This file is indexed.

/usr/lib/python3/dist-packages/PIL/ImageMath.py is in python3-pil 3.1.2-0ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
#
# The Python Imaging Library
# $Id$
#
# a simple math add-on for the Python Imaging Library
#
# History:
# 1999-02-15 fl   Original PIL Plus release
# 2005-05-05 fl   Simplified and cleaned up for PIL 1.1.6
# 2005-09-12 fl   Fixed int() and float() for Python 2.4.1
#
# Copyright (c) 1999-2005 by Secret Labs AB
# Copyright (c) 2005 by Fredrik Lundh
#
# See the README file for information on usage and redistribution.
#

from PIL import Image
from PIL import _imagingmath

try:
    import builtins
except ImportError:
    import __builtin__
    builtins = __builtin__

VERBOSE = 0


def _isconstant(v):
    return isinstance(v, int) or isinstance(v, float)


class _Operand(object):
    # wraps an image operand, providing standard operators

    def __init__(self, im):
        self.im = im

    def __fixup(self, im1):
        # convert image to suitable mode
        if isinstance(im1, _Operand):
            # argument was an image.
            if im1.im.mode in ("1", "L"):
                return im1.im.convert("I")
            elif im1.im.mode in ("I", "F"):
                return im1.im
            else:
                raise ValueError("unsupported mode: %s" % im1.im.mode)
        else:
            # argument was a constant
            if _isconstant(im1) and self.im.mode in ("1", "L", "I"):
                return Image.new("I", self.im.size, im1)
            else:
                return Image.new("F", self.im.size, im1)

    def apply(self, op, im1, im2=None, mode=None):
        im1 = self.__fixup(im1)
        if im2 is None:
            # unary operation
            out = Image.new(mode or im1.mode, im1.size, None)
            im1.load()
            try:
                op = getattr(_imagingmath, op+"_"+im1.mode)
            except AttributeError:
                raise TypeError("bad operand type for '%s'" % op)
            _imagingmath.unop(op, out.im.id, im1.im.id)
        else:
            # binary operation
            im2 = self.__fixup(im2)
            if im1.mode != im2.mode:
                # convert both arguments to floating point
                if im1.mode != "F":
                    im1 = im1.convert("F")
                if im2.mode != "F":
                    im2 = im2.convert("F")
                if im1.mode != im2.mode:
                    raise ValueError("mode mismatch")
            if im1.size != im2.size:
                # crop both arguments to a common size
                size = (min(im1.size[0], im2.size[0]),
                        min(im1.size[1], im2.size[1]))
                if im1.size != size:
                    im1 = im1.crop((0, 0) + size)
                if im2.size != size:
                    im2 = im2.crop((0, 0) + size)
                out = Image.new(mode or im1.mode, size, None)
            else:
                out = Image.new(mode or im1.mode, im1.size, None)
            im1.load()
            im2.load()
            try:
                op = getattr(_imagingmath, op+"_"+im1.mode)
            except AttributeError:
                raise TypeError("bad operand type for '%s'" % op)
            _imagingmath.binop(op, out.im.id, im1.im.id, im2.im.id)
        return _Operand(out)

    # unary operators
    def __bool__(self):
        # an image is "true" if it contains at least one non-zero pixel
        return self.im.getbbox() is not None

    if bytes is str:
        # Provide __nonzero__ for pre-Py3k
        __nonzero__ = __bool__
        del __bool__

    def __abs__(self):
        return self.apply("abs", self)

    def __pos__(self):
        return self

    def __neg__(self):
        return self.apply("neg", self)

    # binary operators
    def __add__(self, other):
        return self.apply("add", self, other)

    def __radd__(self, other):
        return self.apply("add", other, self)

    def __sub__(self, other):
        return self.apply("sub", self, other)

    def __rsub__(self, other):
        return self.apply("sub", other, self)

    def __mul__(self, other):
        return self.apply("mul", self, other)

    def __rmul__(self, other):
        return self.apply("mul", other, self)

    def __truediv__(self, other):
        return self.apply("div", self, other)

    def __rtruediv__(self, other):
        return self.apply("div", other, self)

    def __mod__(self, other):
        return self.apply("mod", self, other)

    def __rmod__(self, other):
        return self.apply("mod", other, self)

    def __pow__(self, other):
        return self.apply("pow", self, other)

    def __rpow__(self, other):
        return self.apply("pow", other, self)

    if bytes is str:
        # Provide __div__ and __rdiv__ for pre-Py3k
        __div__ = __truediv__
        __rdiv__ = __rtruediv__
        del __truediv__
        del __rtruediv__

    # bitwise
    def __invert__(self):
        return self.apply("invert", self)

    def __and__(self, other):
        return self.apply("and", self, other)

    def __rand__(self, other):
        return self.apply("and", other, self)

    def __or__(self, other):
        return self.apply("or", self, other)

    def __ror__(self, other):
        return self.apply("or", other, self)

    def __xor__(self, other):
        return self.apply("xor", self, other)

    def __rxor__(self, other):
        return self.apply("xor", other, self)

    def __lshift__(self, other):
        return self.apply("lshift", self, other)

    def __rshift__(self, other):
        return self.apply("rshift", self, other)

    # logical
    def __eq__(self, other):
        return self.apply("eq", self, other)

    def __ne__(self, other):
        return self.apply("ne", self, other)

    def __lt__(self, other):
        return self.apply("lt", self, other)

    def __le__(self, other):
        return self.apply("le", self, other)

    def __gt__(self, other):
        return self.apply("gt", self, other)

    def __ge__(self, other):
        return self.apply("ge", self, other)


# conversions
def imagemath_int(self):
    return _Operand(self.im.convert("I"))


def imagemath_float(self):
    return _Operand(self.im.convert("F"))


# logical
def imagemath_equal(self, other):
    return self.apply("eq", self, other, mode="I")


def imagemath_notequal(self, other):
    return self.apply("ne", self, other, mode="I")


def imagemath_min(self, other):
    return self.apply("min", self, other)


def imagemath_max(self, other):
    return self.apply("max", self, other)


def imagemath_convert(self, mode):
    return _Operand(self.im.convert(mode))

ops = {}
for k, v in list(globals().items()):
    if k[:10] == "imagemath_":
        ops[k[10:]] = v


def eval(expression, _dict={}, **kw):
    """
    Evaluates an image expression.

    :param expression: A string containing a Python-style expression.
    :param options: Values to add to the evaluation context.  You
                    can either use a dictionary, or one or more keyword
                    arguments.
    :return: The evaluated expression. This is usually an image object, but can
             also be an integer, a floating point value, or a pixel tuple,
             depending on the expression.
    """

    # build execution namespace
    args = ops.copy()
    args.update(_dict)
    args.update(kw)
    for k, v in list(args.items()):
        if hasattr(v, "im"):
            args[k] = _Operand(v)

    out = builtins.eval(expression, args)
    try:
        return out.im
    except AttributeError:
        return out