/usr/include/thunderbird/mozilla/FloatingPoint.h is in thunderbird-dev 1:38.6.0+build1-0ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 | /* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
/* Various predicates and operations on IEEE-754 floating point types. */
#ifndef mozilla_FloatingPoint_h
#define mozilla_FloatingPoint_h
#include "mozilla/Assertions.h"
#include "mozilla/Attributes.h"
#include "mozilla/Casting.h"
#include "mozilla/MathAlgorithms.h"
#include "mozilla/Types.h"
#include <stdint.h>
namespace mozilla {
/*
* It's reasonable to ask why we have this header at all. Don't isnan,
* copysign, the built-in comparison operators, and the like solve these
* problems? Unfortunately, they don't. We've found that various compilers
* (MSVC, MSVC when compiling with PGO, and GCC on OS X, at least) miscompile
* the standard methods in various situations, so we can't use them. Some of
* these compilers even have problems compiling seemingly reasonable bitwise
* algorithms! But with some care we've found algorithms that seem to not
* trigger those compiler bugs.
*
* For the aforementioned reasons, be very wary of making changes to any of
* these algorithms. If you must make changes, keep a careful eye out for
* compiler bustage, particularly PGO-specific bustage.
*/
struct FloatTypeTraits
{
typedef uint32_t Bits;
static const unsigned kExponentBias = 127;
static const unsigned kExponentShift = 23;
static const Bits kSignBit = 0x80000000UL;
static const Bits kExponentBits = 0x7F800000UL;
static const Bits kSignificandBits = 0x007FFFFFUL;
};
struct DoubleTypeTraits
{
typedef uint64_t Bits;
static const unsigned kExponentBias = 1023;
static const unsigned kExponentShift = 52;
static const Bits kSignBit = 0x8000000000000000ULL;
static const Bits kExponentBits = 0x7ff0000000000000ULL;
static const Bits kSignificandBits = 0x000fffffffffffffULL;
};
template<typename T> struct SelectTrait;
template<> struct SelectTrait<float> : public FloatTypeTraits {};
template<> struct SelectTrait<double> : public DoubleTypeTraits {};
/*
* This struct contains details regarding the encoding of floating-point
* numbers that can be useful for direct bit manipulation. As of now, the
* template parameter has to be float or double.
*
* The nested typedef |Bits| is the unsigned integral type with the same size
* as T: uint32_t for float and uint64_t for double (static assertions
* double-check these assumptions).
*
* kExponentBias is the offset that is subtracted from the exponent when
* computing the value, i.e. one plus the opposite of the mininum possible
* exponent.
* kExponentShift is the shift that one needs to apply to retrieve the
* exponent component of the value.
*
* kSignBit contains a bits mask. Bit-and-ing with this mask will result in
* obtaining the sign bit.
* kExponentBits contains the mask needed for obtaining the exponent bits and
* kSignificandBits contains the mask needed for obtaining the significand
* bits.
*
* Full details of how floating point number formats are encoded are beyond
* the scope of this comment. For more information, see
* http://en.wikipedia.org/wiki/IEEE_floating_point
* http://en.wikipedia.org/wiki/Floating_point#IEEE_754:_floating_point_in_modern_computers
*/
template<typename T>
struct FloatingPoint : public SelectTrait<T>
{
typedef SelectTrait<T> Base;
typedef typename Base::Bits Bits;
static_assert((Base::kSignBit & Base::kExponentBits) == 0,
"sign bit shouldn't overlap exponent bits");
static_assert((Base::kSignBit & Base::kSignificandBits) == 0,
"sign bit shouldn't overlap significand bits");
static_assert((Base::kExponentBits & Base::kSignificandBits) == 0,
"exponent bits shouldn't overlap significand bits");
static_assert((Base::kSignBit | Base::kExponentBits | Base::kSignificandBits) ==
~Bits(0),
"all bits accounted for");
/*
* These implementations assume float/double are 32/64-bit single/double
* format number types compatible with the IEEE-754 standard. C++ don't
* require this to be the case. But we required this in implementations of
* these algorithms that preceded this header, so we shouldn't break anything
* if we keep doing so.
*/
static_assert(sizeof(T) == sizeof(Bits), "Bits must be same size as T");
};
/** Determines whether a float/double is NaN. */
template<typename T>
static MOZ_ALWAYS_INLINE MOZ_CONSTEXPR bool
IsNaN(T aValue)
{
/*
* A float/double is NaN if all exponent bits are 1 and the significand
* contains at least one non-zero bit.
*/
typedef FloatingPoint<T> Traits;
typedef typename Traits::Bits Bits;
return (BitwiseCast<Bits>(aValue) & Traits::kExponentBits) == Traits::kExponentBits &&
(BitwiseCast<Bits>(aValue) & Traits::kSignificandBits) != 0;
}
/** Determines whether a float/double is +Infinity or -Infinity. */
template<typename T>
static MOZ_ALWAYS_INLINE bool
IsInfinite(T aValue)
{
/* Infinities have all exponent bits set to 1 and an all-0 significand. */
typedef FloatingPoint<T> Traits;
typedef typename Traits::Bits Bits;
Bits bits = BitwiseCast<Bits>(aValue);
return (bits & ~Traits::kSignBit) == Traits::kExponentBits;
}
/** Determines whether a float/double is not NaN or infinite. */
template<typename T>
static MOZ_ALWAYS_INLINE bool
IsFinite(T aValue)
{
/*
* NaN and Infinities are the only non-finite floats/doubles, and both have
* all exponent bits set to 1.
*/
typedef FloatingPoint<T> Traits;
typedef typename Traits::Bits Bits;
Bits bits = BitwiseCast<Bits>(aValue);
return (bits & Traits::kExponentBits) != Traits::kExponentBits;
}
/**
* Determines whether a float/double is negative or -0. It is an error
* to call this method on a float/double which is NaN.
*/
template<typename T>
static MOZ_ALWAYS_INLINE bool
IsNegative(T aValue)
{
MOZ_ASSERT(!IsNaN(aValue), "NaN does not have a sign");
/* The sign bit is set if the double is negative. */
typedef FloatingPoint<T> Traits;
typedef typename Traits::Bits Bits;
Bits bits = BitwiseCast<Bits>(aValue);
return (bits & Traits::kSignBit) != 0;
}
/** Determines whether a float/double represents -0. */
template<typename T>
static MOZ_ALWAYS_INLINE bool
IsNegativeZero(T aValue)
{
/* Only the sign bit is set if the value is -0. */
typedef FloatingPoint<T> Traits;
typedef typename Traits::Bits Bits;
Bits bits = BitwiseCast<Bits>(aValue);
return bits == Traits::kSignBit;
}
/**
* Returns 0 if a float/double is NaN or infinite;
* otherwise, the float/double is returned.
*/
template<typename T>
static MOZ_ALWAYS_INLINE T
ToZeroIfNonfinite(T aValue)
{
return IsFinite(aValue) ? aValue : 0;
}
/**
* Returns the exponent portion of the float/double.
*
* Zero is not special-cased, so ExponentComponent(0.0) is
* -int_fast16_t(Traits::kExponentBias).
*/
template<typename T>
static MOZ_ALWAYS_INLINE int_fast16_t
ExponentComponent(T aValue)
{
/*
* The exponent component of a float/double is an unsigned number, biased
* from its actual value. Subtract the bias to retrieve the actual exponent.
*/
typedef FloatingPoint<T> Traits;
typedef typename Traits::Bits Bits;
Bits bits = BitwiseCast<Bits>(aValue);
return int_fast16_t((bits & Traits::kExponentBits) >> Traits::kExponentShift) -
int_fast16_t(Traits::kExponentBias);
}
/** Returns +Infinity. */
template<typename T>
static MOZ_ALWAYS_INLINE T
PositiveInfinity()
{
/*
* Positive infinity has all exponent bits set, sign bit set to 0, and no
* significand.
*/
typedef FloatingPoint<T> Traits;
return BitwiseCast<T>(Traits::kExponentBits);
}
/** Returns -Infinity. */
template<typename T>
static MOZ_ALWAYS_INLINE T
NegativeInfinity()
{
/*
* Negative infinity has all exponent bits set, sign bit set to 1, and no
* significand.
*/
typedef FloatingPoint<T> Traits;
return BitwiseCast<T>(Traits::kSignBit | Traits::kExponentBits);
}
/** Constructs a NaN value with the specified sign bit and significand bits. */
template<typename T>
static MOZ_ALWAYS_INLINE T
SpecificNaN(int signbit, typename FloatingPoint<T>::Bits significand)
{
typedef FloatingPoint<T> Traits;
MOZ_ASSERT(signbit == 0 || signbit == 1);
MOZ_ASSERT((significand & ~Traits::kSignificandBits) == 0);
MOZ_ASSERT(significand & Traits::kSignificandBits);
T t = BitwiseCast<T>((signbit ? Traits::kSignBit : 0) |
Traits::kExponentBits |
significand);
MOZ_ASSERT(IsNaN(t));
return t;
}
/** Computes the smallest non-zero positive float/double value. */
template<typename T>
static MOZ_ALWAYS_INLINE T
MinNumberValue()
{
typedef FloatingPoint<T> Traits;
typedef typename Traits::Bits Bits;
return BitwiseCast<T>(Bits(1));
}
/**
* If aValue is equal to some int32_t value, set *aInt32 to that value and
* return true; otherwise return false.
*
* Note that negative zero is "equal" to zero here. To test whether a value can
* be losslessly converted to int32_t and back, use NumberIsInt32 instead.
*/
template<typename T>
static MOZ_ALWAYS_INLINE bool
NumberEqualsInt32(T aValue, int32_t* aInt32)
{
/*
* XXX Casting a floating-point value that doesn't truncate to int32_t, to
* int32_t, induces undefined behavior. We should definitely fix this
* (bug 744965), but as apparently it "works" in practice, it's not a
* pressing concern now.
*/
return aValue == (*aInt32 = int32_t(aValue));
}
/**
* If d can be converted to int32_t and back to an identical double value,
* set *aInt32 to that value and return true; otherwise return false.
*
* The difference between this and NumberEqualsInt32 is that this method returns
* false for negative zero.
*/
template<typename T>
static MOZ_ALWAYS_INLINE bool
NumberIsInt32(T aValue, int32_t* aInt32)
{
return !IsNegativeZero(aValue) && NumberEqualsInt32(aValue, aInt32);
}
/**
* Computes a NaN value. Do not use this method if you depend upon a particular
* NaN value being returned.
*/
template<typename T>
static MOZ_ALWAYS_INLINE T
UnspecifiedNaN()
{
/*
* If we can use any quiet NaN, we might as well use the all-ones NaN,
* since it's cheap to materialize on common platforms (such as x64, where
* this value can be represented in a 32-bit signed immediate field, allowing
* it to be stored to memory in a single instruction).
*/
typedef FloatingPoint<T> Traits;
return SpecificNaN<T>(1, Traits::kSignificandBits);
}
/**
* Compare two doubles for equality, *without* equating -0 to +0, and equating
* any NaN value to any other NaN value. (The normal equality operators equate
* -0 with +0, and they equate NaN to no other value.)
*/
template<typename T>
static inline bool
NumbersAreIdentical(T aValue1, T aValue2)
{
typedef FloatingPoint<T> Traits;
typedef typename Traits::Bits Bits;
if (IsNaN(aValue1)) {
return IsNaN(aValue2);
}
return BitwiseCast<Bits>(aValue1) == BitwiseCast<Bits>(aValue2);
}
namespace detail {
template<typename T>
struct FuzzyEqualsEpsilon;
template<>
struct FuzzyEqualsEpsilon<float>
{
// A number near 1e-5 that is exactly representable in a float.
static float value() { return 1.0f / (1 << 17); }
};
template<>
struct FuzzyEqualsEpsilon<double>
{
// A number near 1e-12 that is exactly representable in a double.
static double value() { return 1.0 / (1LL << 40); }
};
} // namespace detail
/**
* Compare two floating point values for equality, modulo rounding error. That
* is, the two values are considered equal if they are both not NaN and if they
* are less than or equal to aEpsilon apart. The default value of aEpsilon is
* near 1e-5.
*
* For most scenarios you will want to use FuzzyEqualsMultiplicative instead,
* as it is more reasonable over the entire range of floating point numbers.
* This additive version should only be used if you know the range of the
* numbers you are dealing with is bounded and stays around the same order of
* magnitude.
*/
template<typename T>
static MOZ_ALWAYS_INLINE bool
FuzzyEqualsAdditive(T aValue1, T aValue2,
T aEpsilon = detail::FuzzyEqualsEpsilon<T>::value())
{
static_assert(IsFloatingPoint<T>::value, "floating point type required");
return Abs(aValue1 - aValue2) <= aEpsilon;
}
/**
* Compare two floating point values for equality, allowing for rounding error
* relative to the magnitude of the values. That is, the two values are
* considered equal if they are both not NaN and they are less than or equal to
* some aEpsilon apart, where the aEpsilon is scaled by the smaller of the two
* argument values.
*
* In most cases you will want to use this rather than FuzzyEqualsAdditive, as
* this function effectively masks out differences in the bottom few bits of
* the floating point numbers being compared, regardless of what order of
* magnitude those numbers are at.
*/
template<typename T>
static MOZ_ALWAYS_INLINE bool
FuzzyEqualsMultiplicative(T aValue1, T aValue2,
T aEpsilon = detail::FuzzyEqualsEpsilon<T>::value())
{
static_assert(IsFloatingPoint<T>::value, "floating point type required");
// can't use std::min because of bug 965340
T smaller = Abs(aValue1) < Abs(aValue2) ? Abs(aValue1) : Abs(aValue2);
return Abs(aValue1 - aValue2) <= aEpsilon * smaller;
}
/**
* Returns true if the given value can be losslessly represented as an IEEE-754
* single format number, false otherwise. All NaN values are considered
* representable (notwithstanding that the exact bit pattern of a double format
* NaN value can't be exactly represented in single format).
*
* This function isn't inlined to avoid buggy optimizations by MSVC.
*/
MOZ_WARN_UNUSED_RESULT
extern MFBT_API bool
IsFloat32Representable(double aFloat32);
} /* namespace mozilla */
#endif /* mozilla_FloatingPoint_h */
|