This file is indexed.

/usr/include/llvm-3.8/llvm/Target/TargetInstrInfo.h is in llvm-3.8-dev 1:3.8-2ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
//===-- llvm/Target/TargetInstrInfo.h - Instruction Info --------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file describes the target machine instruction set to the code generator.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_TARGET_TARGETINSTRINFO_H
#define LLVM_TARGET_TARGETINSTRINFO_H

#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/CodeGen/MachineCombinerPattern.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/Support/BranchProbability.h"
#include "llvm/Target/TargetRegisterInfo.h"

namespace llvm {

class InstrItineraryData;
class LiveVariables;
class MCAsmInfo;
class MachineMemOperand;
class MachineRegisterInfo;
class MDNode;
class MCInst;
struct MCSchedModel;
class MCSymbolRefExpr;
class SDNode;
class ScheduleHazardRecognizer;
class SelectionDAG;
class ScheduleDAG;
class TargetRegisterClass;
class TargetRegisterInfo;
class TargetSubtargetInfo;
class TargetSchedModel;
class DFAPacketizer;

template<class T> class SmallVectorImpl;


//---------------------------------------------------------------------------
///
/// TargetInstrInfo - Interface to description of machine instruction set
///
class TargetInstrInfo : public MCInstrInfo {
  TargetInstrInfo(const TargetInstrInfo &) = delete;
  void operator=(const TargetInstrInfo &) = delete;
public:
  TargetInstrInfo(unsigned CFSetupOpcode = ~0u, unsigned CFDestroyOpcode = ~0u,
                  unsigned CatchRetOpcode = ~0u)
      : CallFrameSetupOpcode(CFSetupOpcode),
        CallFrameDestroyOpcode(CFDestroyOpcode),
        CatchRetOpcode(CatchRetOpcode) {}

  virtual ~TargetInstrInfo();

  static bool isGenericOpcode(unsigned Opc) {
    return Opc <= TargetOpcode::GENERIC_OP_END;
  }

  /// Given a machine instruction descriptor, returns the register
  /// class constraint for OpNum, or NULL.
  const TargetRegisterClass *getRegClass(const MCInstrDesc &TID,
                                         unsigned OpNum,
                                         const TargetRegisterInfo *TRI,
                                         const MachineFunction &MF) const;

  /// Return true if the instruction is trivially rematerializable, meaning it
  /// has no side effects and requires no operands that aren't always available.
  /// This means the only allowed uses are constants and unallocatable physical
  /// registers so that the instructions result is independent of the place
  /// in the function.
  bool isTriviallyReMaterializable(const MachineInstr *MI,
                                   AliasAnalysis *AA = nullptr) const {
    return MI->getOpcode() == TargetOpcode::IMPLICIT_DEF ||
           (MI->getDesc().isRematerializable() &&
            (isReallyTriviallyReMaterializable(MI, AA) ||
             isReallyTriviallyReMaterializableGeneric(MI, AA)));
  }

protected:
  /// For instructions with opcodes for which the M_REMATERIALIZABLE flag is
  /// set, this hook lets the target specify whether the instruction is actually
  /// trivially rematerializable, taking into consideration its operands. This
  /// predicate must return false if the instruction has any side effects other
  /// than producing a value, or if it requres any address registers that are
  /// not always available.
  /// Requirements must be check as stated in isTriviallyReMaterializable() .
  virtual bool isReallyTriviallyReMaterializable(const MachineInstr *MI,
                                                 AliasAnalysis *AA) const {
    return false;
  }

  /// This method commutes the operands of the given machine instruction MI.
  /// The operands to be commuted are specified by their indices OpIdx1 and
  /// OpIdx2.
  ///
  /// If a target has any instructions that are commutable but require
  /// converting to different instructions or making non-trivial changes
  /// to commute them, this method can be overloaded to do that.
  /// The default implementation simply swaps the commutable operands.
  ///
  /// If NewMI is false, MI is modified in place and returned; otherwise, a
  /// new machine instruction is created and returned.
  ///
  /// Do not call this method for a non-commutable instruction.
  /// Even though the instruction is commutable, the method may still
  /// fail to commute the operands, null pointer is returned in such cases.
  virtual MachineInstr *commuteInstructionImpl(MachineInstr *MI,
                                               bool NewMI,
                                               unsigned OpIdx1,
                                               unsigned OpIdx2) const;

  /// Assigns the (CommutableOpIdx1, CommutableOpIdx2) pair of commutable
  /// operand indices to (ResultIdx1, ResultIdx2).
  /// One or both input values of the pair: (ResultIdx1, ResultIdx2) may be
  /// predefined to some indices or be undefined (designated by the special
  /// value 'CommuteAnyOperandIndex').
  /// The predefined result indices cannot be re-defined.
  /// The function returns true iff after the result pair redefinition
  /// the fixed result pair is equal to or equivalent to the source pair of
  /// indices: (CommutableOpIdx1, CommutableOpIdx2). It is assumed here that
  /// the pairs (x,y) and (y,x) are equivalent.
  static bool fixCommutedOpIndices(unsigned &ResultIdx1,
                                   unsigned &ResultIdx2,
                                   unsigned CommutableOpIdx1,
                                   unsigned CommutableOpIdx2);

private:
  /// For instructions with opcodes for which the M_REMATERIALIZABLE flag is
  /// set and the target hook isReallyTriviallyReMaterializable returns false,
  /// this function does target-independent tests to determine if the
  /// instruction is really trivially rematerializable.
  bool isReallyTriviallyReMaterializableGeneric(const MachineInstr *MI,
                                                AliasAnalysis *AA) const;

public:
  /// These methods return the opcode of the frame setup/destroy instructions
  /// if they exist (-1 otherwise).  Some targets use pseudo instructions in
  /// order to abstract away the difference between operating with a frame
  /// pointer and operating without, through the use of these two instructions.
  ///
  unsigned getCallFrameSetupOpcode() const { return CallFrameSetupOpcode; }
  unsigned getCallFrameDestroyOpcode() const { return CallFrameDestroyOpcode; }

  unsigned getCatchReturnOpcode() const { return CatchRetOpcode; }

  /// Returns the actual stack pointer adjustment made by an instruction
  /// as part of a call sequence. By default, only call frame setup/destroy
  /// instructions adjust the stack, but targets may want to override this
  /// to enable more fine-grained adjustment, or adjust by a different value.
  virtual int getSPAdjust(const MachineInstr *MI) const;

  /// Return true if the instruction is a "coalescable" extension instruction.
  /// That is, it's like a copy where it's legal for the source to overlap the
  /// destination. e.g. X86::MOVSX64rr32. If this returns true, then it's
  /// expected the pre-extension value is available as a subreg of the result
  /// register. This also returns the sub-register index in SubIdx.
  virtual bool isCoalescableExtInstr(const MachineInstr &MI,
                                     unsigned &SrcReg, unsigned &DstReg,
                                     unsigned &SubIdx) const {
    return false;
  }

  /// If the specified machine instruction is a direct
  /// load from a stack slot, return the virtual or physical register number of
  /// the destination along with the FrameIndex of the loaded stack slot.  If
  /// not, return 0.  This predicate must return 0 if the instruction has
  /// any side effects other than loading from the stack slot.
  virtual unsigned isLoadFromStackSlot(const MachineInstr *MI,
                                       int &FrameIndex) const {
    return 0;
  }

  /// Check for post-frame ptr elimination stack locations as well.
  /// This uses a heuristic so it isn't reliable for correctness.
  virtual unsigned isLoadFromStackSlotPostFE(const MachineInstr *MI,
                                             int &FrameIndex) const {
    return 0;
  }

  /// If the specified machine instruction has a load from a stack slot,
  /// return true along with the FrameIndex of the loaded stack slot and the
  /// machine mem operand containing the reference.
  /// If not, return false.  Unlike isLoadFromStackSlot, this returns true for
  /// any instructions that loads from the stack.  This is just a hint, as some
  /// cases may be missed.
  virtual bool hasLoadFromStackSlot(const MachineInstr *MI,
                                    const MachineMemOperand *&MMO,
                                    int &FrameIndex) const;

  /// If the specified machine instruction is a direct
  /// store to a stack slot, return the virtual or physical register number of
  /// the source reg along with the FrameIndex of the loaded stack slot.  If
  /// not, return 0.  This predicate must return 0 if the instruction has
  /// any side effects other than storing to the stack slot.
  virtual unsigned isStoreToStackSlot(const MachineInstr *MI,
                                      int &FrameIndex) const {
    return 0;
  }

  /// Check for post-frame ptr elimination stack locations as well.
  /// This uses a heuristic, so it isn't reliable for correctness.
  virtual unsigned isStoreToStackSlotPostFE(const MachineInstr *MI,
                                            int &FrameIndex) const {
    return 0;
  }

  /// If the specified machine instruction has a store to a stack slot,
  /// return true along with the FrameIndex of the loaded stack slot and the
  /// machine mem operand containing the reference.
  /// If not, return false.  Unlike isStoreToStackSlot,
  /// this returns true for any instructions that stores to the
  /// stack.  This is just a hint, as some cases may be missed.
  virtual bool hasStoreToStackSlot(const MachineInstr *MI,
                                   const MachineMemOperand *&MMO,
                                   int &FrameIndex) const;

  /// Return true if the specified machine instruction
  /// is a copy of one stack slot to another and has no other effect.
  /// Provide the identity of the two frame indices.
  virtual bool isStackSlotCopy(const MachineInstr *MI, int &DestFrameIndex,
                               int &SrcFrameIndex) const {
    return false;
  }

  /// Compute the size in bytes and offset within a stack slot of a spilled
  /// register or subregister.
  ///
  /// \param [out] Size in bytes of the spilled value.
  /// \param [out] Offset in bytes within the stack slot.
  /// \returns true if both Size and Offset are successfully computed.
  ///
  /// Not all subregisters have computable spill slots. For example,
  /// subregisters registers may not be byte-sized, and a pair of discontiguous
  /// subregisters has no single offset.
  ///
  /// Targets with nontrivial bigendian implementations may need to override
  /// this, particularly to support spilled vector registers.
  virtual bool getStackSlotRange(const TargetRegisterClass *RC, unsigned SubIdx,
                                 unsigned &Size, unsigned &Offset,
                                 const MachineFunction &MF) const;

  /// Return true if the instruction is as cheap as a move instruction.
  ///
  /// Targets for different archs need to override this, and different
  /// micro-architectures can also be finely tuned inside.
  virtual bool isAsCheapAsAMove(const MachineInstr *MI) const {
    return MI->isAsCheapAsAMove();
  }

  /// Re-issue the specified 'original' instruction at the
  /// specific location targeting a new destination register.
  /// The register in Orig->getOperand(0).getReg() will be substituted by
  /// DestReg:SubIdx. Any existing subreg index is preserved or composed with
  /// SubIdx.
  virtual void reMaterialize(MachineBasicBlock &MBB,
                             MachineBasicBlock::iterator MI,
                             unsigned DestReg, unsigned SubIdx,
                             const MachineInstr *Orig,
                             const TargetRegisterInfo &TRI) const;

  /// Create a duplicate of the Orig instruction in MF. This is like
  /// MachineFunction::CloneMachineInstr(), but the target may update operands
  /// that are required to be unique.
  ///
  /// The instruction must be duplicable as indicated by isNotDuplicable().
  virtual MachineInstr *duplicate(MachineInstr *Orig,
                                  MachineFunction &MF) const;

  /// This method must be implemented by targets that
  /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
  /// may be able to convert a two-address instruction into one or more true
  /// three-address instructions on demand.  This allows the X86 target (for
  /// example) to convert ADD and SHL instructions into LEA instructions if they
  /// would require register copies due to two-addressness.
  ///
  /// This method returns a null pointer if the transformation cannot be
  /// performed, otherwise it returns the last new instruction.
  ///
  virtual MachineInstr *
  convertToThreeAddress(MachineFunction::iterator &MFI,
                   MachineBasicBlock::iterator &MBBI, LiveVariables *LV) const {
    return nullptr;
  }

  // This constant can be used as an input value of operand index passed to
  // the method findCommutedOpIndices() to tell the method that the
  // corresponding operand index is not pre-defined and that the method
  // can pick any commutable operand.
  static const unsigned CommuteAnyOperandIndex = ~0U;

  /// This method commutes the operands of the given machine instruction MI.
  ///
  /// The operands to be commuted are specified by their indices OpIdx1 and
  /// OpIdx2. OpIdx1 and OpIdx2 arguments may be set to a special value
  /// 'CommuteAnyOperandIndex', which means that the method is free to choose
  /// any arbitrarily chosen commutable operand. If both arguments are set to
  /// 'CommuteAnyOperandIndex' then the method looks for 2 different commutable
  /// operands; then commutes them if such operands could be found.
  ///
  /// If NewMI is false, MI is modified in place and returned; otherwise, a
  /// new machine instruction is created and returned.
  ///
  /// Do not call this method for a non-commutable instruction or
  /// for non-commuable operands.
  /// Even though the instruction is commutable, the method may still
  /// fail to commute the operands, null pointer is returned in such cases.
  MachineInstr *
  commuteInstruction(MachineInstr *MI,
                     bool NewMI = false,
                     unsigned OpIdx1 = CommuteAnyOperandIndex,
                     unsigned OpIdx2 = CommuteAnyOperandIndex) const;

  /// Returns true iff the routine could find two commutable operands in the
  /// given machine instruction.
  /// The 'SrcOpIdx1' and 'SrcOpIdx2' are INPUT and OUTPUT arguments.
  /// If any of the INPUT values is set to the special value
  /// 'CommuteAnyOperandIndex' then the method arbitrarily picks a commutable
  /// operand, then returns its index in the corresponding argument.
  /// If both of INPUT values are set to 'CommuteAnyOperandIndex' then method
  /// looks for 2 commutable operands.
  /// If INPUT values refer to some operands of MI, then the method simply
  /// returns true if the corresponding operands are commutable and returns
  /// false otherwise.
  ///
  /// For example, calling this method this way:
  ///     unsigned Op1 = 1, Op2 = CommuteAnyOperandIndex;
  ///     findCommutedOpIndices(MI, Op1, Op2);
  /// can be interpreted as a query asking to find an operand that would be
  /// commutable with the operand#1.
  virtual bool findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1,
                                     unsigned &SrcOpIdx2) const;

  /// A pair composed of a register and a sub-register index.
  /// Used to give some type checking when modeling Reg:SubReg.
  struct RegSubRegPair {
    unsigned Reg;
    unsigned SubReg;
    RegSubRegPair(unsigned Reg = 0, unsigned SubReg = 0)
        : Reg(Reg), SubReg(SubReg) {}
  };
  /// A pair composed of a pair of a register and a sub-register index,
  /// and another sub-register index.
  /// Used to give some type checking when modeling Reg:SubReg1, SubReg2.
  struct RegSubRegPairAndIdx : RegSubRegPair {
    unsigned SubIdx;
    RegSubRegPairAndIdx(unsigned Reg = 0, unsigned SubReg = 0,
                        unsigned SubIdx = 0)
        : RegSubRegPair(Reg, SubReg), SubIdx(SubIdx) {}
  };

  /// Build the equivalent inputs of a REG_SEQUENCE for the given \p MI
  /// and \p DefIdx.
  /// \p [out] InputRegs of the equivalent REG_SEQUENCE. Each element of
  /// the list is modeled as <Reg:SubReg, SubIdx>.
  /// E.g., REG_SEQUENCE vreg1:sub1, sub0, vreg2, sub1 would produce
  /// two elements:
  /// - vreg1:sub1, sub0
  /// - vreg2<:0>, sub1
  ///
  /// \returns true if it is possible to build such an input sequence
  /// with the pair \p MI, \p DefIdx. False otherwise.
  ///
  /// \pre MI.isRegSequence() or MI.isRegSequenceLike().
  ///
  /// \note The generic implementation does not provide any support for
  /// MI.isRegSequenceLike(). In other words, one has to override
  /// getRegSequenceLikeInputs for target specific instructions.
  bool
  getRegSequenceInputs(const MachineInstr &MI, unsigned DefIdx,
                       SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const;

  /// Build the equivalent inputs of a EXTRACT_SUBREG for the given \p MI
  /// and \p DefIdx.
  /// \p [out] InputReg of the equivalent EXTRACT_SUBREG.
  /// E.g., EXTRACT_SUBREG vreg1:sub1, sub0, sub1 would produce:
  /// - vreg1:sub1, sub0
  ///
  /// \returns true if it is possible to build such an input sequence
  /// with the pair \p MI, \p DefIdx. False otherwise.
  ///
  /// \pre MI.isExtractSubreg() or MI.isExtractSubregLike().
  ///
  /// \note The generic implementation does not provide any support for
  /// MI.isExtractSubregLike(). In other words, one has to override
  /// getExtractSubregLikeInputs for target specific instructions.
  bool
  getExtractSubregInputs(const MachineInstr &MI, unsigned DefIdx,
                         RegSubRegPairAndIdx &InputReg) const;

  /// Build the equivalent inputs of a INSERT_SUBREG for the given \p MI
  /// and \p DefIdx.
  /// \p [out] BaseReg and \p [out] InsertedReg contain
  /// the equivalent inputs of INSERT_SUBREG.
  /// E.g., INSERT_SUBREG vreg0:sub0, vreg1:sub1, sub3 would produce:
  /// - BaseReg: vreg0:sub0
  /// - InsertedReg: vreg1:sub1, sub3
  ///
  /// \returns true if it is possible to build such an input sequence
  /// with the pair \p MI, \p DefIdx. False otherwise.
  ///
  /// \pre MI.isInsertSubreg() or MI.isInsertSubregLike().
  ///
  /// \note The generic implementation does not provide any support for
  /// MI.isInsertSubregLike(). In other words, one has to override
  /// getInsertSubregLikeInputs for target specific instructions.
  bool
  getInsertSubregInputs(const MachineInstr &MI, unsigned DefIdx,
                        RegSubRegPair &BaseReg,
                        RegSubRegPairAndIdx &InsertedReg) const;


  /// Return true if two machine instructions would produce identical values.
  /// By default, this is only true when the two instructions
  /// are deemed identical except for defs. If this function is called when the
  /// IR is still in SSA form, the caller can pass the MachineRegisterInfo for
  /// aggressive checks.
  virtual bool produceSameValue(const MachineInstr *MI0,
                                const MachineInstr *MI1,
                                const MachineRegisterInfo *MRI = nullptr) const;

  /// Analyze the branching code at the end of MBB, returning
  /// true if it cannot be understood (e.g. it's a switch dispatch or isn't
  /// implemented for a target).  Upon success, this returns false and returns
  /// with the following information in various cases:
  ///
  /// 1. If this block ends with no branches (it just falls through to its succ)
  ///    just return false, leaving TBB/FBB null.
  /// 2. If this block ends with only an unconditional branch, it sets TBB to be
  ///    the destination block.
  /// 3. If this block ends with a conditional branch and it falls through to a
  ///    successor block, it sets TBB to be the branch destination block and a
  ///    list of operands that evaluate the condition. These operands can be
  ///    passed to other TargetInstrInfo methods to create new branches.
  /// 4. If this block ends with a conditional branch followed by an
  ///    unconditional branch, it returns the 'true' destination in TBB, the
  ///    'false' destination in FBB, and a list of operands that evaluate the
  ///    condition.  These operands can be passed to other TargetInstrInfo
  ///    methods to create new branches.
  ///
  /// Note that RemoveBranch and InsertBranch must be implemented to support
  /// cases where this method returns success.
  ///
  /// If AllowModify is true, then this routine is allowed to modify the basic
  /// block (e.g. delete instructions after the unconditional branch).
  ///
  virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
                             MachineBasicBlock *&FBB,
                             SmallVectorImpl<MachineOperand> &Cond,
                             bool AllowModify = false) const {
    return true;
  }

  /// Represents a predicate at the MachineFunction level.  The control flow a
  /// MachineBranchPredicate represents is:
  ///
  ///  Reg <def>= LHS `Predicate` RHS         == ConditionDef
  ///  if Reg then goto TrueDest else goto FalseDest
  ///
  struct MachineBranchPredicate {
    enum ComparePredicate {
      PRED_EQ,     // True if two values are equal
      PRED_NE,     // True if two values are not equal
      PRED_INVALID // Sentinel value
    };

    ComparePredicate Predicate;
    MachineOperand LHS;
    MachineOperand RHS;
    MachineBasicBlock *TrueDest;
    MachineBasicBlock *FalseDest;
    MachineInstr *ConditionDef;

    /// SingleUseCondition is true if ConditionDef is dead except for the
    /// branch(es) at the end of the basic block.
    ///
    bool SingleUseCondition;

    explicit MachineBranchPredicate()
        : Predicate(PRED_INVALID), LHS(MachineOperand::CreateImm(0)),
          RHS(MachineOperand::CreateImm(0)), TrueDest(nullptr),
          FalseDest(nullptr), ConditionDef(nullptr), SingleUseCondition(false) {
    }
  };

  /// Analyze the branching code at the end of MBB and parse it into the
  /// MachineBranchPredicate structure if possible.  Returns false on success
  /// and true on failure.
  ///
  /// If AllowModify is true, then this routine is allowed to modify the basic
  /// block (e.g. delete instructions after the unconditional branch).
  ///
  virtual bool AnalyzeBranchPredicate(MachineBasicBlock &MBB,
                                      MachineBranchPredicate &MBP,
                                      bool AllowModify = false) const {
    return true;
  }

  /// Remove the branching code at the end of the specific MBB.
  /// This is only invoked in cases where AnalyzeBranch returns success. It
  /// returns the number of instructions that were removed.
  virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const {
    llvm_unreachable("Target didn't implement TargetInstrInfo::RemoveBranch!");
  }

  /// Insert branch code into the end of the specified MachineBasicBlock.
  /// The operands to this method are the same as those
  /// returned by AnalyzeBranch.  This is only invoked in cases where
  /// AnalyzeBranch returns success. It returns the number of instructions
  /// inserted.
  ///
  /// It is also invoked by tail merging to add unconditional branches in
  /// cases where AnalyzeBranch doesn't apply because there was no original
  /// branch to analyze.  At least this much must be implemented, else tail
  /// merging needs to be disabled.
  virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
                                MachineBasicBlock *FBB,
                                ArrayRef<MachineOperand> Cond,
                                DebugLoc DL) const {
    llvm_unreachable("Target didn't implement TargetInstrInfo::InsertBranch!");
  }

  /// Delete the instruction OldInst and everything after it, replacing it with
  /// an unconditional branch to NewDest. This is used by the tail merging pass.
  virtual void ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail,
                                       MachineBasicBlock *NewDest) const;

  /// Get an instruction that performs an unconditional branch to the given
  /// symbol.
  virtual void
  getUnconditionalBranch(MCInst &MI,
                         const MCSymbolRefExpr *BranchTarget) const {
    llvm_unreachable("Target didn't implement "
                     "TargetInstrInfo::getUnconditionalBranch!");
  }

  /// Get a machine trap instruction.
  virtual void getTrap(MCInst &MI) const {
    llvm_unreachable("Target didn't implement TargetInstrInfo::getTrap!");
  }

  /// Get a number of bytes that suffices to hold
  /// either the instruction returned by getUnconditionalBranch or the
  /// instruction returned by getTrap. This only makes sense because
  /// getUnconditionalBranch returns a single, specific instruction. This
  /// information is needed by the jumptable construction code, since it must
  /// decide how many bytes to use for a jumptable entry so it can generate the
  /// right mask.
  ///
  /// Note that if the jumptable instruction requires alignment, then that
  /// alignment should be factored into this required bound so that the
  /// resulting bound gives the right alignment for the instruction.
  virtual unsigned getJumpInstrTableEntryBound() const {
    // This method gets called by LLVMTargetMachine always, so it can't fail
    // just because there happens to be no implementation for this target.
    // Any code that tries to use a jumptable annotation without defining
    // getUnconditionalBranch on the appropriate Target will fail anyway, and
    // the value returned here won't matter in that case.
    return 0;
  }

  /// Return true if it's legal to split the given basic
  /// block at the specified instruction (i.e. instruction would be the start
  /// of a new basic block).
  virtual bool isLegalToSplitMBBAt(MachineBasicBlock &MBB,
                                   MachineBasicBlock::iterator MBBI) const {
    return true;
  }

  /// Return true if it's profitable to predicate
  /// instructions with accumulated instruction latency of "NumCycles"
  /// of the specified basic block, where the probability of the instructions
  /// being executed is given by Probability, and Confidence is a measure
  /// of our confidence that it will be properly predicted.
  virtual
  bool isProfitableToIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
                           unsigned ExtraPredCycles,
                           BranchProbability Probability) const {
    return false;
  }

  /// Second variant of isProfitableToIfCvt. This one
  /// checks for the case where two basic blocks from true and false path
  /// of a if-then-else (diamond) are predicated on mutally exclusive
  /// predicates, where the probability of the true path being taken is given
  /// by Probability, and Confidence is a measure of our confidence that it
  /// will be properly predicted.
  virtual bool
  isProfitableToIfCvt(MachineBasicBlock &TMBB,
                      unsigned NumTCycles, unsigned ExtraTCycles,
                      MachineBasicBlock &FMBB,
                      unsigned NumFCycles, unsigned ExtraFCycles,
                      BranchProbability Probability) const {
    return false;
  }

  /// Return true if it's profitable for if-converter to duplicate instructions
  /// of specified accumulated instruction latencies in the specified MBB to
  /// enable if-conversion.
  /// The probability of the instructions being executed is given by
  /// Probability, and Confidence is a measure of our confidence that it
  /// will be properly predicted.
  virtual bool
  isProfitableToDupForIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
                            BranchProbability Probability) const {
    return false;
  }

  /// Return true if it's profitable to unpredicate
  /// one side of a 'diamond', i.e. two sides of if-else predicated on mutually
  /// exclusive predicates.
  /// e.g.
  ///   subeq  r0, r1, #1
  ///   addne  r0, r1, #1
  /// =>
  ///   sub    r0, r1, #1
  ///   addne  r0, r1, #1
  ///
  /// This may be profitable is conditional instructions are always executed.
  virtual bool isProfitableToUnpredicate(MachineBasicBlock &TMBB,
                                         MachineBasicBlock &FMBB) const {
    return false;
  }

  /// Return true if it is possible to insert a select
  /// instruction that chooses between TrueReg and FalseReg based on the
  /// condition code in Cond.
  ///
  /// When successful, also return the latency in cycles from TrueReg,
  /// FalseReg, and Cond to the destination register. In most cases, a select
  /// instruction will be 1 cycle, so CondCycles = TrueCycles = FalseCycles = 1
  ///
  /// Some x86 implementations have 2-cycle cmov instructions.
  ///
  /// @param MBB         Block where select instruction would be inserted.
  /// @param Cond        Condition returned by AnalyzeBranch.
  /// @param TrueReg     Virtual register to select when Cond is true.
  /// @param FalseReg    Virtual register to select when Cond is false.
  /// @param CondCycles  Latency from Cond+Branch to select output.
  /// @param TrueCycles  Latency from TrueReg to select output.
  /// @param FalseCycles Latency from FalseReg to select output.
  virtual bool canInsertSelect(const MachineBasicBlock &MBB,
                               ArrayRef<MachineOperand> Cond,
                               unsigned TrueReg, unsigned FalseReg,
                               int &CondCycles,
                               int &TrueCycles, int &FalseCycles) const {
    return false;
  }

  /// Insert a select instruction into MBB before I that will copy TrueReg to
  /// DstReg when Cond is true, and FalseReg to DstReg when Cond is false.
  ///
  /// This function can only be called after canInsertSelect() returned true.
  /// The condition in Cond comes from AnalyzeBranch, and it can be assumed
  /// that the same flags or registers required by Cond are available at the
  /// insertion point.
  ///
  /// @param MBB      Block where select instruction should be inserted.
  /// @param I        Insertion point.
  /// @param DL       Source location for debugging.
  /// @param DstReg   Virtual register to be defined by select instruction.
  /// @param Cond     Condition as computed by AnalyzeBranch.
  /// @param TrueReg  Virtual register to copy when Cond is true.
  /// @param FalseReg Virtual register to copy when Cons is false.
  virtual void insertSelect(MachineBasicBlock &MBB,
                            MachineBasicBlock::iterator I, DebugLoc DL,
                            unsigned DstReg, ArrayRef<MachineOperand> Cond,
                            unsigned TrueReg, unsigned FalseReg) const {
    llvm_unreachable("Target didn't implement TargetInstrInfo::insertSelect!");
  }

  /// Analyze the given select instruction, returning true if
  /// it cannot be understood. It is assumed that MI->isSelect() is true.
  ///
  /// When successful, return the controlling condition and the operands that
  /// determine the true and false result values.
  ///
  ///   Result = SELECT Cond, TrueOp, FalseOp
  ///
  /// Some targets can optimize select instructions, for example by predicating
  /// the instruction defining one of the operands. Such targets should set
  /// Optimizable.
  ///
  /// @param         MI Select instruction to analyze.
  /// @param Cond    Condition controlling the select.
  /// @param TrueOp  Operand number of the value selected when Cond is true.
  /// @param FalseOp Operand number of the value selected when Cond is false.
  /// @param Optimizable Returned as true if MI is optimizable.
  /// @returns False on success.
  virtual bool analyzeSelect(const MachineInstr *MI,
                             SmallVectorImpl<MachineOperand> &Cond,
                             unsigned &TrueOp, unsigned &FalseOp,
                             bool &Optimizable) const {
    assert(MI && MI->getDesc().isSelect() && "MI must be a select instruction");
    return true;
  }

  /// Given a select instruction that was understood by
  /// analyzeSelect and returned Optimizable = true, attempt to optimize MI by
  /// merging it with one of its operands. Returns NULL on failure.
  ///
  /// When successful, returns the new select instruction. The client is
  /// responsible for deleting MI.
  ///
  /// If both sides of the select can be optimized, PreferFalse is used to pick
  /// a side.
  ///
  /// @param MI          Optimizable select instruction.
  /// @param NewMIs     Set that record all MIs in the basic block up to \p
  /// MI. Has to be updated with any newly created MI or deleted ones.
  /// @param PreferFalse Try to optimize FalseOp instead of TrueOp.
  /// @returns Optimized instruction or NULL.
  virtual MachineInstr *optimizeSelect(MachineInstr *MI,
                                       SmallPtrSetImpl<MachineInstr *> &NewMIs,
                                       bool PreferFalse = false) const {
    // This function must be implemented if Optimizable is ever set.
    llvm_unreachable("Target must implement TargetInstrInfo::optimizeSelect!");
  }

  /// Emit instructions to copy a pair of physical registers.
  ///
  /// This function should support copies within any legal register class as
  /// well as any cross-class copies created during instruction selection.
  ///
  /// The source and destination registers may overlap, which may require a
  /// careful implementation when multiple copy instructions are required for
  /// large registers. See for example the ARM target.
  virtual void copyPhysReg(MachineBasicBlock &MBB,
                           MachineBasicBlock::iterator MI, DebugLoc DL,
                           unsigned DestReg, unsigned SrcReg,
                           bool KillSrc) const {
    llvm_unreachable("Target didn't implement TargetInstrInfo::copyPhysReg!");
  }

  /// Store the specified register of the given register class to the specified
  /// stack frame index. The store instruction is to be added to the given
  /// machine basic block before the specified machine instruction. If isKill
  /// is true, the register operand is the last use and must be marked kill.
  virtual void storeRegToStackSlot(MachineBasicBlock &MBB,
                                   MachineBasicBlock::iterator MI,
                                   unsigned SrcReg, bool isKill, int FrameIndex,
                                   const TargetRegisterClass *RC,
                                   const TargetRegisterInfo *TRI) const {
    llvm_unreachable("Target didn't implement "
                     "TargetInstrInfo::storeRegToStackSlot!");
  }

  /// Load the specified register of the given register class from the specified
  /// stack frame index. The load instruction is to be added to the given
  /// machine basic block before the specified machine instruction.
  virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
                                    MachineBasicBlock::iterator MI,
                                    unsigned DestReg, int FrameIndex,
                                    const TargetRegisterClass *RC,
                                    const TargetRegisterInfo *TRI) const {
    llvm_unreachable("Target didn't implement "
                     "TargetInstrInfo::loadRegFromStackSlot!");
  }

  /// This function is called for all pseudo instructions
  /// that remain after register allocation. Many pseudo instructions are
  /// created to help register allocation. This is the place to convert them
  /// into real instructions. The target can edit MI in place, or it can insert
  /// new instructions and erase MI. The function should return true if
  /// anything was changed.
  virtual bool expandPostRAPseudo(MachineBasicBlock::iterator MI) const {
    return false;
  }

  /// Attempt to fold a load or store of the specified stack
  /// slot into the specified machine instruction for the specified operand(s).
  /// If this is possible, a new instruction is returned with the specified
  /// operand folded, otherwise NULL is returned.
  /// The new instruction is inserted before MI, and the client is responsible
  /// for removing the old instruction.
  MachineInstr *foldMemoryOperand(MachineBasicBlock::iterator MI,
                                  ArrayRef<unsigned> Ops, int FrameIndex) const;

  /// Same as the previous version except it allows folding of any load and
  /// store from / to any address, not just from a specific stack slot.
  MachineInstr *foldMemoryOperand(MachineBasicBlock::iterator MI,
                                  ArrayRef<unsigned> Ops,
                                  MachineInstr *LoadMI) const;

  /// Return true when there is potentially a faster code sequence
  /// for an instruction chain ending in \p Root. All potential patterns are
  /// returned in the \p Pattern vector. Pattern should be sorted in priority
  /// order since the pattern evaluator stops checking as soon as it finds a
  /// faster sequence.
  /// \param Root - Instruction that could be combined with one of its operands
  /// \param Patterns - Vector of possible combination patterns
  virtual bool getMachineCombinerPatterns(
      MachineInstr &Root,
      SmallVectorImpl<MachineCombinerPattern> &Patterns) const;

  /// Return true if the input \P Inst is part of a chain of dependent ops
  /// that are suitable for reassociation, otherwise return false.
  /// If the instruction's operands must be commuted to have a previous
  /// instruction of the same type define the first source operand, \P Commuted
  /// will be set to true.
  bool isReassociationCandidate(const MachineInstr &Inst, bool &Commuted) const;

  /// Return true when \P Inst is both associative and commutative.
  virtual bool isAssociativeAndCommutative(const MachineInstr &Inst) const {
    return false;
  }

  /// Return true when \P Inst has reassociable operands in the same \P MBB.
  virtual bool hasReassociableOperands(const MachineInstr &Inst,
                                       const MachineBasicBlock *MBB) const;

  /// Return true when \P Inst has reassociable sibling.
  bool hasReassociableSibling(const MachineInstr &Inst, bool &Commuted) const;

  /// When getMachineCombinerPatterns() finds patterns, this function generates
  /// the instructions that could replace the original code sequence. The client
  /// has to decide whether the actual replacement is beneficial or not.
  /// \param Root - Instruction that could be combined with one of its operands
  /// \param Pattern - Combination pattern for Root
  /// \param InsInstrs - Vector of new instructions that implement P
  /// \param DelInstrs - Old instructions, including Root, that could be
  /// replaced by InsInstr
  /// \param InstrIdxForVirtReg - map of virtual register to instruction in
  /// InsInstr that defines it
  virtual void genAlternativeCodeSequence(
      MachineInstr &Root, MachineCombinerPattern Pattern,
      SmallVectorImpl<MachineInstr *> &InsInstrs,
      SmallVectorImpl<MachineInstr *> &DelInstrs,
      DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const;

  /// Attempt to reassociate \P Root and \P Prev according to \P Pattern to
  /// reduce critical path length.
  void reassociateOps(MachineInstr &Root, MachineInstr &Prev,
                      MachineCombinerPattern Pattern,
                      SmallVectorImpl<MachineInstr *> &InsInstrs,
                      SmallVectorImpl<MachineInstr *> &DelInstrs,
                      DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const;

  /// This is an architecture-specific helper function of reassociateOps.
  /// Set special operand attributes for new instructions after reassociation.
  virtual void setSpecialOperandAttr(MachineInstr &OldMI1, MachineInstr &OldMI2,
                                     MachineInstr &NewMI1,
                                     MachineInstr &NewMI2) const {
    return;
  };

  /// Return true when a target supports MachineCombiner.
  virtual bool useMachineCombiner() const { return false; }

protected:
  /// Target-dependent implementation for foldMemoryOperand.
  /// Target-independent code in foldMemoryOperand will
  /// take care of adding a MachineMemOperand to the newly created instruction.
  /// The instruction and any auxiliary instructions necessary will be inserted
  /// at InsertPt.
  virtual MachineInstr *foldMemoryOperandImpl(
      MachineFunction &MF, MachineInstr *MI, ArrayRef<unsigned> Ops,
      MachineBasicBlock::iterator InsertPt, int FrameIndex) const {
    return nullptr;
  }

  /// Target-dependent implementation for foldMemoryOperand.
  /// Target-independent code in foldMemoryOperand will
  /// take care of adding a MachineMemOperand to the newly created instruction.
  /// The instruction and any auxiliary instructions necessary will be inserted
  /// at InsertPt.
  virtual MachineInstr *foldMemoryOperandImpl(
      MachineFunction &MF, MachineInstr *MI, ArrayRef<unsigned> Ops,
      MachineBasicBlock::iterator InsertPt, MachineInstr *LoadMI) const {
    return nullptr;
  }

  /// \brief Target-dependent implementation of getRegSequenceInputs.
  ///
  /// \returns true if it is possible to build the equivalent
  /// REG_SEQUENCE inputs with the pair \p MI, \p DefIdx. False otherwise.
  ///
  /// \pre MI.isRegSequenceLike().
  ///
  /// \see TargetInstrInfo::getRegSequenceInputs.
  virtual bool getRegSequenceLikeInputs(
      const MachineInstr &MI, unsigned DefIdx,
      SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const {
    return false;
  }

  /// \brief Target-dependent implementation of getExtractSubregInputs.
  ///
  /// \returns true if it is possible to build the equivalent
  /// EXTRACT_SUBREG inputs with the pair \p MI, \p DefIdx. False otherwise.
  ///
  /// \pre MI.isExtractSubregLike().
  ///
  /// \see TargetInstrInfo::getExtractSubregInputs.
  virtual bool getExtractSubregLikeInputs(
      const MachineInstr &MI, unsigned DefIdx,
      RegSubRegPairAndIdx &InputReg) const {
    return false;
  }

  /// \brief Target-dependent implementation of getInsertSubregInputs.
  ///
  /// \returns true if it is possible to build the equivalent
  /// INSERT_SUBREG inputs with the pair \p MI, \p DefIdx. False otherwise.
  ///
  /// \pre MI.isInsertSubregLike().
  ///
  /// \see TargetInstrInfo::getInsertSubregInputs.
  virtual bool
  getInsertSubregLikeInputs(const MachineInstr &MI, unsigned DefIdx,
                            RegSubRegPair &BaseReg,
                            RegSubRegPairAndIdx &InsertedReg) const {
    return false;
  }

public:
  /// unfoldMemoryOperand - Separate a single instruction which folded a load or
  /// a store or a load and a store into two or more instruction. If this is
  /// possible, returns true as well as the new instructions by reference.
  virtual bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
                                unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
                                 SmallVectorImpl<MachineInstr*> &NewMIs) const{
    return false;
  }

  virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
                                   SmallVectorImpl<SDNode*> &NewNodes) const {
    return false;
  }

  /// Returns the opcode of the would be new
  /// instruction after load / store are unfolded from an instruction of the
  /// specified opcode. It returns zero if the specified unfolding is not
  /// possible. If LoadRegIndex is non-null, it is filled in with the operand
  /// index of the operand which will hold the register holding the loaded
  /// value.
  virtual unsigned getOpcodeAfterMemoryUnfold(unsigned Opc,
                                      bool UnfoldLoad, bool UnfoldStore,
                                      unsigned *LoadRegIndex = nullptr) const {
    return 0;
  }

  /// This is used by the pre-regalloc scheduler to determine if two loads are
  /// loading from the same base address. It should only return true if the base
  /// pointers are the same and the only differences between the two addresses
  /// are the offset. It also returns the offsets by reference.
  virtual bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
                                    int64_t &Offset1, int64_t &Offset2) const {
    return false;
  }

  /// This is a used by the pre-regalloc scheduler to determine (in conjunction
  /// with areLoadsFromSameBasePtr) if two loads should be scheduled together.
  /// On some targets if two loads are loading from
  /// addresses in the same cache line, it's better if they are scheduled
  /// together. This function takes two integers that represent the load offsets
  /// from the common base address. It returns true if it decides it's desirable
  /// to schedule the two loads together. "NumLoads" is the number of loads that
  /// have already been scheduled after Load1.
  virtual bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
                                       int64_t Offset1, int64_t Offset2,
                                       unsigned NumLoads) const {
    return false;
  }

  /// Get the base register and byte offset of an instruction that reads/writes
  /// memory.
  virtual bool getMemOpBaseRegImmOfs(MachineInstr *MemOp, unsigned &BaseReg,
                                     unsigned &Offset,
                                     const TargetRegisterInfo *TRI) const {
    return false;
  }

  virtual bool enableClusterLoads() const { return false; }

  virtual bool shouldClusterLoads(MachineInstr *FirstLdSt,
                                  MachineInstr *SecondLdSt,
                                  unsigned NumLoads) const {
    return false;
  }

  /// Can this target fuse the given instructions if they are scheduled
  /// adjacent.
  virtual bool shouldScheduleAdjacent(MachineInstr* First,
                                      MachineInstr *Second) const {
    return false;
  }

  /// Reverses the branch condition of the specified condition list,
  /// returning false on success and true if it cannot be reversed.
  virtual
  bool ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
    return true;
  }

  /// Insert a noop into the instruction stream at the specified point.
  virtual void insertNoop(MachineBasicBlock &MBB,
                          MachineBasicBlock::iterator MI) const;


  /// Return the noop instruction to use for a noop.
  virtual void getNoopForMachoTarget(MCInst &NopInst) const;


  /// Returns true if the instruction is already predicated.
  virtual bool isPredicated(const MachineInstr *MI) const {
    return false;
  }

  /// Returns true if the instruction is a
  /// terminator instruction that has not been predicated.
  virtual bool isUnpredicatedTerminator(const MachineInstr *MI) const;

  /// Convert the instruction into a predicated instruction.
  /// It returns true if the operation was successful.
  virtual
  bool PredicateInstruction(MachineInstr *MI,
                            ArrayRef<MachineOperand> Pred) const;

  /// Returns true if the first specified predicate
  /// subsumes the second, e.g. GE subsumes GT.
  virtual
  bool SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
                         ArrayRef<MachineOperand> Pred2) const {
    return false;
  }

  /// If the specified instruction defines any predicate
  /// or condition code register(s) used for predication, returns true as well
  /// as the definition predicate(s) by reference.
  virtual bool DefinesPredicate(MachineInstr *MI,
                                std::vector<MachineOperand> &Pred) const {
    return false;
  }

  /// Return true if the specified instruction can be predicated.
  /// By default, this returns true for every instruction with a
  /// PredicateOperand.
  virtual bool isPredicable(MachineInstr *MI) const {
    return MI->getDesc().isPredicable();
  }

  /// Return true if it's safe to move a machine
  /// instruction that defines the specified register class.
  virtual bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
    return true;
  }

  /// Test if the given instruction should be considered a scheduling boundary.
  /// This primarily includes labels and terminators.
  virtual bool isSchedulingBoundary(const MachineInstr *MI,
                                    const MachineBasicBlock *MBB,
                                    const MachineFunction &MF) const;

  /// Measure the specified inline asm to determine an approximation of its
  /// length.
  virtual unsigned getInlineAsmLength(const char *Str,
                                      const MCAsmInfo &MAI) const;

  /// Allocate and return a hazard recognizer to use for this target when
  /// scheduling the machine instructions before register allocation.
  virtual ScheduleHazardRecognizer*
  CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
                               const ScheduleDAG *DAG) const;

  /// Allocate and return a hazard recognizer to use for this target when
  /// scheduling the machine instructions before register allocation.
  virtual ScheduleHazardRecognizer*
  CreateTargetMIHazardRecognizer(const InstrItineraryData*,
                                 const ScheduleDAG *DAG) const;

  /// Allocate and return a hazard recognizer to use for this target when
  /// scheduling the machine instructions after register allocation.
  virtual ScheduleHazardRecognizer*
  CreateTargetPostRAHazardRecognizer(const InstrItineraryData*,
                                     const ScheduleDAG *DAG) const;

  /// Provide a global flag for disabling the PreRA hazard recognizer that
  /// targets may choose to honor.
  bool usePreRAHazardRecognizer() const;

  /// For a comparison instruction, return the source registers
  /// in SrcReg and SrcReg2 if having two register operands, and the value it
  /// compares against in CmpValue. Return true if the comparison instruction
  /// can be analyzed.
  virtual bool analyzeCompare(const MachineInstr *MI,
                              unsigned &SrcReg, unsigned &SrcReg2,
                              int &Mask, int &Value) const {
    return false;
  }

  /// See if the comparison instruction can be converted
  /// into something more efficient. E.g., on ARM most instructions can set the
  /// flags register, obviating the need for a separate CMP.
  virtual bool optimizeCompareInstr(MachineInstr *CmpInstr,
                                    unsigned SrcReg, unsigned SrcReg2,
                                    int Mask, int Value,
                                    const MachineRegisterInfo *MRI) const {
    return false;
  }
  virtual bool optimizeCondBranch(MachineInstr *MI) const { return false; }

  /// Try to remove the load by folding it to a register operand at the use.
  /// We fold the load instructions if and only if the
  /// def and use are in the same BB. We only look at one load and see
  /// whether it can be folded into MI. FoldAsLoadDefReg is the virtual register
  /// defined by the load we are trying to fold. DefMI returns the machine
  /// instruction that defines FoldAsLoadDefReg, and the function returns
  /// the machine instruction generated due to folding.
  virtual MachineInstr* optimizeLoadInstr(MachineInstr *MI,
                        const MachineRegisterInfo *MRI,
                        unsigned &FoldAsLoadDefReg,
                        MachineInstr *&DefMI) const {
    return nullptr;
  }

  /// 'Reg' is known to be defined by a move immediate instruction,
  /// try to fold the immediate into the use instruction.
  /// If MRI->hasOneNonDBGUse(Reg) is true, and this function returns true,
  /// then the caller may assume that DefMI has been erased from its parent
  /// block. The caller may assume that it will not be erased by this
  /// function otherwise.
  virtual bool FoldImmediate(MachineInstr *UseMI, MachineInstr *DefMI,
                             unsigned Reg, MachineRegisterInfo *MRI) const {
    return false;
  }

  /// Return the number of u-operations the given machine
  /// instruction will be decoded to on the target cpu. The itinerary's
  /// IssueWidth is the number of microops that can be dispatched each
  /// cycle. An instruction with zero microops takes no dispatch resources.
  virtual unsigned getNumMicroOps(const InstrItineraryData *ItinData,
                                  const MachineInstr *MI) const;

  /// Return true for pseudo instructions that don't consume any
  /// machine resources in their current form. These are common cases that the
  /// scheduler should consider free, rather than conservatively handling them
  /// as instructions with no itinerary.
  bool isZeroCost(unsigned Opcode) const {
    return Opcode <= TargetOpcode::COPY;
  }

  virtual int getOperandLatency(const InstrItineraryData *ItinData,
                                SDNode *DefNode, unsigned DefIdx,
                                SDNode *UseNode, unsigned UseIdx) const;

  /// Compute and return the use operand latency of a given pair of def and use.
  /// In most cases, the static scheduling itinerary was enough to determine the
  /// operand latency. But it may not be possible for instructions with variable
  /// number of defs / uses.
  ///
  /// This is a raw interface to the itinerary that may be directly overridden
  /// by a target. Use computeOperandLatency to get the best estimate of
  /// latency.
  virtual int getOperandLatency(const InstrItineraryData *ItinData,
                                const MachineInstr *DefMI, unsigned DefIdx,
                                const MachineInstr *UseMI,
                                unsigned UseIdx) const;

  /// Compute and return the latency of the given data
  /// dependent def and use when the operand indices are already known.
  unsigned computeOperandLatency(const InstrItineraryData *ItinData,
                                 const MachineInstr *DefMI, unsigned DefIdx,
                                 const MachineInstr *UseMI, unsigned UseIdx)
    const;

  /// Compute the instruction latency of a given instruction.
  /// If the instruction has higher cost when predicated, it's returned via
  /// PredCost.
  virtual unsigned getInstrLatency(const InstrItineraryData *ItinData,
                                   const MachineInstr *MI,
                                   unsigned *PredCost = nullptr) const;

  virtual unsigned getPredicationCost(const MachineInstr *MI) const;

  virtual int getInstrLatency(const InstrItineraryData *ItinData,
                              SDNode *Node) const;

  /// Return the default expected latency for a def based on it's opcode.
  unsigned defaultDefLatency(const MCSchedModel &SchedModel,
                             const MachineInstr *DefMI) const;

  int computeDefOperandLatency(const InstrItineraryData *ItinData,
                               const MachineInstr *DefMI) const;

  /// Return true if this opcode has high latency to its result.
  virtual bool isHighLatencyDef(int opc) const { return false; }

  /// Compute operand latency between a def of 'Reg'
  /// and a use in the current loop. Return true if the target considered
  /// it 'high'. This is used by optimization passes such as machine LICM to
  /// determine whether it makes sense to hoist an instruction out even in a
  /// high register pressure situation.
  virtual
  bool hasHighOperandLatency(const TargetSchedModel &SchedModel,
                             const MachineRegisterInfo *MRI,
                             const MachineInstr *DefMI, unsigned DefIdx,
                             const MachineInstr *UseMI, unsigned UseIdx) const {
    return false;
  }

  /// Compute operand latency of a def of 'Reg'. Return true
  /// if the target considered it 'low'.
  virtual
  bool hasLowDefLatency(const TargetSchedModel &SchedModel,
                        const MachineInstr *DefMI, unsigned DefIdx) const;

  /// Perform target-specific instruction verification.
  virtual
  bool verifyInstruction(const MachineInstr *MI, StringRef &ErrInfo) const {
    return true;
  }

  /// Return the current execution domain and bit mask of
  /// possible domains for instruction.
  ///
  /// Some micro-architectures have multiple execution domains, and multiple
  /// opcodes that perform the same operation in different domains.  For
  /// example, the x86 architecture provides the por, orps, and orpd
  /// instructions that all do the same thing.  There is a latency penalty if a
  /// register is written in one domain and read in another.
  ///
  /// This function returns a pair (domain, mask) containing the execution
  /// domain of MI, and a bit mask of possible domains.  The setExecutionDomain
  /// function can be used to change the opcode to one of the domains in the
  /// bit mask.  Instructions whose execution domain can't be changed should
  /// return a 0 mask.
  ///
  /// The execution domain numbers don't have any special meaning except domain
  /// 0 is used for instructions that are not associated with any interesting
  /// execution domain.
  ///
  virtual std::pair<uint16_t, uint16_t>
  getExecutionDomain(const MachineInstr *MI) const {
    return std::make_pair(0, 0);
  }

  /// Change the opcode of MI to execute in Domain.
  ///
  /// The bit (1 << Domain) must be set in the mask returned from
  /// getExecutionDomain(MI).
  virtual void setExecutionDomain(MachineInstr *MI, unsigned Domain) const {}


  /// Returns the preferred minimum clearance
  /// before an instruction with an unwanted partial register update.
  ///
  /// Some instructions only write part of a register, and implicitly need to
  /// read the other parts of the register.  This may cause unwanted stalls
  /// preventing otherwise unrelated instructions from executing in parallel in
  /// an out-of-order CPU.
  ///
  /// For example, the x86 instruction cvtsi2ss writes its result to bits
  /// [31:0] of the destination xmm register. Bits [127:32] are unaffected, so
  /// the instruction needs to wait for the old value of the register to become
  /// available:
  ///
  ///   addps %xmm1, %xmm0
  ///   movaps %xmm0, (%rax)
  ///   cvtsi2ss %rbx, %xmm0
  ///
  /// In the code above, the cvtsi2ss instruction needs to wait for the addps
  /// instruction before it can issue, even though the high bits of %xmm0
  /// probably aren't needed.
  ///
  /// This hook returns the preferred clearance before MI, measured in
  /// instructions.  Other defs of MI's operand OpNum are avoided in the last N
  /// instructions before MI.  It should only return a positive value for
  /// unwanted dependencies.  If the old bits of the defined register have
  /// useful values, or if MI is determined to otherwise read the dependency,
  /// the hook should return 0.
  ///
  /// The unwanted dependency may be handled by:
  ///
  /// 1. Allocating the same register for an MI def and use.  That makes the
  ///    unwanted dependency identical to a required dependency.
  ///
  /// 2. Allocating a register for the def that has no defs in the previous N
  ///    instructions.
  ///
  /// 3. Calling breakPartialRegDependency() with the same arguments.  This
  ///    allows the target to insert a dependency breaking instruction.
  ///
  virtual unsigned
  getPartialRegUpdateClearance(const MachineInstr *MI, unsigned OpNum,
                               const TargetRegisterInfo *TRI) const {
    // The default implementation returns 0 for no partial register dependency.
    return 0;
  }

  /// \brief Return the minimum clearance before an instruction that reads an
  /// unused register.
  ///
  /// For example, AVX instructions may copy part of a register operand into
  /// the unused high bits of the destination register.
  ///
  /// vcvtsi2sdq %rax, %xmm0<undef>, %xmm14
  ///
  /// In the code above, vcvtsi2sdq copies %xmm0[127:64] into %xmm14 creating a
  /// false dependence on any previous write to %xmm0.
  ///
  /// This hook works similarly to getPartialRegUpdateClearance, except that it
  /// does not take an operand index. Instead sets \p OpNum to the index of the
  /// unused register.
  virtual unsigned getUndefRegClearance(const MachineInstr *MI, unsigned &OpNum,
                                        const TargetRegisterInfo *TRI) const {
    // The default implementation returns 0 for no undef register dependency.
    return 0;
  }

  /// Insert a dependency-breaking instruction
  /// before MI to eliminate an unwanted dependency on OpNum.
  ///
  /// If it wasn't possible to avoid a def in the last N instructions before MI
  /// (see getPartialRegUpdateClearance), this hook will be called to break the
  /// unwanted dependency.
  ///
  /// On x86, an xorps instruction can be used as a dependency breaker:
  ///
  ///   addps %xmm1, %xmm0
  ///   movaps %xmm0, (%rax)
  ///   xorps %xmm0, %xmm0
  ///   cvtsi2ss %rbx, %xmm0
  ///
  /// An <imp-kill> operand should be added to MI if an instruction was
  /// inserted.  This ties the instructions together in the post-ra scheduler.
  ///
  virtual void
  breakPartialRegDependency(MachineBasicBlock::iterator MI, unsigned OpNum,
                            const TargetRegisterInfo *TRI) const {}

  /// Create machine specific model for scheduling.
  virtual DFAPacketizer *
  CreateTargetScheduleState(const TargetSubtargetInfo &) const {
    return nullptr;
  }

  // Sometimes, it is possible for the target
  // to tell, even without aliasing information, that two MIs access different
  // memory addresses. This function returns true if two MIs access different
  // memory addresses and false otherwise.
  virtual bool
  areMemAccessesTriviallyDisjoint(MachineInstr *MIa, MachineInstr *MIb,
                                  AliasAnalysis *AA = nullptr) const {
    assert(MIa && (MIa->mayLoad() || MIa->mayStore()) &&
           "MIa must load from or modify a memory location");
    assert(MIb && (MIb->mayLoad() || MIb->mayStore()) &&
           "MIb must load from or modify a memory location");
    return false;
  }

  /// \brief Return the value to use for the MachineCSE's LookAheadLimit,
  /// which is a heuristic used for CSE'ing phys reg defs.
  virtual unsigned getMachineCSELookAheadLimit () const {
    // The default lookahead is small to prevent unprofitable quadratic
    // behavior.
    return 5;
  }

  /// Return an array that contains the ids of the target indices (used for the
  /// TargetIndex machine operand) and their names.
  ///
  /// MIR Serialization is able to serialize only the target indices that are
  /// defined by this method.
  virtual ArrayRef<std::pair<int, const char *>>
  getSerializableTargetIndices() const {
    return None;
  }

  /// Decompose the machine operand's target flags into two values - the direct
  /// target flag value and any of bit flags that are applied.
  virtual std::pair<unsigned, unsigned>
  decomposeMachineOperandsTargetFlags(unsigned /*TF*/) const {
    return std::make_pair(0u, 0u);
  }

  /// Return an array that contains the direct target flag values and their
  /// names.
  ///
  /// MIR Serialization is able to serialize only the target flags that are
  /// defined by this method.
  virtual ArrayRef<std::pair<unsigned, const char *>>
  getSerializableDirectMachineOperandTargetFlags() const {
    return None;
  }

  /// Return an array that contains the bitmask target flag values and their
  /// names.
  ///
  /// MIR Serialization is able to serialize only the target flags that are
  /// defined by this method.
  virtual ArrayRef<std::pair<unsigned, const char *>>
  getSerializableBitmaskMachineOperandTargetFlags() const {
    return None;
  }

private:
  unsigned CallFrameSetupOpcode, CallFrameDestroyOpcode;
  unsigned CatchRetOpcode;
};

/// \brief Provide DenseMapInfo for TargetInstrInfo::RegSubRegPair.
template<>
struct DenseMapInfo<TargetInstrInfo::RegSubRegPair> {
  typedef DenseMapInfo<unsigned> RegInfo;

  static inline TargetInstrInfo::RegSubRegPair getEmptyKey() {
    return TargetInstrInfo::RegSubRegPair(RegInfo::getEmptyKey(),
                         RegInfo::getEmptyKey());
  }
  static inline TargetInstrInfo::RegSubRegPair getTombstoneKey() {
    return TargetInstrInfo::RegSubRegPair(RegInfo::getTombstoneKey(),
                         RegInfo::getTombstoneKey());
  }
  /// \brief Reuse getHashValue implementation from
  /// std::pair<unsigned, unsigned>.
  static unsigned getHashValue(const TargetInstrInfo::RegSubRegPair &Val) {
    std::pair<unsigned, unsigned> PairVal =
        std::make_pair(Val.Reg, Val.SubReg);
    return DenseMapInfo<std::pair<unsigned, unsigned>>::getHashValue(PairVal);
  }
  static bool isEqual(const TargetInstrInfo::RegSubRegPair &LHS,
                      const TargetInstrInfo::RegSubRegPair &RHS) {
    return RegInfo::isEqual(LHS.Reg, RHS.Reg) &&
           RegInfo::isEqual(LHS.SubReg, RHS.SubReg);
  }
};

} // End llvm namespace

#endif