This file is indexed.

/usr/lib/python2.7/lib2to3/pytree.py is in libpython2.7-stdlib 2.7.11-7ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
# Copyright 2006 Google, Inc. All Rights Reserved.
# Licensed to PSF under a Contributor Agreement.

"""
Python parse tree definitions.

This is a very concrete parse tree; we need to keep every token and
even the comments and whitespace between tokens.

There's also a pattern matching implementation here.
"""

__author__ = "Guido van Rossum <guido@python.org>"

import sys
import warnings
from StringIO import StringIO

HUGE = 0x7FFFFFFF  # maximum repeat count, default max

_type_reprs = {}
def type_repr(type_num):
    global _type_reprs
    if not _type_reprs:
        from .pygram import python_symbols
        # printing tokens is possible but not as useful
        # from .pgen2 import token // token.__dict__.items():
        for name, val in python_symbols.__dict__.items():
            if type(val) == int: _type_reprs[val] = name
    return _type_reprs.setdefault(type_num, type_num)

class Base(object):

    """
    Abstract base class for Node and Leaf.

    This provides some default functionality and boilerplate using the
    template pattern.

    A node may be a subnode of at most one parent.
    """

    # Default values for instance variables
    type = None    # int: token number (< 256) or symbol number (>= 256)
    parent = None  # Parent node pointer, or None
    children = ()  # Tuple of subnodes
    was_changed = False
    was_checked = False

    def __new__(cls, *args, **kwds):
        """Constructor that prevents Base from being instantiated."""
        assert cls is not Base, "Cannot instantiate Base"
        return object.__new__(cls)

    def __eq__(self, other):
        """
        Compare two nodes for equality.

        This calls the method _eq().
        """
        if self.__class__ is not other.__class__:
            return NotImplemented
        return self._eq(other)

    __hash__ = None # For Py3 compatibility.

    def __ne__(self, other):
        """
        Compare two nodes for inequality.

        This calls the method _eq().
        """
        if self.__class__ is not other.__class__:
            return NotImplemented
        return not self._eq(other)

    def _eq(self, other):
        """
        Compare two nodes for equality.

        This is called by __eq__ and __ne__.  It is only called if the two nodes
        have the same type.  This must be implemented by the concrete subclass.
        Nodes should be considered equal if they have the same structure,
        ignoring the prefix string and other context information.
        """
        raise NotImplementedError

    def clone(self):
        """
        Return a cloned (deep) copy of self.

        This must be implemented by the concrete subclass.
        """
        raise NotImplementedError

    def post_order(self):
        """
        Return a post-order iterator for the tree.

        This must be implemented by the concrete subclass.
        """
        raise NotImplementedError

    def pre_order(self):
        """
        Return a pre-order iterator for the tree.

        This must be implemented by the concrete subclass.
        """
        raise NotImplementedError

    def set_prefix(self, prefix):
        """
        Set the prefix for the node (see Leaf class).

        DEPRECATED; use the prefix property directly.
        """
        warnings.warn("set_prefix() is deprecated; use the prefix property",
                      DeprecationWarning, stacklevel=2)
        self.prefix = prefix

    def get_prefix(self):
        """
        Return the prefix for the node (see Leaf class).

        DEPRECATED; use the prefix property directly.
        """
        warnings.warn("get_prefix() is deprecated; use the prefix property",
                      DeprecationWarning, stacklevel=2)
        return self.prefix

    def replace(self, new):
        """Replace this node with a new one in the parent."""
        assert self.parent is not None, str(self)
        assert new is not None
        if not isinstance(new, list):
            new = [new]
        l_children = []
        found = False
        for ch in self.parent.children:
            if ch is self:
                assert not found, (self.parent.children, self, new)
                if new is not None:
                    l_children.extend(new)
                found = True
            else:
                l_children.append(ch)
        assert found, (self.children, self, new)
        self.parent.changed()
        self.parent.children = l_children
        for x in new:
            x.parent = self.parent
        self.parent = None

    def get_lineno(self):
        """Return the line number which generated the invocant node."""
        node = self
        while not isinstance(node, Leaf):
            if not node.children:
                return
            node = node.children[0]
        return node.lineno

    def changed(self):
        if self.parent:
            self.parent.changed()
        self.was_changed = True

    def remove(self):
        """
        Remove the node from the tree. Returns the position of the node in its
        parent's children before it was removed.
        """
        if self.parent:
            for i, node in enumerate(self.parent.children):
                if node is self:
                    self.parent.changed()
                    del self.parent.children[i]
                    self.parent = None
                    return i

    @property
    def next_sibling(self):
        """
        The node immediately following the invocant in their parent's children
        list. If the invocant does not have a next sibling, it is None
        """
        if self.parent is None:
            return None

        # Can't use index(); we need to test by identity
        for i, child in enumerate(self.parent.children):
            if child is self:
                try:
                    return self.parent.children[i+1]
                except IndexError:
                    return None

    @property
    def prev_sibling(self):
        """
        The node immediately preceding the invocant in their parent's children
        list. If the invocant does not have a previous sibling, it is None.
        """
        if self.parent is None:
            return None

        # Can't use index(); we need to test by identity
        for i, child in enumerate(self.parent.children):
            if child is self:
                if i == 0:
                    return None
                return self.parent.children[i-1]

    def leaves(self):
        for child in self.children:
            for x in child.leaves():
                yield x

    def depth(self):
        if self.parent is None:
            return 0
        return 1 + self.parent.depth()

    def get_suffix(self):
        """
        Return the string immediately following the invocant node. This is
        effectively equivalent to node.next_sibling.prefix
        """
        next_sib = self.next_sibling
        if next_sib is None:
            return u""
        return next_sib.prefix

    if sys.version_info < (3, 0):
        def __str__(self):
            return unicode(self).encode("ascii")

class Node(Base):

    """Concrete implementation for interior nodes."""

    def __init__(self,type, children,
                 context=None,
                 prefix=None,
                 fixers_applied=None):
        """
        Initializer.

        Takes a type constant (a symbol number >= 256), a sequence of
        child nodes, and an optional context keyword argument.

        As a side effect, the parent pointers of the children are updated.
        """
        assert type >= 256, type
        self.type = type
        self.children = list(children)
        for ch in self.children:
            assert ch.parent is None, repr(ch)
            ch.parent = self
        if prefix is not None:
            self.prefix = prefix
        if fixers_applied:
            self.fixers_applied = fixers_applied[:]
        else:
            self.fixers_applied = None

    def __repr__(self):
        """Return a canonical string representation."""
        return "%s(%s, %r)" % (self.__class__.__name__,
                               type_repr(self.type),
                               self.children)

    def __unicode__(self):
        """
        Return a pretty string representation.

        This reproduces the input source exactly.
        """
        return u"".join(map(unicode, self.children))

    if sys.version_info > (3, 0):
        __str__ = __unicode__

    def _eq(self, other):
        """Compare two nodes for equality."""
        return (self.type, self.children) == (other.type, other.children)

    def clone(self):
        """Return a cloned (deep) copy of self."""
        return Node(self.type, [ch.clone() for ch in self.children],
                    fixers_applied=self.fixers_applied)

    def post_order(self):
        """Return a post-order iterator for the tree."""
        for child in self.children:
            for node in child.post_order():
                yield node
        yield self

    def pre_order(self):
        """Return a pre-order iterator for the tree."""
        yield self
        for child in self.children:
            for node in child.pre_order():
                yield node

    def _prefix_getter(self):
        """
        The whitespace and comments preceding this node in the input.
        """
        if not self.children:
            return ""
        return self.children[0].prefix

    def _prefix_setter(self, prefix):
        if self.children:
            self.children[0].prefix = prefix

    prefix = property(_prefix_getter, _prefix_setter)

    def set_child(self, i, child):
        """
        Equivalent to 'node.children[i] = child'. This method also sets the
        child's parent attribute appropriately.
        """
        child.parent = self
        self.children[i].parent = None
        self.children[i] = child
        self.changed()

    def insert_child(self, i, child):
        """
        Equivalent to 'node.children.insert(i, child)'. This method also sets
        the child's parent attribute appropriately.
        """
        child.parent = self
        self.children.insert(i, child)
        self.changed()

    def append_child(self, child):
        """
        Equivalent to 'node.children.append(child)'. This method also sets the
        child's parent attribute appropriately.
        """
        child.parent = self
        self.children.append(child)
        self.changed()


class Leaf(Base):

    """Concrete implementation for leaf nodes."""

    # Default values for instance variables
    _prefix = ""  # Whitespace and comments preceding this token in the input
    lineno = 0    # Line where this token starts in the input
    column = 0    # Column where this token tarts in the input

    def __init__(self, type, value,
                 context=None,
                 prefix=None,
                 fixers_applied=[]):
        """
        Initializer.

        Takes a type constant (a token number < 256), a string value, and an
        optional context keyword argument.
        """
        assert 0 <= type < 256, type
        if context is not None:
            self._prefix, (self.lineno, self.column) = context
        self.type = type
        self.value = value
        if prefix is not None:
            self._prefix = prefix
        self.fixers_applied = fixers_applied[:]

    def __repr__(self):
        """Return a canonical string representation."""
        return "%s(%r, %r)" % (self.__class__.__name__,
                               self.type,
                               self.value)

    def __unicode__(self):
        """
        Return a pretty string representation.

        This reproduces the input source exactly.
        """
        return self.prefix + unicode(self.value)

    if sys.version_info > (3, 0):
        __str__ = __unicode__

    def _eq(self, other):
        """Compare two nodes for equality."""
        return (self.type, self.value) == (other.type, other.value)

    def clone(self):
        """Return a cloned (deep) copy of self."""
        return Leaf(self.type, self.value,
                    (self.prefix, (self.lineno, self.column)),
                    fixers_applied=self.fixers_applied)

    def leaves(self):
        yield self

    def post_order(self):
        """Return a post-order iterator for the tree."""
        yield self

    def pre_order(self):
        """Return a pre-order iterator for the tree."""
        yield self

    def _prefix_getter(self):
        """
        The whitespace and comments preceding this token in the input.
        """
        return self._prefix

    def _prefix_setter(self, prefix):
        self.changed()
        self._prefix = prefix

    prefix = property(_prefix_getter, _prefix_setter)

def convert(gr, raw_node):
    """
    Convert raw node information to a Node or Leaf instance.

    This is passed to the parser driver which calls it whenever a reduction of a
    grammar rule produces a new complete node, so that the tree is build
    strictly bottom-up.
    """
    type, value, context, children = raw_node
    if children or type in gr.number2symbol:
        # If there's exactly one child, return that child instead of
        # creating a new node.
        if len(children) == 1:
            return children[0]
        return Node(type, children, context=context)
    else:
        return Leaf(type, value, context=context)


class BasePattern(object):

    """
    A pattern is a tree matching pattern.

    It looks for a specific node type (token or symbol), and
    optionally for a specific content.

    This is an abstract base class.  There are three concrete
    subclasses:

    - LeafPattern matches a single leaf node;
    - NodePattern matches a single node (usually non-leaf);
    - WildcardPattern matches a sequence of nodes of variable length.
    """

    # Defaults for instance variables
    type = None     # Node type (token if < 256, symbol if >= 256)
    content = None  # Optional content matching pattern
    name = None     # Optional name used to store match in results dict

    def __new__(cls, *args, **kwds):
        """Constructor that prevents BasePattern from being instantiated."""
        assert cls is not BasePattern, "Cannot instantiate BasePattern"
        return object.__new__(cls)

    def __repr__(self):
        args = [type_repr(self.type), self.content, self.name]
        while args and args[-1] is None:
            del args[-1]
        return "%s(%s)" % (self.__class__.__name__, ", ".join(map(repr, args)))

    def optimize(self):
        """
        A subclass can define this as a hook for optimizations.

        Returns either self or another node with the same effect.
        """
        return self

    def match(self, node, results=None):
        """
        Does this pattern exactly match a node?

        Returns True if it matches, False if not.

        If results is not None, it must be a dict which will be
        updated with the nodes matching named subpatterns.

        Default implementation for non-wildcard patterns.
        """
        if self.type is not None and node.type != self.type:
            return False
        if self.content is not None:
            r = None
            if results is not None:
                r = {}
            if not self._submatch(node, r):
                return False
            if r:
                results.update(r)
        if results is not None and self.name:
            results[self.name] = node
        return True

    def match_seq(self, nodes, results=None):
        """
        Does this pattern exactly match a sequence of nodes?

        Default implementation for non-wildcard patterns.
        """
        if len(nodes) != 1:
            return False
        return self.match(nodes[0], results)

    def generate_matches(self, nodes):
        """
        Generator yielding all matches for this pattern.

        Default implementation for non-wildcard patterns.
        """
        r = {}
        if nodes and self.match(nodes[0], r):
            yield 1, r


class LeafPattern(BasePattern):

    def __init__(self, type=None, content=None, name=None):
        """
        Initializer.  Takes optional type, content, and name.

        The type, if given must be a token type (< 256).  If not given,
        this matches any *leaf* node; the content may still be required.

        The content, if given, must be a string.

        If a name is given, the matching node is stored in the results
        dict under that key.
        """
        if type is not None:
            assert 0 <= type < 256, type
        if content is not None:
            assert isinstance(content, basestring), repr(content)
        self.type = type
        self.content = content
        self.name = name

    def match(self, node, results=None):
        """Override match() to insist on a leaf node."""
        if not isinstance(node, Leaf):
            return False
        return BasePattern.match(self, node, results)

    def _submatch(self, node, results=None):
        """
        Match the pattern's content to the node's children.

        This assumes the node type matches and self.content is not None.

        Returns True if it matches, False if not.

        If results is not None, it must be a dict which will be
        updated with the nodes matching named subpatterns.

        When returning False, the results dict may still be updated.
        """
        return self.content == node.value


class NodePattern(BasePattern):

    wildcards = False

    def __init__(self, type=None, content=None, name=None):
        """
        Initializer.  Takes optional type, content, and name.

        The type, if given, must be a symbol type (>= 256).  If the
        type is None this matches *any* single node (leaf or not),
        except if content is not None, in which it only matches
        non-leaf nodes that also match the content pattern.

        The content, if not None, must be a sequence of Patterns that
        must match the node's children exactly.  If the content is
        given, the type must not be None.

        If a name is given, the matching node is stored in the results
        dict under that key.
        """
        if type is not None:
            assert type >= 256, type
        if content is not None:
            assert not isinstance(content, basestring), repr(content)
            content = list(content)
            for i, item in enumerate(content):
                assert isinstance(item, BasePattern), (i, item)
                if isinstance(item, WildcardPattern):
                    self.wildcards = True
        self.type = type
        self.content = content
        self.name = name

    def _submatch(self, node, results=None):
        """
        Match the pattern's content to the node's children.

        This assumes the node type matches and self.content is not None.

        Returns True if it matches, False if not.

        If results is not None, it must be a dict which will be
        updated with the nodes matching named subpatterns.

        When returning False, the results dict may still be updated.
        """
        if self.wildcards:
            for c, r in generate_matches(self.content, node.children):
                if c == len(node.children):
                    if results is not None:
                        results.update(r)
                    return True
            return False
        if len(self.content) != len(node.children):
            return False
        for subpattern, child in zip(self.content, node.children):
            if not subpattern.match(child, results):
                return False
        return True


class WildcardPattern(BasePattern):

    """
    A wildcard pattern can match zero or more nodes.

    This has all the flexibility needed to implement patterns like:

    .*      .+      .?      .{m,n}
    (a b c | d e | f)
    (...)*  (...)+  (...)?  (...){m,n}

    except it always uses non-greedy matching.
    """

    def __init__(self, content=None, min=0, max=HUGE, name=None):
        """
        Initializer.

        Args:
            content: optional sequence of subsequences of patterns;
                     if absent, matches one node;
                     if present, each subsequence is an alternative [*]
            min: optional minimum number of times to match, default 0
            max: optional maximum number of times to match, default HUGE
            name: optional name assigned to this match

        [*] Thus, if content is [[a, b, c], [d, e], [f, g, h]] this is
            equivalent to (a b c | d e | f g h); if content is None,
            this is equivalent to '.' in regular expression terms.
            The min and max parameters work as follows:
                min=0, max=maxint: .*
                min=1, max=maxint: .+
                min=0, max=1: .?
                min=1, max=1: .
            If content is not None, replace the dot with the parenthesized
            list of alternatives, e.g. (a b c | d e | f g h)*
        """
        assert 0 <= min <= max <= HUGE, (min, max)
        if content is not None:
            content = tuple(map(tuple, content))  # Protect against alterations
            # Check sanity of alternatives
            assert len(content), repr(content)  # Can't have zero alternatives
            for alt in content:
                assert len(alt), repr(alt) # Can have empty alternatives
        self.content = content
        self.min = min
        self.max = max
        self.name = name

    def optimize(self):
        """Optimize certain stacked wildcard patterns."""
        subpattern = None
        if (self.content is not None and
            len(self.content) == 1 and len(self.content[0]) == 1):
            subpattern = self.content[0][0]
        if self.min == 1 and self.max == 1:
            if self.content is None:
                return NodePattern(name=self.name)
            if subpattern is not None and  self.name == subpattern.name:
                return subpattern.optimize()
        if (self.min <= 1 and isinstance(subpattern, WildcardPattern) and
            subpattern.min <= 1 and self.name == subpattern.name):
            return WildcardPattern(subpattern.content,
                                   self.min*subpattern.min,
                                   self.max*subpattern.max,
                                   subpattern.name)
        return self

    def match(self, node, results=None):
        """Does this pattern exactly match a node?"""
        return self.match_seq([node], results)

    def match_seq(self, nodes, results=None):
        """Does this pattern exactly match a sequence of nodes?"""
        for c, r in self.generate_matches(nodes):
            if c == len(nodes):
                if results is not None:
                    results.update(r)
                    if self.name:
                        results[self.name] = list(nodes)
                return True
        return False

    def generate_matches(self, nodes):
        """
        Generator yielding matches for a sequence of nodes.

        Args:
            nodes: sequence of nodes

        Yields:
            (count, results) tuples where:
            count: the match comprises nodes[:count];
            results: dict containing named submatches.
        """
        if self.content is None:
            # Shortcut for special case (see __init__.__doc__)
            for count in xrange(self.min, 1 + min(len(nodes), self.max)):
                r = {}
                if self.name:
                    r[self.name] = nodes[:count]
                yield count, r
        elif self.name == "bare_name":
            yield self._bare_name_matches(nodes)
        else:
            # The reason for this is that hitting the recursion limit usually
            # results in some ugly messages about how RuntimeErrors are being
            # ignored. We don't do this on non-CPython implementation because
            # they don't have this problem.
            if hasattr(sys, "getrefcount"):
                save_stderr = sys.stderr
                sys.stderr = StringIO()
            try:
                for count, r in self._recursive_matches(nodes, 0):
                    if self.name:
                        r[self.name] = nodes[:count]
                    yield count, r
            except RuntimeError:
                # We fall back to the iterative pattern matching scheme if the recursive
                # scheme hits the recursion limit.
                for count, r in self._iterative_matches(nodes):
                    if self.name:
                        r[self.name] = nodes[:count]
                    yield count, r
            finally:
                if hasattr(sys, "getrefcount"):
                    sys.stderr = save_stderr

    def _iterative_matches(self, nodes):
        """Helper to iteratively yield the matches."""
        nodelen = len(nodes)
        if 0 >= self.min:
            yield 0, {}

        results = []
        # generate matches that use just one alt from self.content
        for alt in self.content:
            for c, r in generate_matches(alt, nodes):
                yield c, r
                results.append((c, r))

        # for each match, iterate down the nodes
        while results:
            new_results = []
            for c0, r0 in results:
                # stop if the entire set of nodes has been matched
                if c0 < nodelen and c0 <= self.max:
                    for alt in self.content:
                        for c1, r1 in generate_matches(alt, nodes[c0:]):
                            if c1 > 0:
                                r = {}
                                r.update(r0)
                                r.update(r1)
                                yield c0 + c1, r
                                new_results.append((c0 + c1, r))
            results = new_results

    def _bare_name_matches(self, nodes):
        """Special optimized matcher for bare_name."""
        count = 0
        r = {}
        done = False
        max = len(nodes)
        while not done and count < max:
            done = True
            for leaf in self.content:
                if leaf[0].match(nodes[count], r):
                    count += 1
                    done = False
                    break
        r[self.name] = nodes[:count]
        return count, r

    def _recursive_matches(self, nodes, count):
        """Helper to recursively yield the matches."""
        assert self.content is not None
        if count >= self.min:
            yield 0, {}
        if count < self.max:
            for alt in self.content:
                for c0, r0 in generate_matches(alt, nodes):
                    for c1, r1 in self._recursive_matches(nodes[c0:], count+1):
                        r = {}
                        r.update(r0)
                        r.update(r1)
                        yield c0 + c1, r


class NegatedPattern(BasePattern):

    def __init__(self, content=None):
        """
        Initializer.

        The argument is either a pattern or None.  If it is None, this
        only matches an empty sequence (effectively '$' in regex
        lingo).  If it is not None, this matches whenever the argument
        pattern doesn't have any matches.
        """
        if content is not None:
            assert isinstance(content, BasePattern), repr(content)
        self.content = content

    def match(self, node):
        # We never match a node in its entirety
        return False

    def match_seq(self, nodes):
        # We only match an empty sequence of nodes in its entirety
        return len(nodes) == 0

    def generate_matches(self, nodes):
        if self.content is None:
            # Return a match if there is an empty sequence
            if len(nodes) == 0:
                yield 0, {}
        else:
            # Return a match if the argument pattern has no matches
            for c, r in self.content.generate_matches(nodes):
                return
            yield 0, {}


def generate_matches(patterns, nodes):
    """
    Generator yielding matches for a sequence of patterns and nodes.

    Args:
        patterns: a sequence of patterns
        nodes: a sequence of nodes

    Yields:
        (count, results) tuples where:
        count: the entire sequence of patterns matches nodes[:count];
        results: dict containing named submatches.
        """
    if not patterns:
        yield 0, {}
    else:
        p, rest = patterns[0], patterns[1:]
        for c0, r0 in p.generate_matches(nodes):
            if not rest:
                yield c0, r0
            else:
                for c1, r1 in generate_matches(rest, nodes[c0:]):
                    r = {}
                    r.update(r0)
                    r.update(r1)
                    yield c0 + c1, r