This file is indexed.

/usr/include/thunderbird/TiledLayerBuffer.h is in thunderbird-dev 1:38.6.0+build1-0ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this file,
 * You can obtain one at http://mozilla.org/MPL/2.0/. */

#ifndef GFX_TILEDLAYERBUFFER_H
#define GFX_TILEDLAYERBUFFER_H

// Debug defines
//#define GFX_TILEDLAYER_DEBUG_OVERLAY
//#define GFX_TILEDLAYER_PREF_WARNINGS

#include <stdint.h>                     // for uint16_t, uint32_t
#include <sys/types.h>                  // for int32_t
#include "gfxPlatform.h"                // for GetTileWidth/GetTileHeight
#include "mozilla/gfx/Logging.h"        // for gfxCriticalError
#include "nsDebug.h"                    // for NS_ASSERTION
#include "nsPoint.h"                    // for nsIntPoint
#include "nsRect.h"                     // for nsIntRect
#include "nsRegion.h"                   // for nsIntRegion
#include "nsTArray.h"                   // for nsTArray

#if defined(MOZ_WIDGET_GONK) && ANDROID_VERSION >= 17
#include <ui/Fence.h>
#endif

namespace mozilla {
namespace layers {

// You can enable all the TILING_LOG print statements by
// changing the 0 to a 1 in the following #define.
#define ENABLE_TILING_LOG 0

#if ENABLE_TILING_LOG
#  define TILING_LOG(...) printf_stderr(__VA_ARGS__);
#else
#  define TILING_LOG(...)
#endif

// An abstract implementation of a tile buffer. This code covers the logic of
// moving and reusing tiles and leaves the validation up to the implementor. To
// avoid the overhead of virtual dispatch, we employ the curiously recurring
// template pattern.
//
// Tiles are aligned to a grid with one of the grid points at (0,0) and other
// grid points spaced evenly in the x- and y-directions by GetTileSize()
// multiplied by mResolution. GetScaledTileSize() provides convenience for
// accessing these values.
//
// This tile buffer stores a valid region, which defines the areas that have
// up-to-date content. The contents of tiles within this region will be reused
// from paint to paint. It also stores the region that was modified in the last
// paint operation; this is useful when one tiled layer buffer shadows another
// (as in an off-main-thread-compositing scenario), so that the shadow tiled
// layer buffer can correctly reflect the updates of the master layer buffer.
//
// The associated Tile may be of any type as long as the derived class can
// validate and return tiles of that type. Tiles will be frequently copied, so
// the tile type should be a reference or some other type with an efficient
// copy constructor.
//
// It is required that the derived class specify the base class as a friend. It
// must also implement the following public method:
//
//   Tile GetPlaceholderTile() const;
//
//   Returns a temporary placeholder tile used as a marker. This placeholder tile
//   must never be returned by validateTile and must be == to every instance
//   of a placeholder tile.
//
// Additionally, it must implement the following protected methods:
//
//   Tile ValidateTile(Tile aTile, const nsIntPoint& aTileOrigin,
//                     const nsIntRegion& aDirtyRect);
//
//   Validates the dirtyRect. The returned Tile will replace the tile.
//
//   void ReleaseTile(Tile aTile);
//
//   Destroys the given tile.
//
//   void SwapTiles(Tile& aTileA, Tile& aTileB);
//
//   Swaps two tiles.
//
// The contents of the tile buffer will be rendered at the resolution specified
// in mResolution, which can be altered with SetResolution. The resolution
// should always be a factor of the tile length, to avoid tiles covering
// non-integer amounts of pixels.

template<typename Derived, typename Tile>
class TiledLayerBuffer
{
public:
  TiledLayerBuffer()
    : mRetainedWidth(0)
    , mRetainedHeight(0)
    , mResolution(1)
    , mTileSize(gfxPlatform::GetPlatform()->GetTileWidth(), gfxPlatform::GetPlatform()->GetTileHeight())
  {}

  ~TiledLayerBuffer() {}

  // Given a tile origin aligned to a multiple of GetScaledTileSize,
  // return the tile that describes that region.
  // NOTE: To get the valid area of that tile you must intersect
  //       (aTileOrigin.x, aTileOrigin.y,
  //        GetScaledTileSize().width, GetScaledTileSize().height)
  //       and GetValidRegion() to get the area of the tile that is valid.
  Tile GetTile(const nsIntPoint& aTileOrigin) const;

  // Given a tile x, y relative to the top left of the layer, this function
  // will return the tile for
  // (x*GetScaledTileSize().width, y*GetScaledTileSize().height,
  //  GetScaledTileSize().width, GetScaledTileSize().height)
  Tile GetTile(int x, int y) const;

  // This operates the same as GetTile(aTileOrigin), but will also replace the
  // specified tile with the placeholder tile. This does not call ReleaseTile
  // on the removed tile.
  bool RemoveTile(const nsIntPoint& aTileOrigin, Tile& aRemovedTile);

  // This operates the same as GetTile(x, y), but will also replace the
  // specified tile with the placeholder tile. This does not call ReleaseTile
  // on the removed tile.
  bool RemoveTile(int x, int y, Tile& aRemovedTile);

  const gfx::IntSize& GetTileSize() const { return mTileSize; }

  gfx::IntSize GetScaledTileSize() const { return RoundedToInt(gfx::Size(mTileSize) / mResolution); }

  unsigned int GetTileCount() const { return mRetainedTiles.Length(); }

  const nsIntRegion& GetValidRegion() const { return mValidRegion; }
  const nsIntRegion& GetPaintedRegion() const { return mPaintedRegion; }
  void ClearPaintedRegion() { mPaintedRegion.SetEmpty(); }

  void ResetPaintedAndValidState() {
    mPaintedRegion.SetEmpty();
    mValidRegion.SetEmpty();
    mRetainedWidth = 0;
    mRetainedHeight = 0;
    for (size_t i = 0; i < mRetainedTiles.Length(); i++) {
      if (!mRetainedTiles[i].IsPlaceholderTile()) {
        AsDerived().ReleaseTile(mRetainedTiles[i]);
      }
    }
    mRetainedTiles.Clear();
  }

  // Given a position i, this function returns the position inside the current tile.
  int GetTileStart(int i, int aTileLength) const {
    return (i >= 0) ? (i % aTileLength)
                    : ((aTileLength - (-i % aTileLength)) %
                       aTileLength);
  }

  // Rounds the given coordinate down to the nearest tile boundary.
  int RoundDownToTileEdge(int aX, int aTileLength) const { return aX - GetTileStart(aX, aTileLength); }

  // Get and set draw scaling. mResolution affects the resolution at which the
  // contents of the buffer are drawn. mResolution has no effect on the
  // coordinate space of the valid region, but does affect the size of an
  // individual tile's rect in relation to the valid region.
  // Setting the resolution will invalidate the buffer.
  float GetResolution() const { return mResolution; }
  void SetResolution(float aResolution) {
    if (mResolution == aResolution) {
      return;
    }

    Update(nsIntRegion(), nsIntRegion());
    mResolution = aResolution;
  }
  bool IsLowPrecision() const { return mResolution < 1; }

  typedef Tile* Iterator;
  Iterator TilesBegin() { return mRetainedTiles.Elements(); }
  Iterator TilesEnd() { return mRetainedTiles.Elements() + mRetainedTiles.Length(); }

  void Dump(std::stringstream& aStream, const char* aPrefix, bool aDumpHtml);

protected:
  // The implementor should call Update() to change
  // the new valid region. This implementation will call
  // validateTile on each tile that is dirty, which is left
  // to the implementor.
  void Update(const nsIntRegion& aNewValidRegion, const nsIntRegion& aPaintRegion);

  nsIntRegion     mValidRegion;
  nsIntRegion     mPaintedRegion;

  /**
   * mRetainedTiles is a rectangular buffer of mRetainedWidth x mRetainedHeight
   * stored as column major with the same origin as mValidRegion.GetBounds().
   * Any tile that does not intersect mValidRegion is a PlaceholderTile.
   * Only the region intersecting with mValidRegion should be read from a tile,
   * another other region is assumed to be uninitialized. The contents of the
   * tiles is scaled by mResolution.
   */
  nsTArray<Tile>  mRetainedTiles;
  int             mRetainedWidth;  // in tiles
  int             mRetainedHeight; // in tiles
  float           mResolution;
  gfx::IntSize    mTileSize;

private:
  const Derived& AsDerived() const { return *static_cast<const Derived*>(this); }
  Derived& AsDerived() { return *static_cast<Derived*>(this); }
};

class ClientTiledLayerBuffer;
class SurfaceDescriptorTiles;
class ISurfaceAllocator;

// Shadow layers may implement this interface in order to be notified when a
// tiled layer buffer is updated.
class TiledLayerComposer
{
public:
  /**
   * Update the current retained layer with the updated layer data.
   * It is expected that the tiles described by aTiledDescriptor are all in the
   * ReadLock state, so that the locks can be adopted when recreating a
   * ClientTiledLayerBuffer locally. This lock will be retained until the buffer
   * has completed uploading.
   *
   * Returns false if a deserialization error happened, in which case we will
   * have to kill the child process.
   */
  virtual bool UseTiledLayerBuffer(ISurfaceAllocator* aAllocator,
                                   const SurfaceDescriptorTiles& aTiledDescriptor) = 0;

  /**
   * If some part of the buffer is being rendered at a lower precision, this
   * returns that region. If it is not, an empty region will be returned.
   */
  virtual const nsIntRegion& GetValidLowPrecisionRegion() const = 0;

  virtual const nsIntRegion& GetValidRegion() const = 0;

#if defined(MOZ_WIDGET_GONK) && ANDROID_VERSION >= 17
  /**
   * Store a fence that will signal when the current buffer is no longer being read.
   * Similar to android's GLConsumer::setReleaseFence()
   */
  virtual void SetReleaseFence(const android::sp<android::Fence>& aReleaseFence) = 0;
#endif
};

// Normal integer division truncates towards zero,
// we instead want to floor to hangle negative numbers.
static inline int floor_div(int a, int b)
{
  int rem = a % b;
  int div = a/b;
  if (rem == 0) {
    return div;
  } else {
    // If the signs are different substract 1.
    int sub;
    sub = a ^ b;
    // The results of this shift is either 0 or -1.
    sub >>= 8*sizeof(int)-1;
    return div+sub;
  }
}

template<typename Derived, typename Tile> Tile
TiledLayerBuffer<Derived, Tile>::GetTile(const nsIntPoint& aTileOrigin) const
{
  // TODO Cache firstTileOriginX/firstTileOriginY
  // Find the tile x/y of the first tile and the target tile relative to the (0, 0)
  // origin, the difference is the tile x/y relative to the start of the tile buffer.
  gfx::IntSize scaledTileSize = GetScaledTileSize();
  int firstTileX = floor_div(mValidRegion.GetBounds().x, scaledTileSize.width);
  int firstTileY = floor_div(mValidRegion.GetBounds().y, scaledTileSize.height);
  return GetTile(floor_div(aTileOrigin.x, scaledTileSize.width) - firstTileX,
                 floor_div(aTileOrigin.y, scaledTileSize.height) - firstTileY);
}

template<typename Derived, typename Tile> Tile
TiledLayerBuffer<Derived, Tile>::GetTile(int x, int y) const
{
  int index = x * mRetainedHeight + y;
  return mRetainedTiles.SafeElementAt(index, AsDerived().GetPlaceholderTile());
}

template<typename Derived, typename Tile> bool
TiledLayerBuffer<Derived, Tile>::RemoveTile(const nsIntPoint& aTileOrigin,
                                            Tile& aRemovedTile)
{
  gfx::IntSize scaledTileSize = GetScaledTileSize();
  int firstTileX = floor_div(mValidRegion.GetBounds().x, scaledTileSize.width);
  int firstTileY = floor_div(mValidRegion.GetBounds().y, scaledTileSize.height);
  return RemoveTile(floor_div(aTileOrigin.x, scaledTileSize.width) - firstTileX,
                    floor_div(aTileOrigin.y, scaledTileSize.height) - firstTileY,
                    aRemovedTile);
}

template<typename Derived, typename Tile> bool
TiledLayerBuffer<Derived, Tile>::RemoveTile(int x, int y, Tile& aRemovedTile)
{
  int index = x * mRetainedHeight + y;
  const Tile& tileToRemove = mRetainedTiles.SafeElementAt(index, AsDerived().GetPlaceholderTile());
  if (!tileToRemove.IsPlaceholderTile()) {
    aRemovedTile = tileToRemove;
    mRetainedTiles[index] = AsDerived().GetPlaceholderTile();
    return true;
  }
  return false;
}

template<typename Derived, typename Tile> void
TiledLayerBuffer<Derived, Tile>::Dump(std::stringstream& aStream,
                                      const char* aPrefix,
                                      bool aDumpHtml)
{
  nsIntRect visibleRect = GetValidRegion().GetBounds();
  gfx::IntSize scaledTileSize = GetScaledTileSize();
  for (int32_t x = visibleRect.x; x < visibleRect.x + visibleRect.width;) {
    int32_t tileStartX = GetTileStart(x, scaledTileSize.width);
    int32_t w = scaledTileSize.width - tileStartX;

    for (int32_t y = visibleRect.y; y < visibleRect.y + visibleRect.height;) {
      int32_t tileStartY = GetTileStart(y, scaledTileSize.height);
      Tile tileTexture =
        GetTile(nsIntPoint(RoundDownToTileEdge(x, scaledTileSize.width),
                           RoundDownToTileEdge(y, scaledTileSize.height)));
      int32_t h = scaledTileSize.height - tileStartY;

      aStream << "\n" << aPrefix << "Tile (x=" <<
        RoundDownToTileEdge(x, scaledTileSize.width) << ", y=" <<
        RoundDownToTileEdge(y, scaledTileSize.height) << "): ";
      if (tileTexture != AsDerived().GetPlaceholderTile()) {
        tileTexture.DumpTexture(aStream);
      } else {
        aStream << "empty tile";
      }
      y += h;
    }
    x += w;
  }
}

template<typename Derived, typename Tile> void
TiledLayerBuffer<Derived, Tile>::Update(const nsIntRegion& newValidRegion,
                                        const nsIntRegion& aPaintRegion)
{
  gfx::IntSize scaledTileSize = GetScaledTileSize();

  nsTArray<Tile>  newRetainedTiles;
  nsTArray<Tile>& oldRetainedTiles = mRetainedTiles;
  const nsIntRect oldBound = mValidRegion.GetBounds();
  const nsIntRect newBound = newValidRegion.GetBounds();
  const nsIntPoint oldBufferOrigin(RoundDownToTileEdge(oldBound.x, scaledTileSize.width),
                                   RoundDownToTileEdge(oldBound.y, scaledTileSize.height));
  const nsIntPoint newBufferOrigin(RoundDownToTileEdge(newBound.x, scaledTileSize.width),
                                   RoundDownToTileEdge(newBound.y, scaledTileSize.height));

  // This is the reason we break the style guide with newValidRegion instead
  // of aNewValidRegion - so that the names match better and code easier to read
  const nsIntRegion& oldValidRegion = mValidRegion;
  const int oldRetainedHeight = mRetainedHeight;

  // Pass 1: Recycle valid content from the old buffer
  // Recycle tiles from the old buffer that contain valid regions.
  // Insert placeholders tiles if we have no valid area for that tile
  // which we will allocate in pass 2.
  // TODO: Add a tile pool to reduce new allocation
  int tileX = 0;
  int tileY = 0;
  int tilesMissing = 0;
  // Iterate over the new drawing bounds in steps of tiles.
  for (int32_t x = newBound.x; x < newBound.XMost(); tileX++) {
    // Compute tileRect(x,y,width,height) in layer space coordinate
    // giving us the rect of the tile that hits the newBounds.
    int width = scaledTileSize.width - GetTileStart(x, scaledTileSize.width);
    if (x + width > newBound.XMost()) {
      width = newBound.x + newBound.width - x;
    }

    tileY = 0;
    for (int32_t y = newBound.y; y < newBound.YMost(); tileY++) {
      int height = scaledTileSize.height - GetTileStart(y, scaledTileSize.height);
      if (y + height > newBound.y + newBound.height) {
        height = newBound.y + newBound.height - y;
      }

      const nsIntRect tileRect(x,y,width,height);
      if (oldValidRegion.Intersects(tileRect) && newValidRegion.Intersects(tileRect)) {
        // This old tiles contains some valid area so move it to the new tile
        // buffer. Replace the tile in the old buffer with a placeholder
        // to leave the old buffer index unaffected.
        int tileX = floor_div(x - oldBufferOrigin.x, scaledTileSize.width);
        int tileY = floor_div(y - oldBufferOrigin.y, scaledTileSize.height);
        int index = tileX * oldRetainedHeight + tileY;

        // The tile may have been removed, skip over it in this case.
        if (oldRetainedTiles.
                          SafeElementAt(index, AsDerived().GetPlaceholderTile()).IsPlaceholderTile()) {
          newRetainedTiles.AppendElement(AsDerived().GetPlaceholderTile());
        } else {
          Tile tileWithPartialValidContent = oldRetainedTiles[index];
          newRetainedTiles.AppendElement(tileWithPartialValidContent);
          oldRetainedTiles[index] = AsDerived().GetPlaceholderTile();
        }

      } else {
        // This tile is either:
        // 1) Outside the new valid region and will simply be an empty
        // placeholder forever.
        // 2) The old buffer didn't have any data for this tile. We postpone
        // the allocation of this tile after we've reused any tile with
        // valid content because then we know we can safely recycle
        // with taking from a tile that has recyclable content.
        newRetainedTiles.AppendElement(AsDerived().GetPlaceholderTile());

        if (aPaintRegion.Intersects(tileRect)) {
          tilesMissing++;
        }
      }

      y += height;
    }

    x += width;
  }

  // Keep track of the number of horizontal/vertical tiles
  // in the buffer so that we can easily look up a tile.
  mRetainedWidth = tileX;
  mRetainedHeight = tileY;

  // Pass 1.5: Release excess tiles in oldRetainedTiles
  // Tiles in oldRetainedTiles that aren't in newRetainedTiles will be recycled
  // before creating new ones, but there could still be excess unnecessary
  // tiles. As tiles may not have a fixed memory cost (for example, due to
  // double-buffering), we should release these excess tiles first.
  int oldTileCount = 0;
  for (size_t i = 0; i < oldRetainedTiles.Length(); i++) {
    Tile oldTile = oldRetainedTiles[i];
    if (oldTile.IsPlaceholderTile()) {
      continue;
    }

    if (oldTileCount >= tilesMissing) {
      oldRetainedTiles[i] = AsDerived().GetPlaceholderTile();
      AsDerived().ReleaseTile(oldTile);
    } else {
      oldTileCount ++;
    }
  }

  if (!newValidRegion.Contains(aPaintRegion)) {
    gfxCriticalError() << "Painting outside visible:"
		       << " paint " << aPaintRegion.ToString().get()
                       << " old valid " << oldValidRegion.ToString().get()
                       << " new valid " << newValidRegion.ToString().get();
  }
#ifdef DEBUG
  nsIntRegion oldAndPainted(oldValidRegion);
  oldAndPainted.Or(oldAndPainted, aPaintRegion);
  if (!oldAndPainted.Contains(newValidRegion)) {
    gfxCriticalError() << "Not fully painted:"
		       << " paint " << aPaintRegion.ToString().get()
                       << " old valid " << oldValidRegion.ToString().get()
                       << " old painted " << oldAndPainted.ToString().get()
                       << " new valid " << newValidRegion.ToString().get();
  }
#endif

  nsIntRegion regionToPaint(aPaintRegion);

  // Pass 2: Validate
  // We know at this point that any tile in the new buffer that had valid content
  // from the previous buffer is placed correctly in the new buffer.
  // We know that any tile in the old buffer that isn't a place holder is
  // of no use and can be recycled.
  // We also know that any place holder tile in the new buffer must be
  // allocated.
  tileX = 0;
#ifdef GFX_TILEDLAYER_PREF_WARNINGS
  printf_stderr("Update %i, %i, %i, %i\n", newBound.x, newBound.y, newBound.width, newBound.height);
#endif
  for (int x = newBound.x; x < newBound.x + newBound.width; tileX++) {
    // Compute tileRect(x,y,width,height) in layer space coordinate
    // giving us the rect of the tile that hits the newBounds.
    int tileStartX = RoundDownToTileEdge(x, scaledTileSize.width);
    int width = scaledTileSize.width - GetTileStart(x, scaledTileSize.width);
    if (x + width > newBound.XMost())
      width = newBound.XMost() - x;

    tileY = 0;
    for (int y = newBound.y; y < newBound.y + newBound.height; tileY++) {
      int tileStartY = RoundDownToTileEdge(y, scaledTileSize.height);
      int height = scaledTileSize.height - GetTileStart(y, scaledTileSize.height);
      if (y + height > newBound.YMost()) {
        height = newBound.YMost() - y;
      }

      const nsIntRect tileRect(x, y, width, height);

      nsIntRegion tileDrawRegion;
      tileDrawRegion.And(tileRect, regionToPaint);

      if (tileDrawRegion.IsEmpty()) {
        // We have a tile but it doesn't hit the draw region
        // because we can reuse all of the content from the
        // previous buffer.
#ifdef DEBUG
        int currTileX = floor_div(x - newBufferOrigin.x, scaledTileSize.width);
        int currTileY = floor_div(y - newBufferOrigin.y, scaledTileSize.height);
        int index = currTileX * mRetainedHeight + currTileY;
        // If allocating a tile failed we can run into this assertion.
        // Rendering is going to be glitchy but we don't want to crash.
        NS_ASSERTION(!newValidRegion.Intersects(tileRect) ||
                     !newRetainedTiles.
                                    SafeElementAt(index, AsDerived().GetPlaceholderTile()).IsPlaceholderTile(),
                     "Unexpected placeholder tile");

#endif
        y += height;
        continue;
      }

      int tileX = floor_div(x - newBufferOrigin.x, scaledTileSize.width);
      int tileY = floor_div(y - newBufferOrigin.y, scaledTileSize.height);
      int index = tileX * mRetainedHeight + tileY;
      MOZ_ASSERT(index >= 0 &&
                 static_cast<unsigned>(index) < newRetainedTiles.Length(),
                 "index out of range");

      Tile newTile = newRetainedTiles[index];

      // Try to reuse a tile from the old retained tiles that had no partially
      // valid content.
      while (newTile.IsPlaceholderTile() && oldRetainedTiles.Length() > 0) {
        AsDerived().SwapTiles(newTile, oldRetainedTiles[oldRetainedTiles.Length()-1]);
        oldRetainedTiles.RemoveElementAt(oldRetainedTiles.Length()-1);
        if (!newTile.IsPlaceholderTile()) {
          oldTileCount--;
        }
      }

      // We've done our best effort to recycle a tile but it can be null
      // in which case it's up to the derived class's ValidateTile()
      // implementation to allocate a new tile before drawing
      nsIntPoint tileOrigin(tileStartX, tileStartY);
      newTile = AsDerived().ValidateTile(newTile, nsIntPoint(tileStartX, tileStartY),
                                         tileDrawRegion);
      NS_ASSERTION(!newTile.IsPlaceholderTile(), "Unexpected placeholder tile - failed to allocate?");
#ifdef GFX_TILEDLAYER_PREF_WARNINGS
      printf_stderr("Store Validate tile %i, %i -> %i\n", tileStartX, tileStartY, index);
#endif
      newRetainedTiles[index] = newTile;

      y += height;
    }

    x += width;
  }

  AsDerived().PostValidate(aPaintRegion);
  for (unsigned int i = 0; i < newRetainedTiles.Length(); ++i) {
    AsDerived().UnlockTile(newRetainedTiles[i]);
  }

  // At this point, oldTileCount should be zero
  MOZ_ASSERT(oldTileCount == 0, "Failed to release old tiles");

  mRetainedTiles = newRetainedTiles;
  mValidRegion = newValidRegion;
  mPaintedRegion.Or(mPaintedRegion, aPaintRegion);
}

} // layers
} // mozilla

#endif // GFX_TILEDLAYERBUFFER_H