This file is indexed.

/usr/lib/python3/dist-packages/PIL/ImageStat.py is in python3-pil 3.1.2-0ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
#
# The Python Imaging Library.
# $Id$
#
# global image statistics
#
# History:
# 1996-04-05 fl   Created
# 1997-05-21 fl   Added mask; added rms, var, stddev attributes
# 1997-08-05 fl   Added median
# 1998-07-05 hk   Fixed integer overflow error
#
# Notes:
# This class shows how to implement delayed evaluation of attributes.
# To get a certain value, simply access the corresponding attribute.
# The __getattr__ dispatcher takes care of the rest.
#
# Copyright (c) Secret Labs AB 1997.
# Copyright (c) Fredrik Lundh 1996-97.
#
# See the README file for information on usage and redistribution.
#

import math
import operator
import functools


class Stat(object):

    def __init__(self, image_or_list, mask=None):
        try:
            if mask:
                self.h = image_or_list.histogram(mask)
            else:
                self.h = image_or_list.histogram()
        except AttributeError:
            self.h = image_or_list  # assume it to be a histogram list
        if not isinstance(self.h, list):
            raise TypeError("first argument must be image or list")
        self.bands = list(range(len(self.h) // 256))

    def __getattr__(self, id):
        "Calculate missing attribute"
        if id[:4] == "_get":
            raise AttributeError(id)
        # calculate missing attribute
        v = getattr(self, "_get" + id)()
        setattr(self, id, v)
        return v

    def _getextrema(self):
        "Get min/max values for each band in the image"

        def minmax(histogram):
            n = 255
            x = 0
            for i in range(256):
                if histogram[i]:
                    n = min(n, i)
                    x = max(x, i)
            return n, x  # returns (255, 0) if there's no data in the histogram

        v = []
        for i in range(0, len(self.h), 256):
            v.append(minmax(self.h[i:]))
        return v

    def _getcount(self):
        "Get total number of pixels in each layer"

        v = []
        for i in range(0, len(self.h), 256):
            v.append(functools.reduce(operator.add, self.h[i:i+256]))
        return v

    def _getsum(self):
        "Get sum of all pixels in each layer"

        v = []
        for i in range(0, len(self.h), 256):
            layerSum = 0.0
            for j in range(256):
                layerSum += j * self.h[i + j]
            v.append(layerSum)
        return v

    def _getsum2(self):
        "Get squared sum of all pixels in each layer"

        v = []
        for i in range(0, len(self.h), 256):
            sum2 = 0.0
            for j in range(256):
                sum2 += (j ** 2) * float(self.h[i + j])
            v.append(sum2)
        return v

    def _getmean(self):
        "Get average pixel level for each layer"

        v = []
        for i in self.bands:
            v.append(self.sum[i] / self.count[i])
        return v

    def _getmedian(self):
        "Get median pixel level for each layer"

        v = []
        for i in self.bands:
            s = 0
            l = self.count[i]//2
            b = i * 256
            for j in range(256):
                s = s + self.h[b+j]
                if s > l:
                    break
            v.append(j)
        return v

    def _getrms(self):
        "Get RMS for each layer"

        v = []
        for i in self.bands:
            v.append(math.sqrt(self.sum2[i] / self.count[i]))
        return v

    def _getvar(self):
        "Get variance for each layer"

        v = []
        for i in self.bands:
            n = self.count[i]
            v.append((self.sum2[i]-(self.sum[i]**2.0)/n)/n)
        return v

    def _getstddev(self):
        "Get standard deviation for each layer"

        v = []
        for i in self.bands:
            v.append(math.sqrt(self.var[i]))
        return v

Global = Stat  # compatibility