/usr/include/thunderbird/skia/SkOnce.h is in thunderbird-dev 1:38.6.0+build1-0ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 | /*
* Copyright 2013 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef SkOnce_DEFINED
#define SkOnce_DEFINED
// Before trying SkOnce, see if SkLazyPtr or SkLazyFnPtr will work for you.
// They're smaller and faster, if slightly less versatile.
// SkOnce.h defines SK_DECLARE_STATIC_ONCE and SkOnce(), which you can use
// together to create a threadsafe way to call a function just once. E.g.
//
// static void register_my_stuff(GlobalRegistry* registry) {
// registry->register(...);
// }
// ...
// void EnsureRegistered() {
// SK_DECLARE_STATIC_ONCE(once);
// SkOnce(&once, register_my_stuff, GetGlobalRegistry());
// }
//
// No matter how many times you call EnsureRegistered(), register_my_stuff will be called just once.
// OnceTest.cpp also should serve as a few other simple examples.
#include "SkDynamicAnnotations.h"
#include "SkThread.h"
#include "SkTypes.h"
// This must be used in a global or function scope, not as a class member.
#define SK_DECLARE_STATIC_ONCE(name) static SkOnceFlag name
class SkOnceFlag;
inline void SkOnce(SkOnceFlag* once, void (*f)());
template <typename Arg>
inline void SkOnce(SkOnceFlag* once, void (*f)(Arg), Arg arg);
// If you've already got a lock and a flag to use, this variant lets you avoid an extra SkOnceFlag.
template <typename Lock>
inline void SkOnce(bool* done, Lock* lock, void (*f)());
template <typename Lock, typename Arg>
inline void SkOnce(bool* done, Lock* lock, void (*f)(Arg), Arg arg);
// ---------------------- Implementation details below here. -----------------------------
// This class has no constructor and must be zero-initialized (the macro above does this).
class SkOnceFlag {
public:
bool* mutableDone() { return &fDone; }
void acquire() {
// To act as a mutex, this needs an acquire barrier on success.
// sk_atomic_cas doesn't guarantee this ...
while (!sk_atomic_cas(&fSpinlock, 0, 1)) {
// spin
}
// ... so make sure to issue one of our own.
SkAssertResult(sk_acquire_load(&fSpinlock));
}
void release() {
// To act as a mutex, this needs a release barrier. sk_atomic_cas guarantees this.
SkAssertResult(sk_atomic_cas(&fSpinlock, 1, 0));
}
private:
bool fDone;
int32_t fSpinlock;
};
// We've pulled a pretty standard double-checked locking implementation apart
// into its main fast path and a slow path that's called when we suspect the
// one-time code hasn't run yet.
// This is the guts of the code, called when we suspect the one-time code hasn't been run yet.
// This should be rarely called, so we separate it from SkOnce and don't mark it as inline.
// (We don't mind if this is an actual function call, but odds are it'll be inlined anyway.)
template <typename Lock, typename Arg>
static void sk_once_slow(bool* done, Lock* lock, void (*f)(Arg), Arg arg) {
lock->acquire();
if (!*done) {
f(arg);
// Also known as a store-store/load-store barrier, this makes sure that the writes
// done before here---in particular, those done by calling f(arg)---are observable
// before the writes after the line, *done = true.
//
// In version control terms this is like saying, "check in the work up
// to and including f(arg), then check in *done=true as a subsequent change".
//
// We'll use this in the fast path to make sure f(arg)'s effects are
// observable whenever we observe *done == true.
sk_release_store(done, true);
}
lock->release();
}
// This is our fast path, called all the time. We do really want it to be inlined.
template <typename Lock, typename Arg>
inline void SkOnce(bool* done, Lock* lock, void (*f)(Arg), Arg arg) {
if (!SK_ANNOTATE_UNPROTECTED_READ(*done)) {
sk_once_slow(done, lock, f, arg);
}
// Also known as a load-load/load-store barrier, this acquire barrier makes
// sure that anything we read from memory---in particular, memory written by
// calling f(arg)---is at least as current as the value we read from done.
//
// In version control terms, this is a lot like saying "sync up to the
// commit where we wrote done = true".
//
// The release barrier in sk_once_slow guaranteed that done = true
// happens after f(arg), so by syncing to done = true here we're
// forcing ourselves to also wait until the effects of f(arg) are readble.
SkAssertResult(sk_acquire_load(done));
}
template <typename Arg>
inline void SkOnce(SkOnceFlag* once, void (*f)(Arg), Arg arg) {
return SkOnce(once->mutableDone(), once, f, arg);
}
// Calls its argument.
// This lets us use functions that take no arguments with SkOnce methods above.
// (We pass _this_ as the function and the no-arg function as its argument. Cute eh?)
static void sk_once_no_arg_adaptor(void (*f)()) {
f();
}
inline void SkOnce(SkOnceFlag* once, void (*func)()) {
return SkOnce(once, sk_once_no_arg_adaptor, func);
}
template <typename Lock>
inline void SkOnce(bool* done, Lock* lock, void (*func)()) {
return SkOnce(done, lock, sk_once_no_arg_adaptor, func);
}
#endif // SkOnce_DEFINED
|