This file is indexed.

/usr/include/libreoffice/rtl/math.hxx is in libreoffice-dev 1:5.1.2-0ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
 * This file is part of the LibreOffice project.
 *
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/.
 *
 * This file incorporates work covered by the following license notice:
 *
 *   Licensed to the Apache Software Foundation (ASF) under one or more
 *   contributor license agreements. See the NOTICE file distributed
 *   with this work for additional information regarding copyright
 *   ownership. The ASF licenses this file to you under the Apache
 *   License, Version 2.0 (the "License"); you may not use this file
 *   except in compliance with the License. You may obtain a copy of
 *   the License at http://www.apache.org/licenses/LICENSE-2.0 .
 */

#ifndef INCLUDED_RTL_MATH_HXX
#define INCLUDED_RTL_MATH_HXX

#include <rtl/math.h>
#include <rtl/string.hxx>
#include <rtl/ustring.hxx>
#include <rtl/ustrbuf.hxx>
#include <sal/mathconf.h>
#include <sal/types.h>

#include <cstddef>
#include <math.h>

namespace rtl {

namespace math {

/** A wrapper around rtl_math_doubleToString.
 */
inline rtl::OString doubleToString(double fValue, rtl_math_StringFormat eFormat,
                                   sal_Int32 nDecPlaces,
                                   sal_Char cDecSeparator,
                                   sal_Int32 const * pGroups,
                                   sal_Char cGroupSeparator,
                                   bool bEraseTrailingDecZeros = false)
{
    rtl::OString aResult;
    rtl_math_doubleToString(&aResult.pData, NULL, 0, fValue, eFormat, nDecPlaces,
                            cDecSeparator, pGroups, cGroupSeparator,
                            bEraseTrailingDecZeros);
    return aResult;
}

/** A wrapper around rtl_math_doubleToString, with no grouping.
 */
inline rtl::OString doubleToString(double fValue, rtl_math_StringFormat eFormat,
                                   sal_Int32 nDecPlaces,
                                   sal_Char cDecSeparator,
                                   bool bEraseTrailingDecZeros = false)
{
    rtl::OString aResult;
    rtl_math_doubleToString(&aResult.pData, NULL, 0, fValue, eFormat, nDecPlaces,
                            cDecSeparator, NULL, 0, bEraseTrailingDecZeros);
    return aResult;
}

/** A wrapper around rtl_math_doubleToUString.
 */
inline rtl::OUString doubleToUString(double fValue,
                                     rtl_math_StringFormat eFormat,
                                     sal_Int32 nDecPlaces,
                                     sal_Unicode cDecSeparator,
                                     sal_Int32 const * pGroups,
                                     sal_Unicode cGroupSeparator,
                                     bool bEraseTrailingDecZeros = false)
{
    rtl::OUString aResult;
    rtl_math_doubleToUString(&aResult.pData, NULL, 0, fValue, eFormat, nDecPlaces,
                             cDecSeparator, pGroups, cGroupSeparator,
                             bEraseTrailingDecZeros);
    return aResult;
}

/** A wrapper around rtl_math_doubleToUString, with no grouping.
 */
inline rtl::OUString doubleToUString(double fValue,
                                     rtl_math_StringFormat eFormat,
                                     sal_Int32 nDecPlaces,
                                     sal_Unicode cDecSeparator,
                                     bool bEraseTrailingDecZeros = false)
{
    rtl::OUString aResult;
    rtl_math_doubleToUString(&aResult.pData, NULL, 0, fValue, eFormat, nDecPlaces,
                             cDecSeparator, NULL, 0, bEraseTrailingDecZeros);
    return aResult;
}

/** A wrapper around rtl_math_doubleToUString that appends to an
    rtl::OUStringBuffer.
 */
inline void doubleToUStringBuffer( rtl::OUStringBuffer& rBuffer, double fValue,
                                   rtl_math_StringFormat eFormat,
                                   sal_Int32 nDecPlaces,
                                   sal_Unicode cDecSeparator,
                                   sal_Int32 const * pGroups,
                                   sal_Unicode cGroupSeparator,
                                   bool bEraseTrailingDecZeros = false)
{
    rtl_uString ** pData;
    sal_Int32 * pCapacity;
    rBuffer.accessInternals( &pData, &pCapacity );
    rtl_math_doubleToUString( pData, pCapacity, rBuffer.getLength(), fValue,
                              eFormat, nDecPlaces, cDecSeparator, pGroups,
                              cGroupSeparator, bEraseTrailingDecZeros);
}

/** A wrapper around rtl_math_doubleToUString that appends to an
    rtl::OUStringBuffer, with no grouping.
 */
inline void doubleToUStringBuffer( rtl::OUStringBuffer& rBuffer, double fValue,
                                   rtl_math_StringFormat eFormat,
                                   sal_Int32 nDecPlaces,
                                   sal_Unicode cDecSeparator,
                                   bool bEraseTrailingDecZeros = false)
{
    rtl_uString ** pData;
    sal_Int32 * pCapacity;
    rBuffer.accessInternals( &pData, &pCapacity );
    rtl_math_doubleToUString( pData, pCapacity, rBuffer.getLength(), fValue,
                              eFormat, nDecPlaces, cDecSeparator, NULL, 0,
                              bEraseTrailingDecZeros);
}

/** A wrapper around rtl_math_stringToDouble.
 */
inline double stringToDouble(rtl::OString const & rString,
                             sal_Char cDecSeparator, sal_Char cGroupSeparator,
                             rtl_math_ConversionStatus * pStatus = NULL,
                             sal_Int32 * pParsedEnd = NULL)
{
    sal_Char const * pBegin = rString.getStr();
    sal_Char const * pEnd;
    double fResult = rtl_math_stringToDouble(pBegin,
                                             pBegin + rString.getLength(),
                                             cDecSeparator, cGroupSeparator,
                                             pStatus, &pEnd);
    if (pParsedEnd != NULL)
        *pParsedEnd = (sal_Int32)(pEnd - pBegin);
    return fResult;
}

/** A wrapper around rtl_math_uStringToDouble.
 */
inline double stringToDouble(rtl::OUString const & rString,
                             sal_Unicode cDecSeparator,
                             sal_Unicode cGroupSeparator,
                             rtl_math_ConversionStatus * pStatus = NULL,
                             sal_Int32 * pParsedEnd = NULL)
{
    sal_Unicode const * pBegin = rString.getStr();
    sal_Unicode const * pEnd;
    double fResult = rtl_math_uStringToDouble(pBegin,
                                              pBegin + rString.getLength(),
                                              cDecSeparator, cGroupSeparator,
                                              pStatus, &pEnd);
    if (pParsedEnd != NULL)
        *pParsedEnd = (sal_Int32)(pEnd - pBegin);
    return fResult;
}

/** A wrapper around rtl_math_round.
 */
inline double round(
    double fValue, int nDecPlaces = 0,
    rtl_math_RoundingMode eMode = rtl_math_RoundingMode_Corrected)
{
    return rtl_math_round(fValue, nDecPlaces, eMode);
}

/** A wrapper around rtl_math_pow10Exp.
 */
inline double pow10Exp(double fValue, int nExp)
{
    return rtl_math_pow10Exp(fValue, nExp);
}

/** A wrapper around rtl_math_approxValue.
 */
inline double approxValue(double fValue)
{
    return rtl_math_approxValue(fValue);
}

/** A wrapper around rtl_math_expm1.
 */
inline double expm1(double fValue)
{
    return rtl_math_expm1(fValue);
}

/** A wrapper around rtl_math_log1p.
 */
inline double log1p(double fValue)
{
    return rtl_math_log1p(fValue);
}

/** A wrapper around rtl_math_atanh.
 */
inline double atanh(double fValue)
{
    return rtl_math_atanh(fValue);
}

/** A wrapper around rtl_math_erf.
 */
inline double erf(double fValue)
{
    return rtl_math_erf(fValue);
}

/** A wrapper around rtl_math_erfc.
 */
inline double erfc(double fValue)
{
    return rtl_math_erfc(fValue);
}

/** A wrapper around rtl_math_asinh.
 */
inline double asinh(double fValue)
{
    return rtl_math_asinh(fValue);
}

/** A wrapper around rtl_math_acosh.
 */
inline double acosh(double fValue)
{
    return rtl_math_acosh(fValue);
}


/** Test equality of two values with an accuracy of the magnitude of the
    given values scaled by 2^-48 (4 bits roundoff stripped).

    @attention
    approxEqual( value!=0.0, 0.0 ) _never_ yields true.
 */
inline bool approxEqual(double a, double b)
{
    if ( a == b )
        return true;
    double x = a - b;
    return (x < 0.0 ? -x : x)
        < ((a < 0.0 ? -a : a) * (1.0 / (16777216.0 * 16777216.0)));
}

/** Test equality of two values with an accuracy defined by nPrec

    @attention
    approxEqual( value!=0.0, 0.0 ) _never_ yields true.
 */
inline bool approxEqual(double a, double b, sal_Int16 nPrec)
{
    if ( a == b )
        return true;
    double x = a - b;
    return (x < 0.0 ? -x : x)
        < ((a < 0.0 ? -a : a) * (1.0 / (pow(static_cast<double>(2.0), nPrec))));
}
/** Add two values.

    If signs differ and the absolute values are equal according to approxEqual()
    the method returns 0.0 instead of calculating the sum.

    If you wanted to sum up multiple values it would be convenient not to call
    approxAdd() for each value but instead remember the first value not equal to
    0.0, add all other values using normal + operator, and with the result and
    the remembered value call approxAdd().
 */
inline double approxAdd(double a, double b)
{
    if ( ((a < 0.0 && b > 0.0) || (b < 0.0 && a > 0.0))
         && approxEqual( a, -b ) )
        return 0.0;
    return a + b;
}

/** Subtract two values (a-b).

    If signs are identical and the values are equal according to approxEqual()
    the method returns 0.0 instead of calculating the subtraction.
 */
inline double approxSub(double a, double b)
{
    if ( ((a < 0.0 && b < 0.0) || (a > 0.0 && b > 0.0)) && approxEqual( a, b ) )
        return 0.0;
    return a - b;
}

/** floor() method taking approxValue() into account.

    Use for expected integer values being calculated by double functions.
 */
inline double approxFloor(double a)
{
    return floor( approxValue( a ));
}

/** ceil() method taking approxValue() into account.

    Use for expected integer values being calculated by double functions.
 */
inline double approxCeil(double a)
{
    return ceil( approxValue( a ));
}

/** Tests whether a value is neither INF nor NAN.
 */
inline bool isFinite(double d)
{
    return SAL_MATH_FINITE(d);
}

/** If a value represents +INF or -INF.

    The sign bit may be queried with isSignBitSet().

    If isFinite(d)==false and isInf(d)==false then NAN.
 */
inline bool isInf(double d)
{
    // exponent==0x7ff fraction==0
    return !SAL_MATH_FINITE(d) &&
        (reinterpret_cast< sal_math_Double * >(&d)->inf_parts.fraction_hi == 0)
        && (reinterpret_cast< sal_math_Double * >(&d)->inf_parts.fraction_lo
            == 0);
}

/** Test on any QNAN or SNAN.
 */
inline bool isNan(double d)
{
    // exponent==0x7ff fraction!=0
    return !SAL_MATH_FINITE(d) && (
        (reinterpret_cast< sal_math_Double * >(&d)->inf_parts.fraction_hi != 0)
        || (reinterpret_cast< sal_math_Double * >(&d)->inf_parts.fraction_lo
            != 0) );
}

/** If the sign bit is set.
 */
inline bool isSignBitSet(double d)
{
    return reinterpret_cast< sal_math_Double * >(&d)->inf_parts.sign != 0;
}

/** Set to +INF if bNegative==false or -INF if bNegative==true.
 */
inline void setInf(double * pd, bool bNegative)
{
    union
    {
        double sd;
        sal_math_Double md;
    };
    md.w32_parts.msw = bNegative ? 0xFFF00000 : 0x7FF00000;
    md.w32_parts.lsw = 0;
    *pd = sd;
}

/** Set a QNAN.
 */
inline void setNan(double * pd)
{
    union
    {
        double sd;
        sal_math_Double md;
    };
    md.w32_parts.msw = 0x7FFFFFFF;
    md.w32_parts.lsw = 0xFFFFFFFF;
    *pd = sd;
}

/** If a value is a valid argument for sin(), cos(), tan().

    IEEE 754 specifies that absolute values up to 2^64 (=1.844e19) for the
    radian must be supported by trigonometric functions.  Unfortunately, at
    least on x86 architectures, the FPU doesn't generate an error pattern for
    values >2^64 but produces erroneous results instead and sets only the
    "invalid operation" (IM) flag in the status word :-(  Thus the application
    has to handle it itself.
 */
inline bool isValidArcArg(double d)
{
    return fabs(d)
        <= (static_cast< double >(static_cast< unsigned long >(0x80000000))
            * static_cast< double >(static_cast< unsigned long >(0x80000000))
            * 2);
}

/** Safe sin(), returns NAN if not valid.
 */
inline double sin(double d)
{
    if ( isValidArcArg( d ) )
        return ::sin( d );
    setNan( &d );
    return d;
}

/** Safe cos(), returns NAN if not valid.
 */
inline double cos(double d)
{
    if ( isValidArcArg( d ) )
        return ::cos( d );
    setNan( &d );
    return d;
}

/** Safe tan(), returns NAN if not valid.
 */
inline double tan(double d)
{
    if ( isValidArcArg( d ) )
        return ::tan( d );
    setNan( &d );
    return d;
}

}

}

#endif // INCLUDED_RTL_MATH_HXX

/* vim:set shiftwidth=4 softtabstop=4 expandtab: */