nil))))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; A few additional tests
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; We make sure that if there is a duplicate variable in the argument list for
; the outer-equiv, then the congruence rule is treated as a (shallow) patterned
; congruence rule, not as a general (i.e., ordinary) congruence rule.
(defund f8 (x y z)
(and (equal (len x) (len y))
(equal (len y) (len z))))
(defthm e4-implies-equal-f8-cong
(implies (e4 z1 z2)
(equal (f8 x x z1)
(f8 x x z2)))
:hints (("Goal" :in-theory (enable e4 f8)))
:rule-classes :congruence)
(defthm test-9
(equal (f8 a a (reverse u))
(f8 a a u))
:hints (("Goal" ; unnecessary hint, but avoids warning
:in-theory (disable reverse)))
:rule-classes nil)
; If the first two parameters of f8 are not syntactically equal, then the match
; fails for attempting rule e4-implies-equal-f8-cong.
(must-fail
(thm
(equal (f8 a b (reverse u))
(f8 a b u))
:hints (("Goal" ; unnecessary hint, but avoids warning
:in-theory (disable reverse)))))
; We disallow calls in the conclusion of EQUAL, IF, IMPLIES, and lambdas.
; During development of support for patterned congruences, there was manual
; inspection of the error messages below.
(must-fail
(defthm e4-implies-equal-f8-cong-bad-equal
(implies (e4 z1 z2)
(equal (f8 (equal a b) 17 z1)
(f8 (equal a b) 17 z2)))
:hints (("Goal" :in-theory (enable e4 f8)))
:rule-classes :congruence))
(must-fail
(defthm e4-implies-equal-f8-cong-bad-if
(implies (e4 z1 z2)
(equal (f8 (if (consp x) (cons 0 (cdr x)) x) x z1)
(f8 (if (consp x) (cons 0 (cdr x)) x) x z2)))
:hints (("Goal" :in-theory (enable e4 f8)))
:rule-classes :congruence))
(must-fail
(defthm e4-implies-equal-f8-cong-bad-equal
(implies (e4 z1 z2)
(equal (f8 (equal a b) 17 z1)
(f8 (equal a b) 17 z2)))
:hints (("Goal" :in-theory (enable e4 f8)))
:rule-classes :congruence))
(must-fail
(defthm e4-implies-equal-f8-cong-bad-equal-if
(implies (e4 z1 z2)
(equal (f8 (if (and (consp x)
(consp (cdr x))
(equal (car x) (cdr x)))
(cons 0 (cdr x))
x)
x z1)
(f8 (if (and (consp x)
(consp (cdr x))
(equal (car x) (cdr x)))
(cons 0 (cdr x))
x)
x z2)))
:hints (("Goal" :in-theory (enable e4 f8)))
:rule-classes :congruence))
(must-fail
(defthm e4-implies-equal-f8-cong-bad-implies
(implies (e4 z1 z2)
(equal (f8 (implies (consp x) (cons 0 (cdr x))) x z1)
(f8 (implies (consp x) (cons 0 (cdr x))) x z2)))
:hints (("Goal" :in-theory (enable e4 f8)))
:rule-classes :congruence))
(must-fail
(defthm e4-implies-equal-f8-cong-bad-lambda
(implies (e4 z1 z2)
(equal (f8 (let ((x (append nil x))) x)
x
z1)
(f8 (let ((x (append nil x))) x)
x
z2)))
:hints (("Goal" :in-theory (enable e4 f8)))
:rule-classes :congruence))
(must-fail
(defthm e4-implies-equal-f8-cong-bad-equal-lambda
(implies (e4 z1 z2)
(equal (f8 (let ((x (append (equal x x) x))) x)
x
z1)
(f8 (let ((x (append (equal x x) x))) x)
x
z2)))
:hints (("Goal" :in-theory (enable e4 f8)))
:rule-classes :congruence))
(must-fail
(defthm e4-implies-equal-f8-cong-bad-equal-if-lambda
(implies (e4 z1 z2)
(equal (f8 (let ((x (append (equal (if (consp x) x nil) x) x))) x)
x
z1)
(f8 (let ((x (append (equal (if (consp x) x nil) x) x))) x)
x
z2)))
:hints (("Goal" :in-theory (enable e4 f8)))
:rule-classes :congruence))
; Each variable from the hypothesis must occur in the appropriate part of the
; conclusion.
(must-fail
(defthm e4-implies-equal-f8-cong-no-var-1
(implies (e4 z1 z2)
(equal (f8 x x z-wrong)
(f8 x x z2)))
:hints (("Goal" :in-theory (enable e4 f8)))
:rule-classes :congruence))
(must-fail
(defthm e4-implies-equal-f8-cong-no-var-2
(implies (e4 z1 z2)
(equal (f8 x x z1)
(f8 x x z-wrong)))
:hints (("Goal" :in-theory (enable e4 f8)))
:rule-classes :congruence))
(must-fail
(defthm e4-implies-equal-f8-cong-no-var-1-alt
(implies (e4 z1 z2)
(equal (f8 x x z-wrong)
(f8 x x z1)))
:hints (("Goal" :in-theory (enable e4 f8)))
:rule-classes :congruence))
; The following form contains misellaneous lower-level tests, in particular of
; a low-level matching routine that is used in the implementation of patterned
; equivalence relations.
(progn
(defun e5 (x y) (equal (fix x) (fix y)))
(defequiv e5)
(defthm e5-implies-equal-a
(implies (e5 y y-equiv)
(equal (* x (+ y x)) (* x (+ y-equiv x))))
:rule-classes (:congruence))
(assert-event
(equal (getprop 'binary-+ 'pequivs nil 'current-acl2-world (w state))
(let* ((lhs '(binary-* x (binary-+ y x)))
(addr '(2 1))
(rule (car (getprop 'e5-implies-equal-a
'runic-mapping-pairs
nil 'current-acl2-world (w state))))
(nume (access congruence-rule rule :nume))
(equiv 'e5)
(rune '(:congruence e5-implies-equal-a))
(deep-pequivs
`((equal ,(make-pequiv lhs addr nume equiv rune)))))
(make pequivs-property
:deep deep-pequivs))))
(assert-event
(equal (getprop 'binary-* 'pequivs nil 'current-acl2-world (w state))
(make pequivs-property
:deep-pequiv-p t)))
(assert-event
(let ((pat '(cons (f x y) (g x z)))
(term '(cons (f (h a) b) (g (h a) c)))
(term-alist nil)
(alist '((y . b))))
(mv-let
(ans s)
(one-way-unify1-term-alist pat term term-alist alist)
(and ans
(equal s '((z . c) (x . (h a)) (y . b)))))))
(assert-event
(let ((pat '(cons (f x y) (g x z)))
(term '(cons (f (h a) b) (g (h a) c)))
(term-alist '((b . bb)))
(alist '((y . b))))
(mv-let
(ans s)
(one-way-unify1-term-alist pat term term-alist alist)
(declare (ignore s))
(not ans))))
(assert-event
(let ((pat '(cons (f x y) (g x z)))
(term '(cons (f (h a) b) (g (h a) c)))
(term-alist '((b . bb)))
(alist nil))
(mv-let
(ans s)
(one-way-unify1-term-alist pat term term-alist alist)
(and ans
(equal s '((z . (:sublis-var c (b . bb)))
(y . (:sublis-var b (b . bb)))
(x . (:sublis-var (h a) (b . bb)))))))))
(assert-event
(let ((pat '(cons (f x y) (g x (p x w))))
(term '(cons (f (h a) b) (g (h a) c)))
(term-alist '((b . bb) (c . (p (r a1) a2))))
(alist nil))
(mv-let
(ans s)
(one-way-unify1-term-alist pat term term-alist alist)
(declare (ignore s))
(not ans))))
(assert-event
(let ((pat '(cons (f x y) (g x (p x w))))
(term '(cons (f (h a) b) (g (h a) c)))
(term-alist '((b . bb) (c . (p (h a) a2))))
(alist nil))
(mv-let
(ans s)
(one-way-unify1-term-alist pat term term-alist alist)
(and ans
(equal s '((w . a2)
(y . (:sublis-var b (b . bb) (c . (p (h a) a2))))
(x . (:sublis-var (h a) (b . bb) (c . (p (h a) a2))))))))))
(assert-event
(let ((pat '(cons (f x y) (g x (p x w))))
(term '(cons (f (h a) b) (g (h a) c)))
(term-alist '((b . bb) (c . (p (h a) a2))))
(alist '((y . bb))))
(mv-let
(ans s)
(one-way-unify1-term-alist pat term term-alist alist)
(and ans
(equal s '((w . a2)
(x . (:sublis-var (h a) (b . bb) (c . (p (h a) a2))))
(y . bb)))))))
(assert-event
(let ((pat '(r (f x y) (g x (p x w)) (s u)))
(term '(r (f (h a) b) (g (h a) c) (s (k b (g2 b)))))
(term-alist '((b . bb) (c . (p (h a) a2))))
(alist '((y . bb)
(u . (:sublis-var (k x1 x2) (x1 . bb) (x2 . (g2 bb)))))))
(mv-let
(ans s)
(one-way-unify1-term-alist pat term term-alist alist)
(and ans
(equal s
'((w . a2)
(x . (:sublis-var (h a) (b . bb) (c . (p (h a) a2))))
(y . bb)
(u . (:sublis-var (k x1 x2) (x1 . bb) (x2 . (g2 bb))))))))))
(assert-event
(let ((pat '(r (f x y) (g x (p x w)) (s u)))
(term '(r (f (h a) b) (g (h a) c) (s (k b (g2 b)))))
(term-alist '((b . bb) (c . (p (h a) a2))))
(alist '((y . bb))))
(mv-let
(ans s)
(one-way-unify1-term-alist pat term term-alist alist)
(and ans
(equal s
'((u . (:sublis-var (k b (g2 b))
(b . bb) (c . (p (h a) a2))))
(w . a2)
(x . (:sublis-var (h a) (b . bb) (c . (p (h a) a2))))
(y . bb)))))))
(assert-event
(let ((pat '(r (f x y) (g x (p x w)) (s u)))
(term '(r (f (h a) b) (g (h a) c) (s (k b (g2 b)))))
(term-alist '((b . bb) (c . (p (h a) a2))))
(alist '((y . bb)
(u . (:sublis-var (k x1 x2) (x1 . bb))))))
(mv-let
(ans s)
(one-way-unify1-term-alist pat term term-alist alist)
(declare (ignore s))
(null ans))))
)
; The next set of tests is based closely on those for f1, but replacing f1 with
; a function f9 that takes an extra argument before the position of the
; designated variable occurring on the lhs of the patterned congruence rule.
; This test is intended to stress the implementation's reversal of the
; arguments before that position, and also to test that the matching algorithm
; pays attention to variables occurring both before and after that position.
(defun f9 (x1 x2 y z1 z2)
(list x1 x2 y z1 z2))
(defthm e1-implies-iff-f9-cong-1
(implies (e1 y1 y2)
(iff (f9 3 (car u) y1 (cons x x) (cdr u))
(f9 3 (car u) y2 (cons x x) (cdr u))))
:rule-classes (:congruence))
(defconst *pequiv-5*
'(PEQUIV :PATTERN (PEQUIV-PATTERN :FN F9
:POSN 3
:PRE-REV ((CAR U) '3)
:POST ((CONS X X) (CDR U))
:NEXT :NEXT-VAR)
:UNIFY-SUBST NIL
:CONGRUENCE-RULE (:CONGRUENCE
E1-IMPLIES-IFF-F9-CONG-1)))
(assert-event
(equal (show-pequivs f9)
`(PEQUIVS-PROPERTY
:SHALLOW ((IFF ,*pequiv-5*))
:DEEP NIL
:DEEP-PEQUIV-P NIL)))
(assert-event
(equal (show-pequiv-lst
(find-rules-of-rune
'(:congruence e1-implies-iff-f9-cong-1)
(w state)))
(list *pequiv-5*)))
; (defthm f2-returns-first-arg
; (e1 (f2 a b) a))
(in-theory (enable f2-returns-first-arg))
(in-theory (disable f9 f2 e1
(tau-system)
(:type-prescription f9)
(:type-prescription f2)))
(defthm test-10
(iff (f9 3 (car v) (f2 z 8) (cons u u) (cdr v))
(f9 3 (car v) z (cons u u) (cdr v)))
:rule-classes nil)
(defthm test-10-proof-checker
(iff (f9 3 (car v) (f2 z 8) (cons u u) (cdr v))
(f9 3 (car v) z (cons u u) (cdr v)))
:instructions ((:dv 1 3)
(:rewrite f2-returns-first-arg)
:top
:s-prop)
:rule-classes nil)
(must-fail ; match fails between (car v) and w
(thm
(iff (f9 3 (car v) (f2 z 8) (cons u u) w)
(f9 3 (car v) z (cons u u) w))))
(must-fail ; initial two args are in the wrong order
(thm
(iff (f9 (car v) 3 (f2 z 8) (cons u u) (cdr v))
(f9 (car v) 3 z (cons u u) (cdr v)))))
; The implementation replaces uniquely occurring variables by a special
; "anonymous variable", as discussed in the Essay on Patterned Congruences and
; Equivalences. It would likely be unsound to allow this variable to occur in
; the submitted patterned congruence rule, so we check here that this causes an
; error.
(assert-event (eq *anonymous-var* '|Anonymous variable|))
(must-fail
(defthm e1-implies-iff-f9-cong-1-bad
(implies (e1 y1 y2)
(iff (f9 3 (car |Anonymous variable|)
y1
(cons x x) (cdr |Anonymous variable|))
(f9 3 (car |Anonymous variable|)
y2
(cons x x) (cdr |Anonymous variable|))))
:rule-classes (:congruence)))
; The next test emphasizes a point made in :doc patterned-congruence: the match
; is done after preceding arguments have already been rewritten.
(defun f10 (x)
(list 3 x x))
(defun f11 (x y)
(declare (ignore y))
x)
(defthm e1-implies-iff-f11-cong-2
(implies (e1 y1 y2)
(iff (f11 (f10 x) y1)
(f11 (f10 x) y2)))
:rule-classes (:congruence))
(in-theory (disable f11 (:t f11) e1))
(must-fail ; fails because f10 expands before matching the rule's lhs
(thm (implies (e1 y1 y2)
(iff (f11 (f10 x) y1)
(f11 (f10 x) y2)))))
(defthm test-11
(implies (e1 y1 y2)
(iff (f11 (f10 x) y1)
(f11 (f10 x) y2)))
:hints (("Goal" :in-theory (disable f10)))
:rule-classes nil)
; Our next test checks that we account for matches connecting the argument
; containing the unique variable and arguments after that one.
(defun e6 (x y)
(equal x y))
(defequiv e6)
(defun f12 (x y)
(equal x y))
(defun f13 (x y)
(declare (ignore y))
x)
(defthm e1-implies-equal-f12-f13-cong-2
(implies (e6 y1 y2)
(equal (f12 (f13 x y1) x)
(f12 (f13 x y2) x)))
:rule-classes (:congruence))
(defun f14 (x)
x)
(defthm f14-is-id
(e6 (f14 x) x))
(in-theory (disable e6 (:t e6) f12 (:t f12) f13 (:t f13) f14 (:t f14)))
(defthm test-12
(equal (f12 (f13 x (f14 y)) x)
(f12 (f13 x y) x))
:rule-classes nil)
(must-fail
(thm
(equal (f12 (f13 x (f14 y)) x2)
(f12 (f13 x y) x2))))
|