/usr/include/thunderbird/gfx3DMatrix.h is in thunderbird-dev 1:38.6.0+build1-0ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 | /* -*- Mode: C++; tab-width: 20; indent-tabs-mode: nil; c-basic-offset: 4 -*-
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef GFX_3DMATRIX_H
#define GFX_3DMATRIX_H
#include <gfxTypes.h>
#include "mozilla/gfx/Point.h"
#include <gfxQuad.h>
class gfxMatrix;
/**
* This class represents a 3D transformation. The matrix is laid
* out as follows:
*
* _11 _12 _13 _14
* _21 _22 _23 _24
* _31 _32 _33 _34
* _41 _42 _43 _44
*
* This matrix is treated as row-major. Assuming we consider our vectors row
* vectors, this matrix type will be identical in memory to the OpenGL and D3D
* matrices. OpenGL matrices are column-major, however OpenGL also treats
* vectors as column vectors, the double transposition makes everything work
* out nicely.
*/
class gfx3DMatrix
{
typedef mozilla::gfx::Point3D Point3D;
typedef mozilla::gfx::Point4D Point4D;
public:
/**
* Create matrix.
*/
gfx3DMatrix(void);
friend std::ostream& operator<<(std::ostream& stream, const gfx3DMatrix& m) {
if (m.IsIdentity()) {
return stream << "[ I ]";
}
if (m.Is2D()) {
return stream << "["
<< m._11 << " " << m._12 << "; "
<< m._21 << " " << m._22 << "; "
<< m._41 << " " << m._42
<< "]";
}
return stream << "["
<< m._11 << " " << m._12 << " " << m._13 << " " << m._14 << "; "
<< m._21 << " " << m._22 << " " << m._23 << " " << m._24 << "; "
<< m._31 << " " << m._32 << " " << m._33 << " " << m._34 << "; "
<< m._41 << " " << m._42 << " " << m._43 << " " << m._44
<< "]";
}
/**
* Matrix multiplication.
*/
gfx3DMatrix operator*(const gfx3DMatrix &aMatrix) const;
gfx3DMatrix& operator*=(const gfx3DMatrix &aMatrix);
Point4D& operator[](int aIndex)
{
MOZ_ASSERT(aIndex >= 0 && aIndex <= 3, "Invalid matrix array index");
return *reinterpret_cast<Point4D*>((&_11)+4*aIndex);
}
const Point4D& operator[](int aIndex) const
{
MOZ_ASSERT(aIndex >= 0 && aIndex <= 3, "Invalid matrix array index");
return *reinterpret_cast<const Point4D*>((&_11)+4*aIndex);
}
/**
* Return true if this matrix and |aMatrix| are the same matrix.
*/
bool operator==(const gfx3DMatrix& aMatrix) const;
bool operator!=(const gfx3DMatrix& aMatrix) const;
bool FuzzyEqual(const gfx3DMatrix& aMatrix) const;
/**
* Divide all values in the matrix by a scalar value
*/
gfx3DMatrix& operator/=(gfxFloat scalar);
/**
* Create a 3D matrix from a gfxMatrix 2D affine transformation.
*
* \param aMatrix gfxMatrix 2D affine transformation.
*/
static gfx3DMatrix From2D(const gfxMatrix &aMatrix);
/**
* Returns true if the matrix is isomorphic to a 2D affine transformation
* (i.e. as obtained by From2D). If it is, optionally returns the 2D
* matrix in aMatrix.
*/
bool Is2D(gfxMatrix* aMatrix) const;
bool Is2D() const;
/**
* Returns true if the matrix can be reduced to a 2D affine transformation
* (i.e. as obtained by From2D). If it is, optionally returns the 2D
* matrix in aMatrix. This should only be used on matrices required for
* rendering, not for intermediate calculations. It is assumed that the 2D
* matrix will only be used for transforming objects on to the z=0 plane,
* therefore any z-component perspective is ignored. This means that if
* aMatrix is applied to objects with z != 0, the results may be incorrect.
*
* Since drawing is to a 2d plane, any 3d transform without perspective
* can be reduced by dropping the z row and column.
*/
bool CanDraw2D(gfxMatrix* aMatrix = nullptr) const;
/**
* Converts the matrix to one that doesn't modify the z coordinate of points,
* but leaves the rest of the transformation unchanged.
*/
gfx3DMatrix& ProjectTo2D();
/**
* Returns true if the matrix is the identity matrix. The most important
* property we require is that gfx3DMatrix().IsIdentity() returns true.
*/
bool IsIdentity() const;
/**
* Pre-multiplication transformation functions:
*
* These functions construct a temporary matrix containing
* a single transformation and pre-multiply it onto the current
* matrix.
*/
/**
* Add a translation by aPoint to the matrix.
*
* This creates this temporary matrix:
* | 1 0 0 0 |
* | 0 1 0 0 |
* | 0 0 1 0 |
* | aPoint.x aPoint.y aPoint.z 1 |
*/
void Translate(const Point3D& aPoint);
/**
* Skew the matrix.
*
* This creates this temporary matrix:
* | 1 tan(aYSkew) 0 0 |
* | tan(aXSkew) 1 0 0 |
* | 0 0 1 0 |
* | 0 0 0 1 |
*/
void SkewXY(double aXSkew, double aYSkew);
/**
* Scale the matrix
*
* This creates this temporary matrix:
* | aX 0 0 0 |
* | 0 aY 0 0 |
* | 0 0 aZ 0 |
* | 0 0 0 1 |
*/
void Scale(float aX, float aY, float aZ);
/**
* Return the currently set scaling factors.
*/
float GetXScale() const { return _11; }
float GetYScale() const { return _22; }
float GetZScale() const { return _33; }
/**
* Rotate around the X axis..
*
* This creates this temporary matrix:
* | 1 0 0 0 |
* | 0 cos(aTheta) sin(aTheta) 0 |
* | 0 -sin(aTheta) cos(aTheta) 0 |
* | 0 0 0 1 |
*/
void RotateX(double aTheta);
/**
* Rotate around the Y axis..
*
* This creates this temporary matrix:
* | cos(aTheta) 0 -sin(aTheta) 0 |
* | 0 1 0 0 |
* | sin(aTheta) 0 cos(aTheta) 0 |
* | 0 0 0 1 |
*/
void RotateY(double aTheta);
/**
* Rotate around the Z axis..
*
* This creates this temporary matrix:
* | cos(aTheta) sin(aTheta) 0 0 |
* | -sin(aTheta) cos(aTheta) 0 0 |
* | 0 0 1 0 |
* | 0 0 0 1 |
*/
void RotateZ(double aTheta);
/**
* Apply perspective to the matrix.
*
* This creates this temporary matrix:
* | 1 0 0 0 |
* | 0 1 0 0 |
* | 0 0 1 -1/aDepth |
* | 0 0 0 1 |
*/
void Perspective(float aDepth);
/**
* Pre multiply an existing matrix onto the current
* matrix
*/
void PreMultiply(const gfx3DMatrix& aOther);
void PreMultiply(const gfxMatrix& aOther);
/**
* Post-multiplication transformation functions:
*
* These functions construct a temporary matrix containing
* a single transformation and post-multiply it onto the current
* matrix.
*/
/**
* Add a translation by aPoint after the matrix.
* This is functionally equivalent to:
* matrix * gfx3DMatrix::Translation(aPoint)
*/
void TranslatePost(const Point3D& aPoint);
void ScalePost(float aX, float aY, float aZ);
/**
* Let T be the transformation matrix translating points in the coordinate
* space with origin aOrigin to the coordinate space used by this matrix.
* If this matrix is M, this function changes it to be (T-1)MT, the matrix
* that's equivalent to M but in the coordinate space that treats aOrigin
* as the origin.
*
* @param aOrigin The origin to translate to
* @return The modified matrix
*/
void ChangeBasis(const Point3D& aOrigin);
/**
* Transforms a point according to this matrix.
*/
gfxPoint Transform(const gfxPoint& point) const;
/**
* Transforms a rectangle according to this matrix
*/
gfxRect TransformBounds(const gfxRect& rect) const;
gfxQuad TransformRect(const gfxRect& aRect) const;
/**
* Transforms a 3D vector according to this matrix.
*/
Point3D Transform3D(const Point3D& point) const;
Point4D Transform4D(const Point4D& aPoint) const;
/**
* Given a point (x,y) find a value for z such that (x,y,z,1) transforms
* into (x',y',0,w') and returns the latter.
*/
Point4D ProjectPoint(const gfxPoint& aPoint) const;
/**
* Inverts this matrix, if possible. Otherwise, the matrix is left
* unchanged.
*/
gfx3DMatrix Inverse() const;
gfx3DMatrix& Invert()
{
*this = Inverse();
return *this;
}
/**
* Returns a unit vector that is perpendicular to the plane formed
* by transform the screen plane (z=0) by this matrix.
*/
Point3D GetNormalVector() const;
/**
* Returns true if a plane transformed by this matrix will
* have it's back face visible.
*/
bool IsBackfaceVisible() const;
/**
* Check if matrix is singular (no inverse exists).
*/
bool IsSingular() const;
/**
* Create a translation matrix.
*
* \param aX Translation on X-axis.
* \param aY Translation on Y-axis.
* \param aZ Translation on Z-axis.
*/
static gfx3DMatrix Translation(float aX, float aY, float aZ);
static gfx3DMatrix Translation(const Point3D& aPoint);
/**
* Create a scale matrix. Scales uniformly along all axes.
*
* \param aScale Scale factor
*/
static gfx3DMatrix ScalingMatrix(float aFactor);
/**
* Create a scale matrix.
*/
static gfx3DMatrix ScalingMatrix(float aX, float aY, float aZ);
gfxFloat Determinant() const;
void NudgeToIntegers(void);
void NudgeToIntegersFixedEpsilon();
private:
gfxFloat Determinant3x3() const;
gfx3DMatrix Inverse3x3() const;
gfx3DMatrix Multiply2D(const gfx3DMatrix &aMatrix) const;
public:
/** Matrix elements */
float _11, _12, _13, _14;
float _21, _22, _23, _24;
float _31, _32, _33, _34;
float _41, _42, _43, _44;
};
#endif /* GFX_3DMATRIX_H */
|