/usr/include/google/protobuf/extension_set.h is in libprotobuf-dev 2.6.1-1.3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 | // Protocol Buffers - Google's data interchange format
// Copyright 2008 Google Inc. All rights reserved.
// https://developers.google.com/protocol-buffers/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// Author: kenton@google.com (Kenton Varda)
// Based on original Protocol Buffers design by
// Sanjay Ghemawat, Jeff Dean, and others.
//
// This header is logically internal, but is made public because it is used
// from protocol-compiler-generated code, which may reside in other components.
#ifndef GOOGLE_PROTOBUF_EXTENSION_SET_H__
#define GOOGLE_PROTOBUF_EXTENSION_SET_H__
#include <vector>
#include <map>
#include <utility>
#include <string>
#include <google/protobuf/stubs/common.h>
#include <google/protobuf/repeated_field.h>
namespace google {
namespace protobuf {
class Descriptor; // descriptor.h
class FieldDescriptor; // descriptor.h
class DescriptorPool; // descriptor.h
class MessageLite; // message_lite.h
class Message; // message.h
class MessageFactory; // message.h
class UnknownFieldSet; // unknown_field_set.h
namespace io {
class CodedInputStream; // coded_stream.h
class CodedOutputStream; // coded_stream.h
}
namespace internal {
class FieldSkipper; // wire_format_lite.h
}
}
namespace protobuf {
namespace internal {
// Used to store values of type WireFormatLite::FieldType without having to
// #include wire_format_lite.h. Also, ensures that we use only one byte to
// store these values, which is important to keep the layout of
// ExtensionSet::Extension small.
typedef uint8 FieldType;
// A function which, given an integer value, returns true if the number
// matches one of the defined values for the corresponding enum type. This
// is used with RegisterEnumExtension, below.
typedef bool EnumValidityFunc(int number);
// Version of the above which takes an argument. This is needed to deal with
// extensions that are not compiled in.
typedef bool EnumValidityFuncWithArg(const void* arg, int number);
// Information about a registered extension.
struct ExtensionInfo {
inline ExtensionInfo() {}
inline ExtensionInfo(FieldType type_param, bool isrepeated, bool ispacked)
: type(type_param), is_repeated(isrepeated), is_packed(ispacked),
descriptor(NULL) {}
FieldType type;
bool is_repeated;
bool is_packed;
struct EnumValidityCheck {
EnumValidityFuncWithArg* func;
const void* arg;
};
union {
EnumValidityCheck enum_validity_check;
const MessageLite* message_prototype;
};
// The descriptor for this extension, if one exists and is known. May be
// NULL. Must not be NULL if the descriptor for the extension does not
// live in the same pool as the descriptor for the containing type.
const FieldDescriptor* descriptor;
};
// Abstract interface for an object which looks up extension definitions. Used
// when parsing.
class LIBPROTOBUF_EXPORT ExtensionFinder {
public:
virtual ~ExtensionFinder();
// Find the extension with the given containing type and number.
virtual bool Find(int number, ExtensionInfo* output) = 0;
};
// Implementation of ExtensionFinder which finds extensions defined in .proto
// files which have been compiled into the binary.
class LIBPROTOBUF_EXPORT GeneratedExtensionFinder : public ExtensionFinder {
public:
GeneratedExtensionFinder(const MessageLite* containing_type)
: containing_type_(containing_type) {}
virtual ~GeneratedExtensionFinder() {}
// Returns true and fills in *output if found, otherwise returns false.
virtual bool Find(int number, ExtensionInfo* output);
private:
const MessageLite* containing_type_;
};
// A FieldSkipper used for parsing MessageSet.
class MessageSetFieldSkipper;
// Note: extension_set_heavy.cc defines DescriptorPoolExtensionFinder for
// finding extensions from a DescriptorPool.
// This is an internal helper class intended for use within the protocol buffer
// library and generated classes. Clients should not use it directly. Instead,
// use the generated accessors such as GetExtension() of the class being
// extended.
//
// This class manages extensions for a protocol message object. The
// message's HasExtension(), GetExtension(), MutableExtension(), and
// ClearExtension() methods are just thin wrappers around the embedded
// ExtensionSet. When parsing, if a tag number is encountered which is
// inside one of the message type's extension ranges, the tag is passed
// off to the ExtensionSet for parsing. Etc.
class LIBPROTOBUF_EXPORT ExtensionSet {
public:
ExtensionSet();
~ExtensionSet();
// These are called at startup by protocol-compiler-generated code to
// register known extensions. The registrations are used by ParseField()
// to look up extensions for parsed field numbers. Note that dynamic parsing
// does not use ParseField(); only protocol-compiler-generated parsing
// methods do.
static void RegisterExtension(const MessageLite* containing_type,
int number, FieldType type,
bool is_repeated, bool is_packed);
static void RegisterEnumExtension(const MessageLite* containing_type,
int number, FieldType type,
bool is_repeated, bool is_packed,
EnumValidityFunc* is_valid);
static void RegisterMessageExtension(const MessageLite* containing_type,
int number, FieldType type,
bool is_repeated, bool is_packed,
const MessageLite* prototype);
// =================================================================
// Add all fields which are currently present to the given vector. This
// is useful to implement Reflection::ListFields().
void AppendToList(const Descriptor* containing_type,
const DescriptorPool* pool,
vector<const FieldDescriptor*>* output) const;
// =================================================================
// Accessors
//
// Generated message classes include type-safe templated wrappers around
// these methods. Generally you should use those rather than call these
// directly, unless you are doing low-level memory management.
//
// When calling any of these accessors, the extension number requested
// MUST exist in the DescriptorPool provided to the constructor. Otheriwse,
// the method will fail an assert. Normally, though, you would not call
// these directly; you would either call the generated accessors of your
// message class (e.g. GetExtension()) or you would call the accessors
// of the reflection interface. In both cases, it is impossible to
// trigger this assert failure: the generated accessors only accept
// linked-in extension types as parameters, while the Reflection interface
// requires you to provide the FieldDescriptor describing the extension.
//
// When calling any of these accessors, a protocol-compiler-generated
// implementation of the extension corresponding to the number MUST
// be linked in, and the FieldDescriptor used to refer to it MUST be
// the one generated by that linked-in code. Otherwise, the method will
// die on an assert failure. The message objects returned by the message
// accessors are guaranteed to be of the correct linked-in type.
//
// These methods pretty much match Reflection except that:
// - They're not virtual.
// - They identify fields by number rather than FieldDescriptors.
// - They identify enum values using integers rather than descriptors.
// - Strings provide Mutable() in addition to Set() accessors.
bool Has(int number) const;
int ExtensionSize(int number) const; // Size of a repeated extension.
int NumExtensions() const; // The number of extensions
FieldType ExtensionType(int number) const;
void ClearExtension(int number);
// singular fields -------------------------------------------------
int32 GetInt32 (int number, int32 default_value) const;
int64 GetInt64 (int number, int64 default_value) const;
uint32 GetUInt32(int number, uint32 default_value) const;
uint64 GetUInt64(int number, uint64 default_value) const;
float GetFloat (int number, float default_value) const;
double GetDouble(int number, double default_value) const;
bool GetBool (int number, bool default_value) const;
int GetEnum (int number, int default_value) const;
const string & GetString (int number, const string& default_value) const;
const MessageLite& GetMessage(int number,
const MessageLite& default_value) const;
const MessageLite& GetMessage(int number, const Descriptor* message_type,
MessageFactory* factory) const;
// |descriptor| may be NULL so long as it is known that the descriptor for
// the extension lives in the same pool as the descriptor for the containing
// type.
#define desc const FieldDescriptor* descriptor // avoid line wrapping
void SetInt32 (int number, FieldType type, int32 value, desc);
void SetInt64 (int number, FieldType type, int64 value, desc);
void SetUInt32(int number, FieldType type, uint32 value, desc);
void SetUInt64(int number, FieldType type, uint64 value, desc);
void SetFloat (int number, FieldType type, float value, desc);
void SetDouble(int number, FieldType type, double value, desc);
void SetBool (int number, FieldType type, bool value, desc);
void SetEnum (int number, FieldType type, int value, desc);
void SetString(int number, FieldType type, const string& value, desc);
string * MutableString (int number, FieldType type, desc);
MessageLite* MutableMessage(int number, FieldType type,
const MessageLite& prototype, desc);
MessageLite* MutableMessage(const FieldDescriptor* decsriptor,
MessageFactory* factory);
// Adds the given message to the ExtensionSet, taking ownership of the
// message object. Existing message with the same number will be deleted.
// If "message" is NULL, this is equivalent to "ClearExtension(number)".
void SetAllocatedMessage(int number, FieldType type,
const FieldDescriptor* descriptor,
MessageLite* message);
MessageLite* ReleaseMessage(int number, const MessageLite& prototype);
MessageLite* ReleaseMessage(const FieldDescriptor* descriptor,
MessageFactory* factory);
#undef desc
// repeated fields -------------------------------------------------
// Fetches a RepeatedField extension by number; returns |default_value|
// if no such extension exists. User should not touch this directly; it is
// used by the GetRepeatedExtension() method.
const void* GetRawRepeatedField(int number, const void* default_value) const;
// Fetches a mutable version of a RepeatedField extension by number,
// instantiating one if none exists. Similar to above, user should not use
// this directly; it underlies MutableRepeatedExtension().
void* MutableRawRepeatedField(int number, FieldType field_type,
bool packed, const FieldDescriptor* desc);
// This is an overload of MutableRawRepeatedField to maintain compatibility
// with old code using a previous API. This version of
// MutableRawRepeatedField() will GOOGLE_CHECK-fail on a missing extension.
// (E.g.: borg/clients/internal/proto1/proto2_reflection.cc.)
void* MutableRawRepeatedField(int number);
int32 GetRepeatedInt32 (int number, int index) const;
int64 GetRepeatedInt64 (int number, int index) const;
uint32 GetRepeatedUInt32(int number, int index) const;
uint64 GetRepeatedUInt64(int number, int index) const;
float GetRepeatedFloat (int number, int index) const;
double GetRepeatedDouble(int number, int index) const;
bool GetRepeatedBool (int number, int index) const;
int GetRepeatedEnum (int number, int index) const;
const string & GetRepeatedString (int number, int index) const;
const MessageLite& GetRepeatedMessage(int number, int index) const;
void SetRepeatedInt32 (int number, int index, int32 value);
void SetRepeatedInt64 (int number, int index, int64 value);
void SetRepeatedUInt32(int number, int index, uint32 value);
void SetRepeatedUInt64(int number, int index, uint64 value);
void SetRepeatedFloat (int number, int index, float value);
void SetRepeatedDouble(int number, int index, double value);
void SetRepeatedBool (int number, int index, bool value);
void SetRepeatedEnum (int number, int index, int value);
void SetRepeatedString(int number, int index, const string& value);
string * MutableRepeatedString (int number, int index);
MessageLite* MutableRepeatedMessage(int number, int index);
#define desc const FieldDescriptor* descriptor // avoid line wrapping
void AddInt32 (int number, FieldType type, bool packed, int32 value, desc);
void AddInt64 (int number, FieldType type, bool packed, int64 value, desc);
void AddUInt32(int number, FieldType type, bool packed, uint32 value, desc);
void AddUInt64(int number, FieldType type, bool packed, uint64 value, desc);
void AddFloat (int number, FieldType type, bool packed, float value, desc);
void AddDouble(int number, FieldType type, bool packed, double value, desc);
void AddBool (int number, FieldType type, bool packed, bool value, desc);
void AddEnum (int number, FieldType type, bool packed, int value, desc);
void AddString(int number, FieldType type, const string& value, desc);
string * AddString (int number, FieldType type, desc);
MessageLite* AddMessage(int number, FieldType type,
const MessageLite& prototype, desc);
MessageLite* AddMessage(const FieldDescriptor* descriptor,
MessageFactory* factory);
#undef desc
void RemoveLast(int number);
MessageLite* ReleaseLast(int number);
void SwapElements(int number, int index1, int index2);
// -----------------------------------------------------------------
// TODO(kenton): Hardcore memory management accessors
// =================================================================
// convenience methods for implementing methods of Message
//
// These could all be implemented in terms of the other methods of this
// class, but providing them here helps keep the generated code size down.
void Clear();
void MergeFrom(const ExtensionSet& other);
void Swap(ExtensionSet* other);
void SwapExtension(ExtensionSet* other, int number);
bool IsInitialized() const;
// Parses a single extension from the input. The input should start out
// positioned immediately after the tag.
bool ParseField(uint32 tag, io::CodedInputStream* input,
ExtensionFinder* extension_finder,
FieldSkipper* field_skipper);
// Specific versions for lite or full messages (constructs the appropriate
// FieldSkipper automatically). |containing_type| is the default
// instance for the containing message; it is used only to look up the
// extension by number. See RegisterExtension(), above. Unlike the other
// methods of ExtensionSet, this only works for generated message types --
// it looks up extensions registered using RegisterExtension().
bool ParseField(uint32 tag, io::CodedInputStream* input,
const MessageLite* containing_type);
bool ParseField(uint32 tag, io::CodedInputStream* input,
const Message* containing_type,
UnknownFieldSet* unknown_fields);
bool ParseField(uint32 tag, io::CodedInputStream* input,
const MessageLite* containing_type,
io::CodedOutputStream* unknown_fields);
// Parse an entire message in MessageSet format. Such messages have no
// fields, only extensions.
bool ParseMessageSet(io::CodedInputStream* input,
ExtensionFinder* extension_finder,
MessageSetFieldSkipper* field_skipper);
// Specific versions for lite or full messages (constructs the appropriate
// FieldSkipper automatically).
bool ParseMessageSet(io::CodedInputStream* input,
const MessageLite* containing_type);
bool ParseMessageSet(io::CodedInputStream* input,
const Message* containing_type,
UnknownFieldSet* unknown_fields);
// Write all extension fields with field numbers in the range
// [start_field_number, end_field_number)
// to the output stream, using the cached sizes computed when ByteSize() was
// last called. Note that the range bounds are inclusive-exclusive.
void SerializeWithCachedSizes(int start_field_number,
int end_field_number,
io::CodedOutputStream* output) const;
// Same as SerializeWithCachedSizes, but without any bounds checking.
// The caller must ensure that target has sufficient capacity for the
// serialized extensions.
//
// Returns a pointer past the last written byte.
uint8* SerializeWithCachedSizesToArray(int start_field_number,
int end_field_number,
uint8* target) const;
// Like above but serializes in MessageSet format.
void SerializeMessageSetWithCachedSizes(io::CodedOutputStream* output) const;
uint8* SerializeMessageSetWithCachedSizesToArray(uint8* target) const;
// Returns the total serialized size of all the extensions.
int ByteSize() const;
// Like ByteSize() but uses MessageSet format.
int MessageSetByteSize() const;
// Returns (an estimate of) the total number of bytes used for storing the
// extensions in memory, excluding sizeof(*this). If the ExtensionSet is
// for a lite message (and thus possibly contains lite messages), the results
// are undefined (might work, might crash, might corrupt data, might not even
// be linked in). It's up to the protocol compiler to avoid calling this on
// such ExtensionSets (easy enough since lite messages don't implement
// SpaceUsed()).
int SpaceUsedExcludingSelf() const;
private:
// Interface of a lazily parsed singular message extension.
class LIBPROTOBUF_EXPORT LazyMessageExtension {
public:
LazyMessageExtension() {}
virtual ~LazyMessageExtension() {}
virtual LazyMessageExtension* New() const = 0;
virtual const MessageLite& GetMessage(
const MessageLite& prototype) const = 0;
virtual MessageLite* MutableMessage(const MessageLite& prototype) = 0;
virtual void SetAllocatedMessage(MessageLite *message) = 0;
virtual MessageLite* ReleaseMessage(const MessageLite& prototype) = 0;
virtual bool IsInitialized() const = 0;
virtual int ByteSize() const = 0;
virtual int SpaceUsed() const = 0;
virtual void MergeFrom(const LazyMessageExtension& other) = 0;
virtual void Clear() = 0;
virtual bool ReadMessage(const MessageLite& prototype,
io::CodedInputStream* input) = 0;
virtual void WriteMessage(int number,
io::CodedOutputStream* output) const = 0;
virtual uint8* WriteMessageToArray(int number, uint8* target) const = 0;
private:
GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(LazyMessageExtension);
};
struct Extension {
// The order of these fields packs Extension into 24 bytes when using 8
// byte alignment. Consider this when adding or removing fields here.
union {
int32 int32_value;
int64 int64_value;
uint32 uint32_value;
uint64 uint64_value;
float float_value;
double double_value;
bool bool_value;
int enum_value;
string* string_value;
MessageLite* message_value;
LazyMessageExtension* lazymessage_value;
RepeatedField <int32 >* repeated_int32_value;
RepeatedField <int64 >* repeated_int64_value;
RepeatedField <uint32 >* repeated_uint32_value;
RepeatedField <uint64 >* repeated_uint64_value;
RepeatedField <float >* repeated_float_value;
RepeatedField <double >* repeated_double_value;
RepeatedField <bool >* repeated_bool_value;
RepeatedField <int >* repeated_enum_value;
RepeatedPtrField<string >* repeated_string_value;
RepeatedPtrField<MessageLite>* repeated_message_value;
};
FieldType type;
bool is_repeated;
// For singular types, indicates if the extension is "cleared". This
// happens when an extension is set and then later cleared by the caller.
// We want to keep the Extension object around for reuse, so instead of
// removing it from the map, we just set is_cleared = true. This has no
// meaning for repeated types; for those, the size of the RepeatedField
// simply becomes zero when cleared.
bool is_cleared : 4;
// For singular message types, indicates whether lazy parsing is enabled
// for this extension. This field is only valid when type == TYPE_MESSAGE
// and !is_repeated because we only support lazy parsing for singular
// message types currently. If is_lazy = true, the extension is stored in
// lazymessage_value. Otherwise, the extension will be message_value.
bool is_lazy : 4;
// For repeated types, this indicates if the [packed=true] option is set.
bool is_packed;
// For packed fields, the size of the packed data is recorded here when
// ByteSize() is called then used during serialization.
// TODO(kenton): Use atomic<int> when C++ supports it.
mutable int cached_size;
// The descriptor for this extension, if one exists and is known. May be
// NULL. Must not be NULL if the descriptor for the extension does not
// live in the same pool as the descriptor for the containing type.
const FieldDescriptor* descriptor;
// Some helper methods for operations on a single Extension.
void SerializeFieldWithCachedSizes(
int number,
io::CodedOutputStream* output) const;
uint8* SerializeFieldWithCachedSizesToArray(
int number,
uint8* target) const;
void SerializeMessageSetItemWithCachedSizes(
int number,
io::CodedOutputStream* output) const;
uint8* SerializeMessageSetItemWithCachedSizesToArray(
int number,
uint8* target) const;
int ByteSize(int number) const;
int MessageSetItemByteSize(int number) const;
void Clear();
int GetSize() const;
void Free();
int SpaceUsedExcludingSelf() const;
};
// Returns true and fills field_number and extension if extension is found.
// Note to support packed repeated field compatibility, it also fills whether
// the tag on wire is packed, which can be different from
// extension->is_packed (whether packed=true is specified).
bool FindExtensionInfoFromTag(uint32 tag, ExtensionFinder* extension_finder,
int* field_number, ExtensionInfo* extension,
bool* was_packed_on_wire);
// Returns true and fills extension if extension is found.
// Note to support packed repeated field compatibility, it also fills whether
// the tag on wire is packed, which can be different from
// extension->is_packed (whether packed=true is specified).
bool FindExtensionInfoFromFieldNumber(int wire_type, int field_number,
ExtensionFinder* extension_finder,
ExtensionInfo* extension,
bool* was_packed_on_wire);
// Parses a single extension from the input. The input should start out
// positioned immediately after the wire tag. This method is called in
// ParseField() after field number and was_packed_on_wire is extracted from
// the wire tag and ExtensionInfo is found by the field number.
bool ParseFieldWithExtensionInfo(int field_number,
bool was_packed_on_wire,
const ExtensionInfo& extension,
io::CodedInputStream* input,
FieldSkipper* field_skipper);
// Like ParseField(), but this method may parse singular message extensions
// lazily depending on the value of FLAGS_eagerly_parse_message_sets.
bool ParseFieldMaybeLazily(int wire_type, int field_number,
io::CodedInputStream* input,
ExtensionFinder* extension_finder,
MessageSetFieldSkipper* field_skipper);
// Gets the extension with the given number, creating it if it does not
// already exist. Returns true if the extension did not already exist.
bool MaybeNewExtension(int number, const FieldDescriptor* descriptor,
Extension** result);
// Parse a single MessageSet item -- called just after the item group start
// tag has been read.
bool ParseMessageSetItem(io::CodedInputStream* input,
ExtensionFinder* extension_finder,
MessageSetFieldSkipper* field_skipper);
// Hack: RepeatedPtrFieldBase declares ExtensionSet as a friend. This
// friendship should automatically extend to ExtensionSet::Extension, but
// unfortunately some older compilers (e.g. GCC 3.4.4) do not implement this
// correctly. So, we must provide helpers for calling methods of that
// class.
// Defined in extension_set_heavy.cc.
static inline int RepeatedMessage_SpaceUsedExcludingSelf(
RepeatedPtrFieldBase* field);
// The Extension struct is small enough to be passed by value, so we use it
// directly as the value type in the map rather than use pointers. We use
// a map rather than hash_map here because we expect most ExtensionSets will
// only contain a small number of extensions whereas hash_map is optimized
// for 100 elements or more. Also, we want AppendToList() to order fields
// by field number.
std::map<int, Extension> extensions_;
GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(ExtensionSet);
};
// These are just for convenience...
inline void ExtensionSet::SetString(int number, FieldType type,
const string& value,
const FieldDescriptor* descriptor) {
MutableString(number, type, descriptor)->assign(value);
}
inline void ExtensionSet::SetRepeatedString(int number, int index,
const string& value) {
MutableRepeatedString(number, index)->assign(value);
}
inline void ExtensionSet::AddString(int number, FieldType type,
const string& value,
const FieldDescriptor* descriptor) {
AddString(number, type, descriptor)->assign(value);
}
// ===================================================================
// Glue for generated extension accessors
// -------------------------------------------------------------------
// Template magic
// First we have a set of classes representing "type traits" for different
// field types. A type traits class knows how to implement basic accessors
// for extensions of a particular type given an ExtensionSet. The signature
// for a type traits class looks like this:
//
// class TypeTraits {
// public:
// typedef ? ConstType;
// typedef ? MutableType;
// // TypeTraits for singular fields and repeated fields will define the
// // symbol "Singular" or "Repeated" respectively. These two symbols will
// // be used in extension accessors to distinguish between singular
// // extensions and repeated extensions. If the TypeTraits for the passed
// // in extension doesn't have the expected symbol defined, it means the
// // user is passing a repeated extension to a singular accessor, or the
// // opposite. In that case the C++ compiler will generate an error
// // message "no matching member function" to inform the user.
// typedef ? Singular
// typedef ? Repeated
//
// static inline ConstType Get(int number, const ExtensionSet& set);
// static inline void Set(int number, ConstType value, ExtensionSet* set);
// static inline MutableType Mutable(int number, ExtensionSet* set);
//
// // Variants for repeated fields.
// static inline ConstType Get(int number, const ExtensionSet& set,
// int index);
// static inline void Set(int number, int index,
// ConstType value, ExtensionSet* set);
// static inline MutableType Mutable(int number, int index,
// ExtensionSet* set);
// static inline void Add(int number, ConstType value, ExtensionSet* set);
// static inline MutableType Add(int number, ExtensionSet* set);
// };
//
// Not all of these methods make sense for all field types. For example, the
// "Mutable" methods only make sense for strings and messages, and the
// repeated methods only make sense for repeated types. So, each type
// traits class implements only the set of methods from this signature that it
// actually supports. This will cause a compiler error if the user tries to
// access an extension using a method that doesn't make sense for its type.
// For example, if "foo" is an extension of type "optional int32", then if you
// try to write code like:
// my_message.MutableExtension(foo)
// you will get a compile error because PrimitiveTypeTraits<int32> does not
// have a "Mutable()" method.
// -------------------------------------------------------------------
// PrimitiveTypeTraits
// Since the ExtensionSet has different methods for each primitive type,
// we must explicitly define the methods of the type traits class for each
// known type.
template <typename Type>
class PrimitiveTypeTraits {
public:
typedef Type ConstType;
typedef Type MutableType;
typedef PrimitiveTypeTraits<Type> Singular;
static inline ConstType Get(int number, const ExtensionSet& set,
ConstType default_value);
static inline void Set(int number, FieldType field_type,
ConstType value, ExtensionSet* set);
};
template <typename Type>
class RepeatedPrimitiveTypeTraits {
public:
typedef Type ConstType;
typedef Type MutableType;
typedef RepeatedPrimitiveTypeTraits<Type> Repeated;
typedef RepeatedField<Type> RepeatedFieldType;
static inline Type Get(int number, const ExtensionSet& set, int index);
static inline void Set(int number, int index, Type value, ExtensionSet* set);
static inline void Add(int number, FieldType field_type,
bool is_packed, Type value, ExtensionSet* set);
static inline const RepeatedField<ConstType>&
GetRepeated(int number, const ExtensionSet& set);
static inline RepeatedField<Type>*
MutableRepeated(int number, FieldType field_type,
bool is_packed, ExtensionSet* set);
static const RepeatedFieldType* GetDefaultRepeatedField();
};
// Declared here so that this can be friended below.
void InitializeDefaultRepeatedFields();
void DestroyDefaultRepeatedFields();
class LIBPROTOBUF_EXPORT RepeatedPrimitiveGenericTypeTraits {
private:
template<typename Type> friend class RepeatedPrimitiveTypeTraits;
friend void InitializeDefaultRepeatedFields();
friend void DestroyDefaultRepeatedFields();
static const RepeatedField<int32>* default_repeated_field_int32_;
static const RepeatedField<int64>* default_repeated_field_int64_;
static const RepeatedField<uint32>* default_repeated_field_uint32_;
static const RepeatedField<uint64>* default_repeated_field_uint64_;
static const RepeatedField<double>* default_repeated_field_double_;
static const RepeatedField<float>* default_repeated_field_float_;
static const RepeatedField<bool>* default_repeated_field_bool_;
};
#define PROTOBUF_DEFINE_PRIMITIVE_TYPE(TYPE, METHOD) \
template<> inline TYPE PrimitiveTypeTraits<TYPE>::Get( \
int number, const ExtensionSet& set, TYPE default_value) { \
return set.Get##METHOD(number, default_value); \
} \
template<> inline void PrimitiveTypeTraits<TYPE>::Set( \
int number, FieldType field_type, TYPE value, ExtensionSet* set) { \
set->Set##METHOD(number, field_type, value, NULL); \
} \
\
template<> inline TYPE RepeatedPrimitiveTypeTraits<TYPE>::Get( \
int number, const ExtensionSet& set, int index) { \
return set.GetRepeated##METHOD(number, index); \
} \
template<> inline void RepeatedPrimitiveTypeTraits<TYPE>::Set( \
int number, int index, TYPE value, ExtensionSet* set) { \
set->SetRepeated##METHOD(number, index, value); \
} \
template<> inline void RepeatedPrimitiveTypeTraits<TYPE>::Add( \
int number, FieldType field_type, bool is_packed, \
TYPE value, ExtensionSet* set) { \
set->Add##METHOD(number, field_type, is_packed, value, NULL); \
} \
template<> inline const RepeatedField<TYPE>* \
RepeatedPrimitiveTypeTraits<TYPE>::GetDefaultRepeatedField() { \
return RepeatedPrimitiveGenericTypeTraits:: \
default_repeated_field_##TYPE##_; \
} \
template<> inline const RepeatedField<TYPE>& \
RepeatedPrimitiveTypeTraits<TYPE>::GetRepeated(int number, \
const ExtensionSet& set) { \
return *reinterpret_cast<const RepeatedField<TYPE>*>( \
set.GetRawRepeatedField( \
number, GetDefaultRepeatedField())); \
} \
template<> inline RepeatedField<TYPE>* \
RepeatedPrimitiveTypeTraits<TYPE>::MutableRepeated(int number, \
FieldType field_type, \
bool is_packed, \
ExtensionSet* set) { \
return reinterpret_cast<RepeatedField<TYPE>*>( \
set->MutableRawRepeatedField(number, field_type, is_packed, NULL)); \
}
PROTOBUF_DEFINE_PRIMITIVE_TYPE( int32, Int32)
PROTOBUF_DEFINE_PRIMITIVE_TYPE( int64, Int64)
PROTOBUF_DEFINE_PRIMITIVE_TYPE(uint32, UInt32)
PROTOBUF_DEFINE_PRIMITIVE_TYPE(uint64, UInt64)
PROTOBUF_DEFINE_PRIMITIVE_TYPE( float, Float)
PROTOBUF_DEFINE_PRIMITIVE_TYPE(double, Double)
PROTOBUF_DEFINE_PRIMITIVE_TYPE( bool, Bool)
#undef PROTOBUF_DEFINE_PRIMITIVE_TYPE
// -------------------------------------------------------------------
// StringTypeTraits
// Strings support both Set() and Mutable().
class LIBPROTOBUF_EXPORT StringTypeTraits {
public:
typedef const string& ConstType;
typedef string* MutableType;
typedef StringTypeTraits Singular;
static inline const string& Get(int number, const ExtensionSet& set,
ConstType default_value) {
return set.GetString(number, default_value);
}
static inline void Set(int number, FieldType field_type,
const string& value, ExtensionSet* set) {
set->SetString(number, field_type, value, NULL);
}
static inline string* Mutable(int number, FieldType field_type,
ExtensionSet* set) {
return set->MutableString(number, field_type, NULL);
}
};
class LIBPROTOBUF_EXPORT RepeatedStringTypeTraits {
public:
typedef const string& ConstType;
typedef string* MutableType;
typedef RepeatedStringTypeTraits Repeated;
typedef RepeatedPtrField<string> RepeatedFieldType;
static inline const string& Get(int number, const ExtensionSet& set,
int index) {
return set.GetRepeatedString(number, index);
}
static inline void Set(int number, int index,
const string& value, ExtensionSet* set) {
set->SetRepeatedString(number, index, value);
}
static inline string* Mutable(int number, int index, ExtensionSet* set) {
return set->MutableRepeatedString(number, index);
}
static inline void Add(int number, FieldType field_type,
bool /*is_packed*/, const string& value,
ExtensionSet* set) {
set->AddString(number, field_type, value, NULL);
}
static inline string* Add(int number, FieldType field_type,
ExtensionSet* set) {
return set->AddString(number, field_type, NULL);
}
static inline const RepeatedPtrField<string>&
GetRepeated(int number, const ExtensionSet& set) {
return *reinterpret_cast<const RepeatedPtrField<string>*>(
set.GetRawRepeatedField(number, GetDefaultRepeatedField()));
}
static inline RepeatedPtrField<string>*
MutableRepeated(int number, FieldType field_type,
bool is_packed, ExtensionSet* set) {
return reinterpret_cast<RepeatedPtrField<string>*>(
set->MutableRawRepeatedField(number, field_type,
is_packed, NULL));
}
static const RepeatedFieldType* GetDefaultRepeatedField() {
return default_repeated_field_;
}
private:
friend void InitializeDefaultRepeatedFields();
friend void DestroyDefaultRepeatedFields();
static const RepeatedFieldType *default_repeated_field_;
};
// -------------------------------------------------------------------
// EnumTypeTraits
// ExtensionSet represents enums using integers internally, so we have to
// static_cast around.
template <typename Type, bool IsValid(int)>
class EnumTypeTraits {
public:
typedef Type ConstType;
typedef Type MutableType;
typedef EnumTypeTraits<Type, IsValid> Singular;
static inline ConstType Get(int number, const ExtensionSet& set,
ConstType default_value) {
return static_cast<Type>(set.GetEnum(number, default_value));
}
static inline void Set(int number, FieldType field_type,
ConstType value, ExtensionSet* set) {
GOOGLE_DCHECK(IsValid(value));
set->SetEnum(number, field_type, value, NULL);
}
};
template <typename Type, bool IsValid(int)>
class RepeatedEnumTypeTraits {
public:
typedef Type ConstType;
typedef Type MutableType;
typedef RepeatedEnumTypeTraits<Type, IsValid> Repeated;
typedef RepeatedField<Type> RepeatedFieldType;
static inline ConstType Get(int number, const ExtensionSet& set, int index) {
return static_cast<Type>(set.GetRepeatedEnum(number, index));
}
static inline void Set(int number, int index,
ConstType value, ExtensionSet* set) {
GOOGLE_DCHECK(IsValid(value));
set->SetRepeatedEnum(number, index, value);
}
static inline void Add(int number, FieldType field_type,
bool is_packed, ConstType value, ExtensionSet* set) {
GOOGLE_DCHECK(IsValid(value));
set->AddEnum(number, field_type, is_packed, value, NULL);
}
static inline const RepeatedField<Type>& GetRepeated(int number,
const ExtensionSet&
set) {
// Hack: the `Extension` struct stores a RepeatedField<int> for enums.
// RepeatedField<int> cannot implicitly convert to RepeatedField<EnumType>
// so we need to do some casting magic. See message.h for similar
// contortions for non-extension fields.
return *reinterpret_cast<const RepeatedField<Type>*>(
set.GetRawRepeatedField(number, GetDefaultRepeatedField()));
}
static inline RepeatedField<Type>* MutableRepeated(int number,
FieldType field_type,
bool is_packed,
ExtensionSet* set) {
return reinterpret_cast<RepeatedField<Type>*>(
set->MutableRawRepeatedField(number, field_type, is_packed, NULL));
}
static const RepeatedFieldType* GetDefaultRepeatedField() {
// Hack: as noted above, repeated enum fields are internally stored as a
// RepeatedField<int>. We need to be able to instantiate global static
// objects to return as default (empty) repeated fields on non-existent
// extensions. We would not be able to know a-priori all of the enum types
// (values of |Type|) to instantiate all of these, so we just re-use int32's
// default repeated field object.
return reinterpret_cast<const RepeatedField<Type>*>(
RepeatedPrimitiveTypeTraits<int32>::GetDefaultRepeatedField());
}
};
// -------------------------------------------------------------------
// MessageTypeTraits
// ExtensionSet guarantees that when manipulating extensions with message
// types, the implementation used will be the compiled-in class representing
// that type. So, we can static_cast down to the exact type we expect.
template <typename Type>
class MessageTypeTraits {
public:
typedef const Type& ConstType;
typedef Type* MutableType;
typedef MessageTypeTraits<Type> Singular;
static inline ConstType Get(int number, const ExtensionSet& set,
ConstType default_value) {
return static_cast<const Type&>(
set.GetMessage(number, default_value));
}
static inline MutableType Mutable(int number, FieldType field_type,
ExtensionSet* set) {
return static_cast<Type*>(
set->MutableMessage(number, field_type, Type::default_instance(), NULL));
}
static inline void SetAllocated(int number, FieldType field_type,
MutableType message, ExtensionSet* set) {
set->SetAllocatedMessage(number, field_type, NULL, message);
}
static inline MutableType Release(int number, FieldType /* field_type */,
ExtensionSet* set) {
return static_cast<Type*>(set->ReleaseMessage(
number, Type::default_instance()));
}
};
// forward declaration
class RepeatedMessageGenericTypeTraits;
template <typename Type>
class RepeatedMessageTypeTraits {
public:
typedef const Type& ConstType;
typedef Type* MutableType;
typedef RepeatedMessageTypeTraits<Type> Repeated;
typedef RepeatedPtrField<Type> RepeatedFieldType;
static inline ConstType Get(int number, const ExtensionSet& set, int index) {
return static_cast<const Type&>(set.GetRepeatedMessage(number, index));
}
static inline MutableType Mutable(int number, int index, ExtensionSet* set) {
return static_cast<Type*>(set->MutableRepeatedMessage(number, index));
}
static inline MutableType Add(int number, FieldType field_type,
ExtensionSet* set) {
return static_cast<Type*>(
set->AddMessage(number, field_type, Type::default_instance(), NULL));
}
static inline const RepeatedPtrField<Type>& GetRepeated(int number,
const ExtensionSet&
set) {
// See notes above in RepeatedEnumTypeTraits::GetRepeated(): same
// casting hack applies here, because a RepeatedPtrField<MessageLite>
// cannot naturally become a RepeatedPtrType<Type> even though Type is
// presumably a message. google::protobuf::Message goes through similar contortions
// with a reinterpret_cast<>.
return *reinterpret_cast<const RepeatedPtrField<Type>*>(
set.GetRawRepeatedField(number, GetDefaultRepeatedField()));
}
static inline RepeatedPtrField<Type>* MutableRepeated(int number,
FieldType field_type,
bool is_packed,
ExtensionSet* set) {
return reinterpret_cast<RepeatedPtrField<Type>*>(
set->MutableRawRepeatedField(number, field_type, is_packed, NULL));
}
static const RepeatedFieldType* GetDefaultRepeatedField();
};
// This class exists only to hold a generic default empty repeated field for all
// message-type repeated field extensions.
class LIBPROTOBUF_EXPORT RepeatedMessageGenericTypeTraits {
public:
typedef RepeatedPtrField< ::google::protobuf::MessageLite*> RepeatedFieldType;
private:
template<typename Type> friend class RepeatedMessageTypeTraits;
friend void InitializeDefaultRepeatedFields();
friend void DestroyDefaultRepeatedFields();
static const RepeatedFieldType* default_repeated_field_;
};
template<typename Type> inline
const typename RepeatedMessageTypeTraits<Type>::RepeatedFieldType*
RepeatedMessageTypeTraits<Type>::GetDefaultRepeatedField() {
return reinterpret_cast<const RepeatedFieldType*>(
RepeatedMessageGenericTypeTraits::default_repeated_field_);
}
// -------------------------------------------------------------------
// ExtensionIdentifier
// This is the type of actual extension objects. E.g. if you have:
// extends Foo with optional int32 bar = 1234;
// then "bar" will be defined in C++ as:
// ExtensionIdentifier<Foo, PrimitiveTypeTraits<int32>, 1, false> bar(1234);
//
// Note that we could, in theory, supply the field number as a template
// parameter, and thus make an instance of ExtensionIdentifier have no
// actual contents. However, if we did that, then using at extension
// identifier would not necessarily cause the compiler to output any sort
// of reference to any simple defined in the extension's .pb.o file. Some
// linkers will actually drop object files that are not explicitly referenced,
// but that would be bad because it would cause this extension to not be
// registered at static initialization, and therefore using it would crash.
template <typename ExtendeeType, typename TypeTraitsType,
FieldType field_type, bool is_packed>
class ExtensionIdentifier {
public:
typedef TypeTraitsType TypeTraits;
typedef ExtendeeType Extendee;
ExtensionIdentifier(int number, typename TypeTraits::ConstType default_value)
: number_(number), default_value_(default_value) {}
inline int number() const { return number_; }
typename TypeTraits::ConstType default_value() const {
return default_value_;
}
private:
const int number_;
typename TypeTraits::ConstType default_value_;
};
// -------------------------------------------------------------------
// Generated accessors
// This macro should be expanded in the context of a generated type which
// has extensions.
//
// We use "_proto_TypeTraits" as a type name below because "TypeTraits"
// causes problems if the class has a nested message or enum type with that
// name and "_TypeTraits" is technically reserved for the C++ library since
// it starts with an underscore followed by a capital letter.
//
// For similar reason, we use "_field_type" and "_is_packed" as parameter names
// below, so that "field_type" and "is_packed" can be used as field names.
#define GOOGLE_PROTOBUF_EXTENSION_ACCESSORS(CLASSNAME) \
/* Has, Size, Clear */ \
template <typename _proto_TypeTraits, \
::google::protobuf::internal::FieldType _field_type, \
bool _is_packed> \
inline bool HasExtension( \
const ::google::protobuf::internal::ExtensionIdentifier< \
CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id) const { \
return _extensions_.Has(id.number()); \
} \
\
template <typename _proto_TypeTraits, \
::google::protobuf::internal::FieldType _field_type, \
bool _is_packed> \
inline void ClearExtension( \
const ::google::protobuf::internal::ExtensionIdentifier< \
CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id) { \
_extensions_.ClearExtension(id.number()); \
} \
\
template <typename _proto_TypeTraits, \
::google::protobuf::internal::FieldType _field_type, \
bool _is_packed> \
inline int ExtensionSize( \
const ::google::protobuf::internal::ExtensionIdentifier< \
CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id) const { \
return _extensions_.ExtensionSize(id.number()); \
} \
\
/* Singular accessors */ \
template <typename _proto_TypeTraits, \
::google::protobuf::internal::FieldType _field_type, \
bool _is_packed> \
inline typename _proto_TypeTraits::Singular::ConstType GetExtension( \
const ::google::protobuf::internal::ExtensionIdentifier< \
CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id) const { \
return _proto_TypeTraits::Get(id.number(), _extensions_, \
id.default_value()); \
} \
\
template <typename _proto_TypeTraits, \
::google::protobuf::internal::FieldType _field_type, \
bool _is_packed> \
inline typename _proto_TypeTraits::Singular::MutableType MutableExtension( \
const ::google::protobuf::internal::ExtensionIdentifier< \
CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id) { \
return _proto_TypeTraits::Mutable(id.number(), _field_type, \
&_extensions_); \
} \
\
template <typename _proto_TypeTraits, \
::google::protobuf::internal::FieldType _field_type, \
bool _is_packed> \
inline void SetExtension( \
const ::google::protobuf::internal::ExtensionIdentifier< \
CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id, \
typename _proto_TypeTraits::Singular::ConstType value) { \
_proto_TypeTraits::Set(id.number(), _field_type, value, &_extensions_); \
} \
\
template <typename _proto_TypeTraits, \
::google::protobuf::internal::FieldType _field_type, \
bool _is_packed> \
inline void SetAllocatedExtension( \
const ::google::protobuf::internal::ExtensionIdentifier< \
CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id, \
typename _proto_TypeTraits::Singular::MutableType value) { \
_proto_TypeTraits::SetAllocated(id.number(), _field_type, \
value, &_extensions_); \
} \
template <typename _proto_TypeTraits, \
::google::protobuf::internal::FieldType _field_type, \
bool _is_packed> \
inline typename _proto_TypeTraits::Singular::MutableType ReleaseExtension( \
const ::google::protobuf::internal::ExtensionIdentifier< \
CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id) { \
return _proto_TypeTraits::Release(id.number(), _field_type, \
&_extensions_); \
} \
\
/* Repeated accessors */ \
template <typename _proto_TypeTraits, \
::google::protobuf::internal::FieldType _field_type, \
bool _is_packed> \
inline typename _proto_TypeTraits::Repeated::ConstType GetExtension( \
const ::google::protobuf::internal::ExtensionIdentifier< \
CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id, \
int index) const { \
return _proto_TypeTraits::Get(id.number(), _extensions_, index); \
} \
\
template <typename _proto_TypeTraits, \
::google::protobuf::internal::FieldType _field_type, \
bool _is_packed> \
inline typename _proto_TypeTraits::Repeated::MutableType MutableExtension( \
const ::google::protobuf::internal::ExtensionIdentifier< \
CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id, \
int index) { \
return _proto_TypeTraits::Mutable(id.number(), index, &_extensions_); \
} \
\
template <typename _proto_TypeTraits, \
::google::protobuf::internal::FieldType _field_type, \
bool _is_packed> \
inline void SetExtension( \
const ::google::protobuf::internal::ExtensionIdentifier< \
CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id, \
int index, typename _proto_TypeTraits::Repeated::ConstType value) { \
_proto_TypeTraits::Set(id.number(), index, value, &_extensions_); \
} \
\
template <typename _proto_TypeTraits, \
::google::protobuf::internal::FieldType _field_type, \
bool _is_packed> \
inline typename _proto_TypeTraits::Repeated::MutableType AddExtension( \
const ::google::protobuf::internal::ExtensionIdentifier< \
CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id) { \
return _proto_TypeTraits::Add(id.number(), _field_type, &_extensions_); \
} \
\
template <typename _proto_TypeTraits, \
::google::protobuf::internal::FieldType _field_type, \
bool _is_packed> \
inline void AddExtension( \
const ::google::protobuf::internal::ExtensionIdentifier< \
CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id, \
typename _proto_TypeTraits::Repeated::ConstType value) { \
_proto_TypeTraits::Add(id.number(), _field_type, _is_packed, \
value, &_extensions_); \
} \
\
template <typename _proto_TypeTraits, \
::google::protobuf::internal::FieldType _field_type, \
bool _is_packed> \
inline const typename _proto_TypeTraits::Repeated::RepeatedFieldType& \
GetRepeatedExtension( \
const ::google::protobuf::internal::ExtensionIdentifier< \
CLASSNAME, _proto_TypeTraits, _field_type, \
_is_packed>& id) const { \
return _proto_TypeTraits::GetRepeated(id.number(), _extensions_); \
} \
\
template <typename _proto_TypeTraits, \
::google::protobuf::internal::FieldType _field_type, \
bool _is_packed> \
inline typename _proto_TypeTraits::Repeated::RepeatedFieldType* \
MutableRepeatedExtension( \
const ::google::protobuf::internal::ExtensionIdentifier< \
CLASSNAME, _proto_TypeTraits, _field_type, \
_is_packed>& id) { \
return _proto_TypeTraits::MutableRepeated(id.number(), _field_type, \
_is_packed, &_extensions_); \
}
} // namespace internal
} // namespace protobuf
} // namespace google
#endif // GOOGLE_PROTOBUF_EXTENSION_SET_H__
|