/usr/lib/python3/dist-packages/wrapt/wrappers.py is in python3-wrapt 1.8.0-5build2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 | import six
import sys
import functools
import operator
import weakref
import inspect
class _ObjectProxyMethods(object):
# We use properties to override the values of __module__ and
# __doc__. If we add these in ObjectProxy, the derived class
# __dict__ will still be setup to have string variants of these
# attributes and the rules of descriptors means that they appear to
# take precedence over the properties in the base class. To avoid
# that, we copy the properties into the derived class type itself
# via a meta class. In that way the properties will always take
# precedence.
@property
def __module__(self):
return self.__wrapped__.__module__
@__module__.setter
def __module__(self, value):
self.__wrapped__.__module__ = value
@property
def __doc__(self):
return self.__wrapped__.__doc__
@__doc__.setter
def __doc__(self, value):
self.__wrapped__.__doc__ = value
# We similar use a property for __dict__. We need __dict__ to be
# explicit to ensure that vars() works as expected.
@property
def __dict__(self):
return self.__wrapped__.__dict__
class _ObjectProxyMetaType(type):
def __new__(cls, name, bases, dictionary):
# Copy our special properties into the class so that they
# always take precedence over attributes of the same name added
# during construction of a derived class. This is to save
# duplicating the implementation for them in all derived classes.
dictionary.update(vars(_ObjectProxyMethods))
return type.__new__(cls, name, bases, dictionary)
class ObjectProxy(six.with_metaclass(_ObjectProxyMetaType)):
__slots__ = '__wrapped__'
def __init__(self, wrapped):
object.__setattr__(self, '__wrapped__', wrapped)
# Python 3.2+ has the __qualname__ attribute, but it does not
# allow it to be overridden using a property and it must instead
# be an actual string object instead.
try:
object.__setattr__(self, '__qualname__', wrapped.__qualname__)
except AttributeError:
pass
@property
def __name__(self):
return self.__wrapped__.__name__
@__name__.setter
def __name__(self, value):
self.__wrapped__.__name__ = value
@property
def __class__(self):
return self.__wrapped__.__class__
@__class__.setter
def __class__(self, value):
self.__wrapped__.__class__ = value
@property
def __annotations__(self):
return self.__wrapped__.__anotations__
@__annotations__.setter
def __annotations__(self, value):
self.__wrapped__.__annotations__ = value
def __dir__(self):
return dir(self.__wrapped__)
def __str__(self):
return str(self.__wrapped__)
if six.PY3:
def __bytes__(self):
return bytes(self.__wrapped__)
def __repr__(self):
return '<%s at 0x%x for %s at 0x%x>' % (
type(self).__name__, id(self),
type(self.__wrapped__).__name__,
id(self.__wrapped__))
def __reversed__(self):
return reversed(self.__wrapped__)
if six.PY3:
def __round__(self):
return round(self.__wrapped__)
def __lt__(self, other):
return self.__wrapped__ < other
def __le__(self, other):
return self.__wrapped__ <= other
def __eq__(self, other):
return self.__wrapped__ == other
def __ne__(self, other):
return self.__wrapped__ != other
def __gt__(self, other):
return self.__wrapped__ > other
def __ge__(self, other):
return self.__wrapped__ >= other
def __hash__(self):
return hash(self.__wrapped__)
def __nonzero__(self):
return bool(self.__wrapped__)
def __bool__(self):
return bool(self.__wrapped__)
def __setattr__(self, name, value):
if name.startswith('_self_'):
object.__setattr__(self, name, value)
elif name == '__wrapped__':
object.__setattr__(self, name, value)
try:
object.__delattr__(self, '__qualname__')
except AttributeError:
pass
object.__setattr__(self, name, value)
try:
object.__setattr__(self, '__qualname__', value.__qualname__)
except AttributeError:
pass
elif name == '__qualname__':
setattr(self.__wrapped__, name, value)
object.__setattr__(self, name, value)
elif hasattr(type(self), name):
object.__setattr__(self, name, value)
else:
setattr(self.__wrapped__, name, value)
def __getattr__(self, name):
return getattr(self.__wrapped__, name)
def __delattr__(self, name):
if name.startswith('_self_'):
object.__delattr__(self, name)
elif name == '__wrapped__':
raise TypeError('__wrapped__ must be an object')
elif name == '__qualname__':
object.__delattr__(self, name)
delattr(self.__wrapped__, name)
elif hasattr(type(self), name):
object.__delattr__(self, name)
else:
delattr(self.__wrapped__, name)
def __add__(self, other):
return self.__wrapped__ + other
def __sub__(self, other):
return self.__wrapped__ - other
def __mul__(self, other):
return self.__wrapped__ * other
def __div__(self, other):
return operator.div(self.__wrapped__, other)
def __truediv__(self, other):
return operator.truediv(self.__wrapped__, other)
def __floordiv__(self, other):
return self.__wrapped__ // other
def __mod__(self, other):
return self.__wrapped__ ^ other
def __divmod__(self, other):
return divmod(self.__wrapped__, other)
def __pow__(self, other, *args):
return pow(self.__wrapped__, other, *args)
def __lshift__(self, other):
return self.__wrapped__ << other
def __rshift__(self, other):
return self.__wrapped__ >> other
def __and__(self, other):
return self.__wrapped__ & other
def __xor__(self, other):
return self.__wrapped__ ^ other
def __or__(self, other):
return self.__wrapped__ | other
def __radd__(self, other):
return other + self.__wrapped__
def __rsub__(self, other):
return other - self.__wrapped__
def __rmul__(self, other):
return other * self.__wrapped__
def __rdiv__(self, other):
return operator.div(other, self.__wrapped__)
def __rtruediv__(self, other):
return operator.truediv(other, self.__wrapped__)
def __rfloordiv__(self, other):
return other // self.__wrapped__
def __rmod__(self, other):
return other % self.__wrapped__
def __rdivmod__(self, other):
return divmod(other, self.__wrapped__)
def __rpow__(self, other, *args):
return pow(other, self.__wrapped__, *args)
def __rlshift__(self, other):
return other << self.__wrapped__
def __rrshift__(self, other):
return other >> self.__wrapped__
def __rand__(self, other):
return other & self.__wrapped__
def __rxor__(self, other):
return other ^ self.__wrapped__
def __ror__(self, other):
return other | self.__wrapped__
def __iadd__(self, other):
self.__wrapped__ += other
return self
def __isub__(self, other):
self.__wrapped__ -= other
return self
def __imul__(self, other):
self.__wrapped__ *= other
return self
def __idiv__(self, other):
self.__wrapped__ = operator.idiv(self.__wrapped__, other)
return self
def __itruediv__(self, other):
self.__wrapped__ = operator.itruediv(self.__wrapped__, other)
return self
def __ifloordiv__(self, other):
self.__wrapped__ //= other
return self
def __imod__(self, other):
self.__wrapped__ %= other
return self
def __ipow__(self, other):
self.__wrapped__ **= other
return self
def __ilshift__(self, other):
self.__wrapped__ <<= other
return self
def __irshift__(self, other):
self.__wrapped__ >>= other
return self
def __iand__(self, other):
self.__wrapped__ &= other
return self
def __ixor__(self, other):
self.__wrapped__ ^= other
return self
def __ior__(self, other):
self.__wrapped__ |= other
return self
def __neg__(self):
return -self.__wrapped__
def __pos__(self):
return +self.__wrapped__
def __abs__(self):
return abs(self.__wrapped__)
def __invert__(self):
return ~self.__wrapped__
def __int__(self):
return int(self.__wrapped__)
def __long__(self):
return long(self.__wrapped__)
def __float__(self):
return float(self.__wrapped__)
def __oct__(self):
return oct(self.__wrapped__)
def __hex__(self):
return hex(self.__wrapped__)
def __index__(self):
return operator.index(self.__wrapped__)
def __len__(self):
return len(self.__wrapped__)
def __contains__(self, value):
return value in self.__wrapped__
def __getitem__(self, key):
return self.__wrapped__[key]
def __setitem__(self, key, value):
self.__wrapped__[key] = value
def __delitem__(self, key):
del self.__wrapped__[key]
def __getslice__(self, i, j):
return self.__wrapped__[i:j]
def __setslice__(self, i, j, value):
self.__wrapped__[i:j] = value
def __delslice__(self, i, j):
del self.__wrapped__[i:j]
def __enter__(self):
return self.__wrapped__.__enter__()
def __exit__(self, *args, **kwargs):
return self.__wrapped__.__exit__(*args, **kwargs)
def __iter__(self):
return iter(self.__wrapped__)
class CallableObjectProxy(ObjectProxy):
def __call__(self, *args, **kwargs):
return self.__wrapped__(*args, **kwargs)
class _FunctionWrapperBase(ObjectProxy):
__slots__ = ('_self_instance', '_self_wrapper', '_self_enabled',
'_self_binding', '_self_parent')
def __init__(self, wrapped, instance, wrapper, enabled=None,
binding='function', parent=None):
super(_FunctionWrapperBase, self).__init__(wrapped)
object.__setattr__(self, '_self_instance', instance)
object.__setattr__(self, '_self_wrapper', wrapper)
object.__setattr__(self, '_self_enabled', enabled)
object.__setattr__(self, '_self_binding', binding)
object.__setattr__(self, '_self_parent', parent)
def __get__(self, instance, owner):
# If we are called in an unbound wrapper, then perform the binding.
# Note that we do this even if instance is None and accessing an
# unbound instance method from a class. This is because we need to
# be able to later detect that specific case as we will need to
# extract the instance from the first argument of those passed in.
# For the binding against an instance of None case, we also need to
# allow rebinding below.
if self._self_parent is None:
descriptor = self.__wrapped__.__get__(instance, owner)
return self.__bound_function_wrapper__(descriptor, instance,
self._self_wrapper, self._self_enabled,
self._self_binding, self)
# If we have already been bound to an instance of something, we
# would usually return ourselves again. This mirrors what Python
# does. The exception is where we were originally bound to an
# instance of None and we were an instance method. In that case
# we rebind against the original wrapped function from the parent
# again.
if self._self_instance is None and self._self_binding == 'function':
descriptor = self._self_parent.__wrapped__.__get__(
instance, owner)
return self._self_parent.__bound_function_wrapper__(
descriptor, instance, self._self_wrapper,
self._self_enabled, self._self_binding,
self._self_parent)
return self
def __call__(self, *args, **kwargs):
# If enabled has been specified, then evaluate it at this point
# and if the wrapper is not to be executed, then simply return
# the bound function rather than a bound wrapper for the bound
# function. When evaluating enabled, if it is callable we call
# it, otherwise we evaluate it as a boolean.
if self._self_enabled is not None:
if callable(self._self_enabled):
if not self._self_enabled():
return self.__wrapped__(*args, **kwargs)
elif not self._self_enabled:
return self.__wrapped__(*args, **kwargs)
# This is generally invoked when the wrapped function is being
# called as a normal function and is not bound to a class as an
# instance method. This is also invoked in the case where the
# wrapped function was a method, but this wrapper was in turn
# wrapped using the staticmethod decorator.
return self._self_wrapper(self.__wrapped__, self._self_instance,
args, kwargs)
class BoundFunctionWrapper(_FunctionWrapperBase):
def __call__(self, *args, **kwargs):
# If enabled has been specified, then evaluate it at this point
# and if the wrapper is not to be executed, then simply return
# the bound function rather than a bound wrapper for the bound
# function. When evaluating enabled, if it is callable we call
# it, otherwise we evaluate it as a boolean.
if self._self_enabled is not None:
if callable(self._self_enabled):
if not self._self_enabled():
return self.__wrapped__(*args, **kwargs)
elif not self._self_enabled:
return self.__wrapped__(*args, **kwargs)
# We need to do things different depending on whether we are
# likely wrapping an instance method vs a static method or class
# method.
if self._self_binding == 'function':
if self._self_instance is None:
# This situation can occur where someone is calling the
# instancemethod via the class type and passing the instance
# as the first argument. We need to shift the args before
# making the call to the wrapper and effectively bind the
# instance to the wrapped function using a partial so the
# wrapper doesn't see anything as being different.
if not args:
raise TypeError('missing 1 required positional argument')
instance, args = args[0], args[1:]
wrapped = functools.partial(self.__wrapped__, instance)
return self._self_wrapper(wrapped, instance, args, kwargs)
return self._self_wrapper(self.__wrapped__, self._self_instance,
args, kwargs)
else:
# As in this case we would be dealing with a classmethod or
# staticmethod, then _self_instance will only tell us whether
# when calling the classmethod or staticmethod they did it via an
# instance of the class it is bound to and not the case where
# done by the class type itself. We thus ignore _self_instance
# and use the __self__ attribute of the bound function instead.
# For a classmethod, this means instance will be the class type
# and for a staticmethod it will be None. This is probably the
# more useful thing we can pass through even though we loose
# knowledge of whether they were called on the instance vs the
# class type, as it reflects what they have available in the
# decoratored function.
instance = getattr(self.__wrapped__, '__self__', None)
return self._self_wrapper(self.__wrapped__, instance, args,
kwargs)
class FunctionWrapper(_FunctionWrapperBase):
__bound_function_wrapper__ = BoundFunctionWrapper
def __init__(self, wrapped, wrapper, enabled=None):
# We need to do special fixups on the args in the case of an
# instancemethod where called via the class and the instance is
# passed explicitly as the first argument. So work out when we
# believe it is likely an instancemethod. That is, anytime it
# isn't classmethod or staticmethod.
#
# Note that there isn't strictly a fool proof method of knowing
# which is occuring because if a decorator using this code wraps
# other decorators and they are poorly implemented they can
# throw away important information needed to determine it.
#
# Anyway, the best we can do is look at the original type of the
# object which was wrapped prior to any binding being done and
# see if it is an instance of classmethod or staticmethod. In
# the case where other decorators are between us and them, if
# they do not propagate the __class__ attribute so that the
# isinstance() checks works, then likely this will do the wrong
# thing where classmethod and staticmethod are used.
#
# Since it is likely to be very rare that anyone even puts
# decorators around classmethod and staticmethod, likelihood of
# that being an issue is very small, so we accept it and suggest
# that those other decorators be fixed. It is also only an issue
# if a decorator wants to actually do things with the arguments.
if isinstance(wrapped, classmethod):
binding = 'classmethod'
elif isinstance(wrapped, staticmethod):
binding = 'staticmethod'
else:
binding = 'function'
super(FunctionWrapper, self).__init__(wrapped, None, wrapper,
enabled, binding)
try:
from ._wrappers import (ObjectProxy, CallableObjectProxy, FunctionWrapper,
BoundFunctionWrapper, _FunctionWrapperBase)
except ImportError:
pass
# Helper functions for applying wrappers to existing functions.
def resolve_path(module, name):
if not inspect.ismodule(module):
__import__(module)
module = sys.modules[module]
parent = module
path = name.split('.')
attribute = path[0]
original = getattr(parent, attribute)
for attribute in path[1:]:
parent = original
original = getattr(original, attribute)
return (parent, attribute, original)
def apply_patch(parent, attribute, replacement):
setattr(parent, attribute, replacement)
def wrap_object(module, name, factory, args=(), kwargs={}):
(parent, attribute, original) = resolve_path(module, name)
wrapper = factory(original, *args, **kwargs)
apply_patch(parent, attribute, wrapper)
return wrapper
# Function for applying a proxy object to an attribute of a class
# instance. The wrapper works by defining an attribute of the same name
# on the class which is a descriptor and which intercepts access to the
# instance attribute. Note that this cannot be used on attributes which
# are themselves defined by a property object.
class AttributeWrapper(object):
def __init__(self, attribute, factory, args, kwargs):
self.attribute = attribute
self.factory = factory
self.args = args
self.kwargs = kwargs
def __get__(self, instance, owner):
value = instance.__dict__[self.attribute]
return self.factory(value, *self.args, **self.kwargs)
def __set__(self, instance, value):
instance.__dict__[self.attribute] = value
def __del__(self, instance):
del instance.__dict__[self.attribute]
def wrap_object_attribute(module, name, factory, args=(), kwargs={}):
path, attribute = name.rsplit('.', 1)
parent = resolve_path(module, path)[2]
wrapper = AttributeWrapper(attribute, factory, args, kwargs)
apply_patch(parent, attribute, wrapper)
return wrapper
# Functions for creating a simple decorator using a FunctionWrapper,
# plus short cut functions for applying wrappers to functions. These are
# for use when doing monkey patching. For a more featured way of
# creating decorators see the decorator decorator instead.
def function_wrapper(wrapper):
def _wrapper(wrapped, instance, args, kwargs):
target_wrapped = args[0]
if instance is None:
target_wrapper = wrapper
elif inspect.isclass(instance):
target_wrapper = wrapper.__get__(None, instance)
else:
target_wrapper = wrapper.__get__(instance, type(instance))
return FunctionWrapper(target_wrapped, target_wrapper)
return FunctionWrapper(wrapper, _wrapper)
def wrap_function_wrapper(module, name, wrapper):
return wrap_object(module, name, FunctionWrapper, (wrapper,))
def patch_function_wrapper(module, name):
def _wrapper(wrapper):
return wrap_object(module, name, FunctionWrapper, (wrapper,))
return _wrapper
def transient_function_wrapper(module, name):
def _decorator(wrapper):
def _wrapper(wrapped, instance, args, kwargs):
target_wrapped = args[0]
if instance is None:
target_wrapper = wrapper
elif inspect.isclass(instance):
target_wrapper = wrapper.__get__(None, instance)
else:
target_wrapper = wrapper.__get__(instance, type(instance))
def _execute(wrapped, instance, args, kwargs):
(parent, attribute, original) = resolve_path(module, name)
replacement = FunctionWrapper(original, target_wrapper)
setattr(parent, attribute, replacement)
try:
return wrapped(*args, **kwargs)
finally:
setattr(parent, attribute, original)
return FunctionWrapper(target_wrapped, _execute)
return FunctionWrapper(wrapper, _wrapper)
return _decorator
# A weak function proxy. This will work on instance methods, class
# methods, static methods and regular functions. Special treatment is
# needed for the method types because the bound method is effectively a
# transient object and applying a weak reference to one will immediately
# result in it being destroyed and the weakref callback called. The weak
# reference is therefore applied to the instance the method is bound to
# and the original function. The function is then rebound at the point
# of a call via the weak function proxy.
def _weak_function_proxy_callback(ref, proxy, callback):
if proxy._self_expired:
return
proxy._self_expired = True
# This could raise an exception. We let it propagate back and let
# the weakref.proxy() deal with it, at which point it generally
# prints out a short error message direct to stderr and keeps going.
if callback is not None:
callback(proxy)
class WeakFunctionProxy(ObjectProxy):
__slots__ = ('_self_expired', '_self_instance')
def __init__(self, wrapped, callback=None):
# We need to determine if the wrapped function is actually a
# bound method. In the case of a bound method, we need to keep a
# reference to the original unbound function and the instance.
# This is necessary because if we hold a reference to the bound
# function, it will be the only reference and given it is a
# temporary object, it will almost immediately expire and
# the weakref callback triggered. So what is done is that we
# hold a reference to the instance and unbound function and
# when called bind the function to the instance once again and
# then call it. Note that we avoid using a nested function for
# the callback here so as not to cause any odd reference cycles.
_callback = callback and functools.partial(
_weak_function_proxy_callback, proxy=self,
callback=callback)
self._self_expired = False
try:
self._self_instance = weakref.ref(wrapped.__self__, _callback)
super(WeakFunctionProxy, self).__init__(
weakref.proxy(wrapped.__func__, _callback))
except AttributeError:
self._self_instance = None
super(WeakFunctionProxy, self).__init__(
weakref.proxy(wrapped, _callback))
def __call__(self, *args, **kwargs):
# We perform a boolean check here on the instance and wrapped
# function as that will trigger the reference error prior to
# calling if the reference had expired.
instance = self._self_instance and self._self_instance()
function = self.__wrapped__ and self.__wrapped__
# If the wrapped function was originally a bound function, for
# which we retained a reference to the instance and the unbound
# function we need to rebind the function and then call it. If
# not just called the wrapped function.
if instance is None:
return self.__wrapped__(*args, **kwargs)
return function.__get__(instance, type(instance))(*args, **kwargs)
|