This file is indexed.

/usr/include/llvm-3.8/llvm/Bitcode/ReaderWriter.h is in llvm-3.8-dev 1:3.8-2ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
//===-- llvm/Bitcode/ReaderWriter.h - Bitcode reader/writers ----*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This header defines interfaces to read and write LLVM bitcode files/streams.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_BITCODE_READERWRITER_H
#define LLVM_BITCODE_READERWRITER_H

#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/FunctionInfo.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/ErrorOr.h"
#include "llvm/Support/MemoryBuffer.h"
#include <memory>
#include <string>

namespace llvm {
  class BitstreamWriter;
  class DataStreamer;
  class LLVMContext;
  class Module;
  class ModulePass;
  class raw_ostream;

  /// Read the header of the specified bitcode buffer and prepare for lazy
  /// deserialization of function bodies. If ShouldLazyLoadMetadata is true,
  /// lazily load metadata as well. If successful, this moves Buffer. On
  /// error, this *does not* move Buffer.
  ErrorOr<std::unique_ptr<Module>>
  getLazyBitcodeModule(std::unique_ptr<MemoryBuffer> &&Buffer,
                       LLVMContext &Context,
                       bool ShouldLazyLoadMetadata = false);

  /// Read the header of the specified stream and prepare for lazy
  /// deserialization and streaming of function bodies.
  ErrorOr<std::unique_ptr<Module>>
  getStreamedBitcodeModule(StringRef Name,
                           std::unique_ptr<DataStreamer> Streamer,
                           LLVMContext &Context);

  /// Read the header of the specified bitcode buffer and extract just the
  /// triple information. If successful, this returns a string. On error, this
  /// returns "".
  std::string getBitcodeTargetTriple(MemoryBufferRef Buffer,
                                     LLVMContext &Context);

  /// Read the header of the specified bitcode buffer and extract just the
  /// producer string information. If successful, this returns a string. On
  /// error, this returns "".
  std::string getBitcodeProducerString(MemoryBufferRef Buffer,
                                       LLVMContext &Context);

  /// Read the specified bitcode file, returning the module.
  ErrorOr<std::unique_ptr<Module>> parseBitcodeFile(MemoryBufferRef Buffer,
                                                    LLVMContext &Context);

  /// Check if the given bitcode buffer contains a function summary block.
  bool hasFunctionSummary(MemoryBufferRef Buffer,
                          DiagnosticHandlerFunction DiagnosticHandler);

  /// Parse the specified bitcode buffer, returning the function info index.
  /// If IsLazy is true, parse the entire function summary into
  /// the index. Otherwise skip the function summary section, and only create
  /// an index object with a map from function name to function summary offset.
  /// The index is used to perform lazy function summary reading later.
  ErrorOr<std::unique_ptr<FunctionInfoIndex>>
  getFunctionInfoIndex(MemoryBufferRef Buffer,
                       DiagnosticHandlerFunction DiagnosticHandler,
                       bool IsLazy = false);

  /// This method supports lazy reading of function summary data from the
  /// combined index during function importing. When reading the combined index
  /// file, getFunctionInfoIndex is first invoked with IsLazy=true.
  /// Then this method is called for each function considered for importing,
  /// to parse the summary information for the given function name into
  /// the index.
  std::error_code readFunctionSummary(
      MemoryBufferRef Buffer, DiagnosticHandlerFunction DiagnosticHandler,
      StringRef FunctionName, std::unique_ptr<FunctionInfoIndex> Index);

  /// \brief Write the specified module to the specified raw output stream.
  ///
  /// For streams where it matters, the given stream should be in "binary"
  /// mode.
  ///
  /// If \c ShouldPreserveUseListOrder, encode the use-list order for each \a
  /// Value in \c M.  These will be reconstructed exactly when \a M is
  /// deserialized.
  ///
  /// If \c EmitFunctionSummary, emit the function summary index (currently
  /// for use in ThinLTO optimization).
  void WriteBitcodeToFile(const Module *M, raw_ostream &Out,
                          bool ShouldPreserveUseListOrder = false,
                          bool EmitFunctionSummary = false);

  /// Write the specified function summary index to the given raw output stream,
  /// where it will be written in a new bitcode block. This is used when
  /// writing the combined index file for ThinLTO.
  void WriteFunctionSummaryToFile(const FunctionInfoIndex &Index,
                                  raw_ostream &Out);

  /// isBitcodeWrapper - Return true if the given bytes are the magic bytes
  /// for an LLVM IR bitcode wrapper.
  ///
  inline bool isBitcodeWrapper(const unsigned char *BufPtr,
                               const unsigned char *BufEnd) {
    // See if you can find the hidden message in the magic bytes :-).
    // (Hint: it's a little-endian encoding.)
    return BufPtr != BufEnd &&
           BufPtr[0] == 0xDE &&
           BufPtr[1] == 0xC0 &&
           BufPtr[2] == 0x17 &&
           BufPtr[3] == 0x0B;
  }

  /// isRawBitcode - Return true if the given bytes are the magic bytes for
  /// raw LLVM IR bitcode (without a wrapper).
  ///
  inline bool isRawBitcode(const unsigned char *BufPtr,
                           const unsigned char *BufEnd) {
    // These bytes sort of have a hidden message, but it's not in
    // little-endian this time, and it's a little redundant.
    return BufPtr != BufEnd &&
           BufPtr[0] == 'B' &&
           BufPtr[1] == 'C' &&
           BufPtr[2] == 0xc0 &&
           BufPtr[3] == 0xde;
  }

  /// isBitcode - Return true if the given bytes are the magic bytes for
  /// LLVM IR bitcode, either with or without a wrapper.
  ///
  inline bool isBitcode(const unsigned char *BufPtr,
                        const unsigned char *BufEnd) {
    return isBitcodeWrapper(BufPtr, BufEnd) ||
           isRawBitcode(BufPtr, BufEnd);
  }

  /// SkipBitcodeWrapperHeader - Some systems wrap bc files with a special
  /// header for padding or other reasons.  The format of this header is:
  ///
  /// struct bc_header {
  ///   uint32_t Magic;         // 0x0B17C0DE
  ///   uint32_t Version;       // Version, currently always 0.
  ///   uint32_t BitcodeOffset; // Offset to traditional bitcode file.
  ///   uint32_t BitcodeSize;   // Size of traditional bitcode file.
  ///   ... potentially other gunk ...
  /// };
  ///
  /// This function is called when we find a file with a matching magic number.
  /// In this case, skip down to the subsection of the file that is actually a
  /// BC file.
  /// If 'VerifyBufferSize' is true, check that the buffer is large enough to
  /// contain the whole bitcode file.
  inline bool SkipBitcodeWrapperHeader(const unsigned char *&BufPtr,
                                       const unsigned char *&BufEnd,
                                       bool VerifyBufferSize) {
    enum {
      KnownHeaderSize = 4*4,  // Size of header we read.
      OffsetField = 2*4,      // Offset in bytes to Offset field.
      SizeField = 3*4         // Offset in bytes to Size field.
    };

    // Must contain the header!
    if (BufEnd-BufPtr < KnownHeaderSize) return true;

    unsigned Offset = support::endian::read32le(&BufPtr[OffsetField]);
    unsigned Size = support::endian::read32le(&BufPtr[SizeField]);

    // Verify that Offset+Size fits in the file.
    if (VerifyBufferSize && Offset+Size > unsigned(BufEnd-BufPtr))
      return true;
    BufPtr += Offset;
    BufEnd = BufPtr+Size;
    return false;
  }

  const std::error_category &BitcodeErrorCategory();
  enum class BitcodeError { InvalidBitcodeSignature = 1, CorruptedBitcode };
  inline std::error_code make_error_code(BitcodeError E) {
    return std::error_code(static_cast<int>(E), BitcodeErrorCategory());
  }

  class BitcodeDiagnosticInfo : public DiagnosticInfo {
    const Twine &Msg;
    std::error_code EC;

  public:
    BitcodeDiagnosticInfo(std::error_code EC, DiagnosticSeverity Severity,
                          const Twine &Msg);
    void print(DiagnosticPrinter &DP) const override;
    std::error_code getError() const { return EC; }

    static bool classof(const DiagnosticInfo *DI) {
      return DI->getKind() == DK_Bitcode;
    }
  };

} // End llvm namespace

namespace std {
template <> struct is_error_code_enum<llvm::BitcodeError> : std::true_type {};
}

#endif