This file is indexed.

/usr/include/thunderbird/gfx3DMatrix.h is in thunderbird-dev 1:38.6.0+build1-0ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
/* -*- Mode: C++; tab-width: 20; indent-tabs-mode: nil; c-basic-offset: 4 -*-
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#ifndef GFX_3DMATRIX_H
#define GFX_3DMATRIX_H

#include <gfxTypes.h>
#include "mozilla/gfx/Point.h"
#include <gfxQuad.h>

class gfxMatrix;

/**
 * This class represents a 3D transformation. The matrix is laid
 * out as follows:
 *
 * _11 _12 _13 _14
 * _21 _22 _23 _24
 * _31 _32 _33 _34
 * _41 _42 _43 _44
 *
 * This matrix is treated as row-major. Assuming we consider our vectors row
 * vectors, this matrix type will be identical in memory to the OpenGL and D3D
 * matrices. OpenGL matrices are column-major, however OpenGL also treats
 * vectors as column vectors, the double transposition makes everything work
 * out nicely.
 */
class gfx3DMatrix
{
  typedef mozilla::gfx::Point3D Point3D;
  typedef mozilla::gfx::Point4D Point4D;
public:
  /**
   * Create matrix.
   */
  gfx3DMatrix(void);

  friend std::ostream& operator<<(std::ostream& stream, const gfx3DMatrix& m) {
    if (m.IsIdentity()) {
      return stream << "[ I ]";
    }

    if (m.Is2D()) {
      return stream << "["
             << m._11 << " " << m._12 << "; "
             << m._21 << " " << m._22 << "; "
             << m._41 << " " << m._42
             << "]";
    }

    return stream << "["
           << m._11 << " " << m._12 << " " << m._13 << " " << m._14 << "; "
           << m._21 << " " << m._22 << " " << m._23 << " " << m._24 << "; "
           << m._31 << " " << m._32 << " " << m._33 << " " << m._34 << "; "
           << m._41 << " " << m._42 << " " << m._43 << " " << m._44
           << "]";
  }

  /**
   * Matrix multiplication.
   */
  gfx3DMatrix operator*(const gfx3DMatrix &aMatrix) const;
  gfx3DMatrix& operator*=(const gfx3DMatrix &aMatrix);

  Point4D& operator[](int aIndex)
  {
      MOZ_ASSERT(aIndex >= 0 && aIndex <= 3, "Invalid matrix array index");
      return *reinterpret_cast<Point4D*>((&_11)+4*aIndex);
  }
  const Point4D& operator[](int aIndex) const
  {
      MOZ_ASSERT(aIndex >= 0 && aIndex <= 3, "Invalid matrix array index");
      return *reinterpret_cast<const Point4D*>((&_11)+4*aIndex);
  }

  /**
   * Return true if this matrix and |aMatrix| are the same matrix.
   */
  bool operator==(const gfx3DMatrix& aMatrix) const;
  bool operator!=(const gfx3DMatrix& aMatrix) const;

  bool FuzzyEqual(const gfx3DMatrix& aMatrix) const;
  
  /**
   * Divide all values in the matrix by a scalar value
   */
  gfx3DMatrix& operator/=(gfxFloat scalar);

  /**
   * Create a 3D matrix from a gfxMatrix 2D affine transformation.
   *
   * \param aMatrix gfxMatrix 2D affine transformation.
   */
  static gfx3DMatrix From2D(const gfxMatrix &aMatrix);

  /**
   * Returns true if the matrix is isomorphic to a 2D affine transformation
   * (i.e. as obtained by From2D). If it is, optionally returns the 2D
   * matrix in aMatrix.
   */
  bool Is2D(gfxMatrix* aMatrix) const;
  bool Is2D() const;

  /**
   * Returns true if the matrix can be reduced to a 2D affine transformation
   * (i.e. as obtained by From2D). If it is, optionally returns the 2D
   * matrix in aMatrix. This should only be used on matrices required for
   * rendering, not for intermediate calculations. It is assumed that the 2D
   * matrix will only be used for transforming objects on to the z=0 plane,
   * therefore any z-component perspective is ignored. This means that if
   * aMatrix is applied to objects with z != 0, the results may be incorrect.
   *
   * Since drawing is to a 2d plane, any 3d transform without perspective
   * can be reduced by dropping the z row and column.
   */
  bool CanDraw2D(gfxMatrix* aMatrix = nullptr) const;

  /**
   * Converts the matrix to one that doesn't modify the z coordinate of points,
   * but leaves the rest of the transformation unchanged.
   */
  gfx3DMatrix& ProjectTo2D();

  /**
   * Returns true if the matrix is the identity matrix. The most important
   * property we require is that gfx3DMatrix().IsIdentity() returns true.
   */
  bool IsIdentity() const;

  /**
   * Pre-multiplication transformation functions:
   *
   * These functions construct a temporary matrix containing
   * a single transformation and pre-multiply it onto the current
   * matrix.
   */

  /**
   * Add a translation by aPoint to the matrix.
   *
   * This creates this temporary matrix:
   * |  1        0        0         0 |
   * |  0        1        0         0 |
   * |  0        0        1         0 |
   * |  aPoint.x aPoint.y aPoint.z  1 |
   */
  void Translate(const Point3D& aPoint);

  /** 
   * Skew the matrix.
   *
   * This creates this temporary matrix:
   * | 1           tan(aYSkew) 0 0 |
   * | tan(aXSkew) 1           0 0 |
   * | 0           0           1 0 |
   * | 0           0           0 1 |
   */
  void SkewXY(double aXSkew, double aYSkew);

  /**
   * Scale the matrix
   *
   * This creates this temporary matrix:
   * | aX 0  0  0 |
   * | 0  aY 0  0 |
   * | 0  0  aZ 0 |
   * | 0  0  0  1 |
   */
  void Scale(float aX, float aY, float aZ);

  /**
   * Return the currently set scaling factors.
   */
  float GetXScale() const { return _11; }
  float GetYScale() const { return _22; }
  float GetZScale() const { return _33; }

  /**
   * Rotate around the X axis..
   *
   * This creates this temporary matrix:
   * | 1 0            0           0 |
   * | 0 cos(aTheta)  sin(aTheta) 0 |
   * | 0 -sin(aTheta) cos(aTheta) 0 |
   * | 0 0            0           1 |
   */
  void RotateX(double aTheta);
  
  /**
   * Rotate around the Y axis..
   *
   * This creates this temporary matrix:
   * | cos(aTheta) 0 -sin(aTheta) 0 |
   * | 0           1 0            0 |
   * | sin(aTheta) 0 cos(aTheta)  0 |
   * | 0           0 0            1 |
   */
  void RotateY(double aTheta);
  
  /**
   * Rotate around the Z axis..
   *
   * This creates this temporary matrix:
   * | cos(aTheta)  sin(aTheta)  0 0 |
   * | -sin(aTheta) cos(aTheta)  0 0 |
   * | 0            0            1 0 |
   * | 0            0            0 1 |
   */
  void RotateZ(double aTheta);

  /**
   * Apply perspective to the matrix.
   *
   * This creates this temporary matrix:
   * | 1 0 0 0         |
   * | 0 1 0 0         |
   * | 0 0 1 -1/aDepth |
   * | 0 0 0 1         |
   */
  void Perspective(float aDepth);

  /**
   * Pre multiply an existing matrix onto the current
   * matrix
   */
  void PreMultiply(const gfx3DMatrix& aOther);
  void PreMultiply(const gfxMatrix& aOther);

  /**
   * Post-multiplication transformation functions:
   *
   * These functions construct a temporary matrix containing
   * a single transformation and post-multiply it onto the current
   * matrix.
   */

  /**
   * Add a translation by aPoint after the matrix.
   * This is functionally equivalent to:
   * matrix * gfx3DMatrix::Translation(aPoint)
   */
  void TranslatePost(const Point3D& aPoint);

  void ScalePost(float aX, float aY, float aZ);

  /**
   * Let T be the transformation matrix translating points in the coordinate
   * space with origin aOrigin to the coordinate space used by this matrix.
   * If this matrix is M, this function changes it to be (T-1)MT, the matrix
   * that's equivalent to M but in the coordinate space that treats aOrigin
   * as the origin.
   *
   * @param aOrigin The origin to translate to
   * @return The modified matrix
   */
  void ChangeBasis(const Point3D& aOrigin);

  /**
   * Transforms a point according to this matrix.
   */
  gfxPoint Transform(const gfxPoint& point) const;

  /**
   * Transforms a rectangle according to this matrix
   */
  gfxRect TransformBounds(const gfxRect& rect) const;


  gfxQuad TransformRect(const gfxRect& aRect) const;

  /** 
   * Transforms a 3D vector according to this matrix.
   */
  Point3D Transform3D(const Point3D& point) const;
  Point4D Transform4D(const Point4D& aPoint) const;

  /**
   * Given a point (x,y) find a value for z such that (x,y,z,1) transforms
   * into (x',y',0,w') and returns the latter.
   */
  Point4D ProjectPoint(const gfxPoint& aPoint) const;

  /**
   * Inverts this matrix, if possible. Otherwise, the matrix is left
   * unchanged.
   */
  gfx3DMatrix Inverse() const;

  gfx3DMatrix& Invert()
  {
      *this = Inverse();
      return *this;
  }

  /**
   * Returns a unit vector that is perpendicular to the plane formed
   * by transform the screen plane (z=0) by this matrix.
   */
  Point3D GetNormalVector() const;

  /**
   * Returns true if a plane transformed by this matrix will
   * have it's back face visible.
   */
  bool IsBackfaceVisible() const;

  /**
   * Check if matrix is singular (no inverse exists).
   */
  bool IsSingular() const;

  /**
   * Create a translation matrix.
   *
   * \param aX Translation on X-axis.
   * \param aY Translation on Y-axis.
   * \param aZ Translation on Z-axis.
   */
  static gfx3DMatrix Translation(float aX, float aY, float aZ);
  static gfx3DMatrix Translation(const Point3D& aPoint);

  /**
   * Create a scale matrix. Scales uniformly along all axes.
   *
   * \param aScale Scale factor
   */
  static gfx3DMatrix ScalingMatrix(float aFactor);

  /**
   * Create a scale matrix.
   */
  static gfx3DMatrix ScalingMatrix(float aX, float aY, float aZ);

  gfxFloat Determinant() const;

  void NudgeToIntegers(void);
  void NudgeToIntegersFixedEpsilon();

private:

  gfxFloat Determinant3x3() const;
  gfx3DMatrix Inverse3x3() const;

  gfx3DMatrix Multiply2D(const gfx3DMatrix &aMatrix) const;

public:

  /** Matrix elements */
  float _11, _12, _13, _14;
  float _21, _22, _23, _24;
  float _31, _32, _33, _34;
  float _41, _42, _43, _44;
};

#endif /* GFX_3DMATRIX_H */