/usr/include/thunderbird/WebAudioUtils.h is in thunderbird-dev 1:38.6.0+build1-0ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 | /* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim:set ts=2 sw=2 sts=2 et cindent: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef WebAudioUtils_h_
#define WebAudioUtils_h_
#include <cmath>
#include <limits>
#include "mozilla/TypeTraits.h"
#include "mozilla/FloatingPoint.h"
#include "MediaSegment.h"
// Forward declaration
typedef struct SpeexResamplerState_ SpeexResamplerState;
namespace mozilla {
class AudioNodeStream;
namespace dom {
class AudioParamTimeline;
namespace WebAudioUtils {
// 32 is the minimum required by the spec for createBuffer() and
// createScriptProcessor() and matches what is used by Blink. The limit
// protects against large memory allocations.
const size_t MaxChannelCount = 32;
// AudioContext::CreateBuffer() "must support sample-rates in at least the
// range 22050 to 96000."
const uint32_t MinSampleRate = 8000;
const uint32_t MaxSampleRate = 192000;
inline bool FuzzyEqual(float v1, float v2)
{
using namespace std;
return fabsf(v1 - v2) < 1e-7f;
}
inline bool FuzzyEqual(double v1, double v2)
{
using namespace std;
return fabs(v1 - v2) < 1e-7;
}
/**
* Computes an exponential smoothing rate for a time based variable
* over aDuration seconds.
*/
inline double ComputeSmoothingRate(double aDuration, double aSampleRate)
{
return 1.0 - std::exp(-1.0 / (aDuration * aSampleRate));
}
/**
* Converts AudioParamTimeline floating point time values to tick values
* with respect to a source and a destination AudioNodeStream.
*
* This needs to be called for each AudioParamTimeline that gets sent to an
* AudioNodeEngine on the engine side where the AudioParamTimeline is
* received. This means that such engines need to be aware of their source
* and destination streams as well.
*/
void ConvertAudioParamToTicks(AudioParamTimeline& aParam,
AudioNodeStream* aSource,
AudioNodeStream* aDest);
/**
* Converts a linear value to decibels. Returns aMinDecibels if the linear
* value is 0.
*/
inline float ConvertLinearToDecibels(float aLinearValue, float aMinDecibels)
{
return aLinearValue ? 20.0f * std::log10(aLinearValue) : aMinDecibels;
}
/**
* Converts a decibel value to a linear value.
*/
inline float ConvertDecibelsToLinear(float aDecibels)
{
return std::pow(10.0f, 0.05f * aDecibels);
}
/**
* Converts a decibel to a linear value.
*/
inline float ConvertDecibelToLinear(float aDecibel)
{
return std::pow(10.0f, 0.05f * aDecibel);
}
inline void FixNaN(double& aDouble)
{
if (IsNaN(aDouble) || IsInfinite(aDouble)) {
aDouble = 0.0;
}
}
inline double DiscreteTimeConstantForSampleRate(double timeConstant, double sampleRate)
{
return 1.0 - std::exp(-1.0 / (sampleRate * timeConstant));
}
inline bool IsTimeValid(double aTime)
{
return aTime >= 0 && aTime <= (MEDIA_TIME_MAX >> TRACK_RATE_MAX_BITS);
}
/**
* Converts a floating point value to an integral type in a safe and
* platform agnostic way. The following program demonstrates the kinds
* of ways things can go wrong depending on the CPU architecture you're
* compiling for:
*
* #include <stdio.h>
* volatile float r;
* int main()
* {
* unsigned int q;
* r = 1e100;
* q = r;
* printf("%f %d\n", r, q);
* r = -1e100;
* q = r;
* printf("%f %d\n", r, q);
* r = 1e15;
* q = r;
* printf("%f %x\n", r, q);
* r = 0/0.;
* q = r;
* printf("%f %d\n", r, q);
* }
*
* This program, when compiled for unsigned int, generates the following
* results depending on the architecture:
*
* x86 and x86-64
* ---
* inf 0
* -inf 0
* 999999995904.000000 -727384064 d4a50000
* nan 0
*
* ARM
* ---
* inf -1
* -inf 0
* 999999995904.000000 -1
* nan 0
*
* When compiled for int, this program generates the following results:
*
* x86 and x86-64
* ---
* inf -2147483648
* -inf -2147483648
* 999999995904.000000 -2147483648
* nan -2147483648
*
* ARM
* ---
* inf 2147483647
* -inf -2147483648
* 999999995904.000000 2147483647
* nan 0
*
* Note that the caller is responsible to make sure that the value
* passed to this function is not a NaN. This function will abort if
* it sees a NaN.
*/
template <typename IntType, typename FloatType>
IntType TruncateFloatToInt(FloatType f)
{
using namespace std;
static_assert(mozilla::IsIntegral<IntType>::value == true,
"IntType must be an integral type");
static_assert(mozilla::IsFloatingPoint<FloatType>::value == true,
"FloatType must be a floating point type");
if (mozilla::IsNaN(f)) {
// It is the responsibility of the caller to deal with NaN values.
// If we ever get to this point, we have a serious bug to fix.
NS_RUNTIMEABORT("We should never see a NaN here");
}
if (f > FloatType(numeric_limits<IntType>::max())) {
// If the floating point value is outside of the range of maximum
// integral value for this type, just clamp to the maximum value.
return numeric_limits<IntType>::max();
}
if (f < FloatType(numeric_limits<IntType>::min())) {
// If the floating point value is outside of the range of minimum
// integral value for this type, just clamp to the minimum value.
return numeric_limits<IntType>::min();
}
// Otherwise, this conversion must be well defined.
return IntType(f);
}
void Shutdown();
int
SpeexResamplerProcess(SpeexResamplerState* aResampler,
uint32_t aChannel,
const float* aIn, uint32_t* aInLen,
float* aOut, uint32_t* aOutLen);
int
SpeexResamplerProcess(SpeexResamplerState* aResampler,
uint32_t aChannel,
const int16_t* aIn, uint32_t* aInLen,
float* aOut, uint32_t* aOutLen);
int
SpeexResamplerProcess(SpeexResamplerState* aResampler,
uint32_t aChannel,
const int16_t* aIn, uint32_t* aInLen,
int16_t* aOut, uint32_t* aOutLen);
}
}
}
#endif
|