/usr/include/glibmm-2.4/glibmm/variant.h is in libglibmm-2.4-dev 2.46.3-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 | // -*- c++ -*-
// Generated by gmmproc 2.46.3 -- DO NOT MODIFY!
#ifndef _GLIBMM_VARIANT_H
#define _GLIBMM_VARIANT_H
/* Copyright 2010 The glibmm Development Team
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free
* Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <glibmmconfig.h>
#include <glibmm/varianttype.h>
#include <glibmm/variantiter.h>
#include <glibmm/refptr.h>
#include <glibmm/ustring.h>
#include <glibmm/error.h>
#include <utility>
#include <vector>
#include <map>
#include <stdexcept>
#include <typeinfo>
namespace Glib
{
class Bytes;
/** @defgroup Variant Variant Data Types
*
* The Variant classes deal with strongly typed
* variant data. A Variant stores a value along with
* information about the type of that value. The range of possible
* values is determined by the type. The type system used is VariantType.
*
* See the VariantBase class and its derived types, such as VariantContainerBase,
* and the Variant<> template type.
*
* Variant instances always have a type and a value (which are given
* at construction time). The type and value of a Variant
* can never change other than by the Variant itself being
* destroyed. A Variant cannot contain a pointer.
*
* Variant is heavily optimised for dealing with data in serialised
* form. It works particularly well with data located in memory-mapped
* files. It can perform nearly all deserialisation operations in a
* small constant time, usually touching only a single memory page.
* Serialised Variant data can also be sent over the network.
*
* Variant is largely compatible with D-Bus. Almost all types of
* Variant instances can be sent over D-Bus. See VariantType for
* exceptions.
*
* There is a Python-inspired text language for describing Variant
* values. Variant includes a printer for this language and a parser
* with type inferencing.
*/
//Note: We wrap this because it is thrown by GtkBuilder's functions.
// See https://bugzilla.gnome.org/show_bug.cgi?id=708206
// It would also be thrown by parse() if we wrap g_variant_parse().
// Now (2014-01-30) it's also thrown by Gio::Action::parse_detailed_name().
/** %Exception class for Variant parse errors.
*/
class VariantParseError : public Glib::Error
{
public:
/** @var Code FAILED
* Generic error (unused).
*
* @var Code BASIC_TYPE_EXPECTED
* A non-basic VariantType was given where a basic type was expected.
*
* @var Code CANNOT_INFER_TYPE
* Cannot infer the VariantType.
*
* @var Code DEFINITE_TYPE_EXPECTED
* An indefinite VariantType was given where a definite type was expected.
*
* @var Code INPUT_NOT_AT_END
* Extra data after parsing finished.
*
* @var Code INVALID_CHARACTER
* Invalid character in number or unicode escape.
*
* @var Code INVALID_FORMAT_STRING
* Not a valid Variant format string.
*
* @var Code INVALID_OBJECT_PATH
* Not a valid object path.
*
* @var Code INVALID_SIGNATURE
* Not a valid type signature.
*
* @var Code INVALID_TYPE_STRING
* Not a valid Variant type string.
*
* @var Code NO_COMMON_TYPE
* Could not find a common type for array entries.
*
* @var Code NUMBER_OUT_OF_RANGE
* The numerical value is out of range of the given type.
*
* @var Code NUMBER_TOO_BIG
* The numerical value is out of range for any type.
*
* @var Code TYPE_ERROR
* Cannot parse as variant of the specified type.
*
* @var Code UNEXPECTED_TOKEN
* An unexpected token was encountered.
*
* @var Code UNKNOWN_KEYWORD
* An unknown keyword was encountered.
*
* @var Code UNTERMINATED_STRING_CONSTANT
* Unterminated string constant.
*
* @var Code VALUE_EXPECTED
* No value given.
*
* @enum Code
*
* %Error codes returned by parsing text-format GVariants.
*/
enum Code
{
FAILED,
BASIC_TYPE_EXPECTED,
CANNOT_INFER_TYPE,
DEFINITE_TYPE_EXPECTED,
INPUT_NOT_AT_END,
INVALID_CHARACTER,
INVALID_FORMAT_STRING,
INVALID_OBJECT_PATH,
INVALID_SIGNATURE,
INVALID_TYPE_STRING,
NO_COMMON_TYPE,
NUMBER_OUT_OF_RANGE,
NUMBER_TOO_BIG,
TYPE_ERROR,
UNEXPECTED_TOKEN,
UNKNOWN_KEYWORD,
UNTERMINATED_STRING_CONSTANT,
VALUE_EXPECTED
};
VariantParseError(Code error_code, const Glib::ustring& error_message);
explicit VariantParseError(GError* gobject);
Code code() const;
#ifndef DOXYGEN_SHOULD_SKIP_THIS
private:
static void throw_func(GError* gobject);
friend void wrap_init(); // uses throw_func()
#endif //DOXYGEN_SHOULD_SKIP_THIS
};
//TODO: Add this documentation from the API if we are confident of it for the C++ wrapper:
// #GVariant is completely threadsafe. A #GVariant instance can be
// concurrently accessed in any way from any number of threads without
// problems.
// Note that we don't copy GVariant's documentation about Memory Use because
// it seems easy to get out of sync and people can look at that C documentation if necessary.
/** This is the base class for all Variant types.
*
* If the actual type is known at compile-time then you should use a specific
* Variant<>, such as Variant<int>. Otherwise, you may use get_type(),
* is_of_type(), or cast_dynamic().
*
* @newin{2,28}
* @ingroup Variant
*/
class VariantBase
{
public:
#ifndef DOXYGEN_SHOULD_SKIP_THIS
typedef VariantBase CppObjectType;
typedef GVariant BaseObjectType;
#endif /* DOXYGEN_SHOULD_SKIP_THIS */
/** Constructs an invalid object.
* E.g. for output arguments to methods. There is not much you can do with
* the object before it has been assigned a valid value.
*/
VariantBase();
// Use make_a_copy=true when getting it directly from a struct.
explicit VariantBase(GVariant* castitem, bool make_a_copy = false);
VariantBase(const VariantBase& src);
VariantBase& operator=(const VariantBase& src);
VariantBase(VariantBase&& other) noexcept;
VariantBase& operator=(VariantBase&& other) noexcept;
~VariantBase() noexcept;
void swap(VariantBase& other) noexcept;
GVariant* gobj() { return gobject_; }
const GVariant* gobj() const { return gobject_; }
///Provides access to the underlying C instance. The caller is responsible for freeing it. Use when directly setting fields in structs.
GVariant* gobj_copy() const;
protected:
GVariant* gobject_;
private:
public:
/** This typedef is just to make it more obvious that
* our operator const void* should be used like operator bool().
*/
typedef const void* BoolExpr;
/** Test whether the Variant has an underlying instance.
*
* Mimics usage of pointers:
* @code
* if (variant)
* do_something();
* @endcode
*
* @newin{2,36}
*/
operator BoolExpr() const;
/** Replace the underlying GVariant.
* This is for use by methods that take a VariantBase& as an output
* parameter.
*
* @param cobject The GVariant* obtained from a C function.
* @param take_a_reference Whether this method should take a reference, for
* instance if the C function has not given one.
*/
void init(const GVariant* cobject, bool take_a_reference = false);
// It's necessary to take an extra reference of the 'const GVariantType*'
// returned by g_variant_get_type() because it doesn't do that already.
/** Determines the type of @a value.
*
* The return value is valid for the lifetime of @a value and must not
* be freed.
*
* @newin{2,24}
*
* @return A VariantType.
*/
VariantType get_type() const;
/** Returns the type string of @a value. Unlike the result of calling
* g_variant_type_peek_string(), this string is nul-terminated. This
* string belongs to Variant and must not be freed.
*
* @newin{2,24}
*
* @return The type string for the type of @a value.
*/
std::string get_type_string() const;
/** Checks whether @a value has a floating reference count.
*
* This function should only ever be used to assert that a given variant
* is or is not floating, or for debug purposes. To acquire a reference
* to a variant that might be floating, always use g_variant_ref_sink()
* or g_variant_take_ref().
*
* See g_variant_ref_sink() for more information about floating reference
* counts.
*
* @newin{2,26}
*
* @return Whether @a value is floating.
*/
bool is_floating() const;
/** Checks if a value has a type matching the provided type.
*
* @newin{2,24}
*
* @param type A VariantType.
* @return <tt>true</tt> if the type of @a value matches @a type.
*/
bool is_of_type(const VariantType& type) const;
/** Checks if @a value is a container.
*
* @newin{2,24}
*
* @return <tt>true</tt> if @a value is a container.
*/
bool is_container() const;
/** Classifies @a value according to its top-level type.
*
* @newin{2,24}
*
* @return The VariantClass of @a value.
*/
GVariantClass classify() const;
/** Determines the number of bytes that would be required to store @a value
* with g_variant_store().
*
* If @a value has a fixed-sized type then this function always returned
* that fixed size.
*
* In the case that @a value is already in serialised form or the size has
* already been calculated (ie: this function has been called before)
* then this function is O(1). Otherwise, the size is calculated, an
* operation which is approximately O(n) in the number of values
* involved.
*
* @newin{2,24}
*
* @return The serialised size of @a value.
*/
gsize get_size() const;
#ifndef GLIBMM_DISABLE_DEPRECATED
/** Returns a pointer to the serialised form of a Variant instance.
* The returned data may not be in fully-normalised form if read from an
* untrusted source. The returned data must not be freed; it remains
* valid for as long as @a value exists.
*
* If @a value is a fixed-sized value that was deserialised from a
* corrupted serialised container then <tt>0</tt> may be returned. In this
* case, the proper thing to do is typically to use the appropriate
* number of nul bytes in place of @a value. If @a value is not fixed-sized
* then <tt>0</tt> is never returned.
*
* In the case that @a value is already in serialised form, this function
* is O(1). If the value is not already in serialised form,
* serialisation occurs implicitly and is approximately O(n) in the size
* of the result.
*
* To deserialise the data returned by this function, in addition to the
* serialised data, you must know the type of the Variant, and (if the
* machine might be different) the endianness of the machine that stored
* it. As a result, file formats or network messages that incorporate
* serialised Variants must include this information either
* implicitly (for instance "the file always contains a
* VARIANT_TYPE_VARIANT and it is always in little-endian order") or
* explicitly (by storing the type and/or endianness in addition to the
* serialised data).
*
* @newin{2,24}
*
* @deprecated Use the const version instead.
*
* @return The serialised form of @a value, or <tt>0</tt>.
*/
gconstpointer get_data();
#endif // GLIBMM_DISABLE_DEPRECATED
/** Returns a pointer to the serialised form of a Variant instance.
* The returned data may not be in fully-normalised form if read from an
* untrusted source. The returned data must not be freed; it remains
* valid for as long as @a value exists.
*
* If @a value is a fixed-sized value that was deserialised from a
* corrupted serialised container then <tt>0</tt> may be returned. In this
* case, the proper thing to do is typically to use the appropriate
* number of nul bytes in place of @a value. If @a value is not fixed-sized
* then <tt>0</tt> is never returned.
*
* In the case that @a value is already in serialised form, this function
* is O(1). If the value is not already in serialised form,
* serialisation occurs implicitly and is approximately O(n) in the size
* of the result.
*
* To deserialise the data returned by this function, in addition to the
* serialised data, you must know the type of the Variant, and (if the
* machine might be different) the endianness of the machine that stored
* it. As a result, file formats or network messages that incorporate
* serialised Variants must include this information either
* implicitly (for instance "the file always contains a
* VARIANT_TYPE_VARIANT and it is always in little-endian order") or
* explicitly (by storing the type and/or endianness in addition to the
* serialised data).
*
* @newin{2,46}
*
* @return The serialised form of @a value, or <tt>0</tt>.
*/
gconstpointer get_data() const;
/** Returns a pointer to the serialised form of a Variant instance.
* The semantics of this function are exactly the same as
* g_variant_get_data(), except that the returned Bytes holds
* a reference to the variant data.
*
* @newin{2,46}
*
* @return A new Bytes representing the variant data.
*/
Glib::RefPtr<const Glib::Bytes> get_data_as_bytes() const;
/** Stores the serialised form of @a value at @a data. @a data should be
* large enough. See g_variant_get_size().
*
* The stored data is in machine native byte order but may not be in
* fully-normalised form if read from an untrusted source. See
* g_variant_get_normal_form() for a solution.
*
* As with g_variant_get_data(), to be able to deserialise the
* serialised variant successfully, its type and (if the destination
* machine might be different) its endianness must also be available.
*
* This function is approximately O(n) in the size of @a data.
*
* @newin{2,24}
*
* @param data The location to store the serialised data at.
*/
void store(gpointer data) const;
/** Pretty-prints @a value in the format understood by g_variant_parse().
*
* The format is described [here][gvariant-text].
*
* If @a type_annotate is <tt>true</tt>, then type information is included in
* the output.
*
* @newin{2,24}
*
* @param type_annotate <tt>true</tt> if type information should be included in
* the output.
* @return A newly-allocated string holding the result.
*/
Glib::ustring print(bool type_annotate = false) const;
/** Generates a hash value for a Variant instance.
*
* The output of this function is guaranteed to be the same for a given
* value only per-process. It may change between different processor
* architectures or even different versions of GLib. Do not use this
* function as a basis for building protocols or file formats.
*
* The type of @a value is #gconstpointer only to allow use of this
* function with HashTable. @a value must be a Variant.
*
* @newin{2,24}
*
* @return A hash value corresponding to @a value.
*/
guint hash() const;
/** Checks if @a *this and @a other have the same type and value.
*
* @newin{2,24}
*
* @param other The Variant to compare with.
* @return <tt>true</tt> if @a *this and @a other are equal.
*/
bool equal(const VariantBase& other) const;
/** Gets a VariantBase instance that has the same value as this variant and
* is trusted to be in normal form.
*
* If this variant is already trusted to be in normal form then a new
* reference to the variant is returned.
*
* If this variant is not already trusted, then it is scanned to check if it
* is in normal form. If it is found to be in normal form then it is marked
* as trusted and a new reference to it is returned.
*
* If this variant is found not to be in normal form then a new trusted
* VariantBase is created with the same value as this variant.
*
* It makes sense to call this function if you've received variant data from
* untrusted sources and you want to ensure your serialised output is
* definitely in normal form.
*
* @param result A location in which to store the trusted VariantBase.
* @newin{2,24}
*/
void get_normal_form(VariantBase& result) const;
/** Checks if @a value is in normal form.
*
* The main reason to do this is to detect if a given chunk of
* serialised data is in normal form: load the data into a Variant
* using g_variant_new_from_data() and then use this function to
* check.
*
* If @a value is found to be in normal form then it will be marked as
* being trusted. If the value was already marked as being trusted then
* this function will immediately return <tt>true</tt>.
*
* @newin{2,24}
*
* @return <tt>true</tt> if @a value is in normal form.
*/
bool is_normal_form() const;
/** Performs a byteswapping operation on the contents of this variant. The
* result is that all multi-byte numeric data contained in the variant is
* byteswapped. That includes 16, 32, and 64bit signed and unsigned integers
* as well as file handles and double precision floating point values.
*
* This function is an identity mapping on any value that does not contain
* multi-byte numeric data. That include strings, booleans, bytes and
* containers containing only these things (recursively).
*
* The returned value is always in normal form and is marked as trusted.
*
* @param result A location in which to store the byteswapped form of this
* variant.
* @newin{2,24}
*/
void byteswap(VariantBase& result) const;
/** Checks if calling g_variant_get() with @a format_string on @a value would
* be valid from a type-compatibility standpoint. @a format_string is
* assumed to be a valid format string (from a syntactic standpoint).
*
* If @a copy_only is <tt>true</tt> then this function additionally checks that it
* would be safe to call g_variant_unref() on @a value immediately after
* the call to g_variant_get() without invalidating the result. This is
* only possible if deep copies are made (ie: there are no pointers to
* the data inside of the soon-to-be-freed Variant instance). If this
* check fails then a g_critical() is printed and <tt>false</tt> is returned.
*
* This function is meant to be used by functions that wish to provide
* varargs accessors to Variant values of uncertain values (eg:
* g_variant_lookup() or Glib::menu_model_get_item_attribute()).
*
* @newin{2,34}
*
* @param format_string A valid Variant format string.
* @param copy_only <tt>true</tt> to ensure the format string makes deep copies.
* @return <tt>true</tt> if @a format_string is safe to use.
*/
bool check_format_string(const std::string& format_string, bool copy_only = false) const;
//Ignore private API from gvariant-core.h:
/** Cast to a specific variant type.
* For instance:
* @code
* Variant<std::string> derived = VariantBase::cast_dynamic< Variant<std::string> >(base);
* @endcode
*
* @param v The variant to cast to a specific type.
* @result The variant as a specific type.
* @throws std::bad_cast if the Variant was not of the expected type.
*/
template<class V_CastTo>
static V_CastTo cast_dynamic(const VariantBase& v) throw(std::bad_cast);
protected:
#ifndef DOXYGEN_SHOULD_SKIP_THIS
/** Used by cast_dynamic().
* In addition to an exact match, the following casts are possible:
* - VARIANT_TYPE_OBJECT_PATH and VARIANT_TYPE_SIGNATURE can be cast to
* VARIANT_TYPE_STRING (Glib::ustring).
* - VARIANT_TYPE_STRING, VARIANT_TYPE_OBJECT_PATH and VARIANT_TYPE_SIGNATURE
* can be cast to VARIANT_TYPE_BYTESTRING (std::string).
* - VARIANT_TYPE_HANDLE can be cast to VARIANT_TYPE_INT32.
*
* These casts are possible also when they are parts of a more complicated type.
* E.g. in Variant<std::map<Glib::ustring, std::vector<std::string> > > the map's keys
* can be VARIANT_TYPE_OBJECT_PATH and the vector's elements can be VARIANT_TYPE_SIGNATURE.
* @newin{2,46}
*/
bool is_castable_to(const VariantType& supertype) const;
#endif //DOXYGEN_SHOULD_SKIP_THIS
private:
/** Relational operators are deleted to prevent invalid conversion
* to const void*.
*/
bool operator<(const VariantBase& src) const;
/// See operator<().
bool operator<=(const VariantBase& src) const;
/// See operator<().
bool operator>(const VariantBase& src) const;
/// See operator<().
bool operator>=(const VariantBase& src) const;
/// See operator<().
bool operator==(const VariantBase& src) const;
/// See operator<().
bool operator!=(const VariantBase& src) const;
};
template<class V_CastTo>
V_CastTo VariantBase::cast_dynamic(const VariantBase& v)
throw(std::bad_cast)
{
if(!(v.gobj()))
{
return V_CastTo();
}
if(v.is_castable_to(V_CastTo::variant_type()))
{
return V_CastTo(const_cast<GVariant*>(v.gobj()), true);
}
else
{
throw std::bad_cast();
}
}
/** Base class from which string variant classes derive.
* @newin{2,28}
* @ingroup Variant
*/
class VariantStringBase : public VariantBase
{
// Trick gmmproc into thinking this is derived from GVariant to wrap some methods.
public:
#ifndef DOXYGEN_SHOULD_SKIP_THIS
typedef VariantStringBase CppObjectType;
typedef GVariant BaseObjectType;
#endif /* DOXYGEN_SHOULD_SKIP_THIS */
private:
public:
typedef GVariant* CType;
typedef VariantStringBase CppType;
/// Default constructor.
VariantStringBase();
/** GVariant constructor.
* @param castitem The GVariant to wrap.
* @param take_a_reference Whether to take an extra reference of the
* GVariant or not (not taking one could destroy the GVariant with the
* wrapper).
*/
explicit VariantStringBase(GVariant* castitem, bool take_a_reference = false);
/** Creates a D-Bus object path variant with the contents of @a string. @a
* string must be a valid D-Bus object path. Use is_object_path() if unsure.
*
* @param output A location in which to store the new object path variant
* instance.
* @param object_path A normal nul-terminated string.
* @newin{2,28}
*/
static void create_object_path(VariantStringBase& output,
const std::string& object_path);
/** Determines if a given string is a valid D-Bus object path. You
* should ensure that a string is a valid D-Bus object path before
* passing it to g_variant_new_object_path().
*
* A valid object path starts with '/' followed by zero or more
* sequences of characters separated by '/' characters. Each sequence
* must contain only the characters "[A-Z][a-z][0-9]_". No sequence
* (including the one following the final '/' character) may be empty.
*
* @newin{2,24}
*
* @param string A normal C nul-terminated string.
* @return <tt>true</tt> if @a string is a D-Bus object path.
*/
static bool is_object_path(const std::string& string);
/** Creates a D-Bus type signature variant with the contents of @a string. @a
* string must be a valid D-Bus type signature. Use is_signature() if unsure.
*
* @param output A location in which to store the new signature variant
* instance.
* @param signature A normal nul-terminated string.
* @newin{2,28}
*/
static void create_signature(VariantStringBase& output,
const std::string& signature);
/** Determines if a given string is a valid D-Bus type signature. You
* should ensure that a string is a valid D-Bus type signature before
* passing it to g_variant_new_signature().
*
* D-Bus type signatures consist of zero or more definite VariantType
* strings in sequence.
*
* @newin{2,24}
*
* @param string A normal C nul-terminated string.
* @return <tt>true</tt> if @a string is a D-Bus type signature.
*/
static bool is_signature(const std::string& string);
};
/** The base class from which multiple-item Variants derive, such as Variants
* containing tuples or arrays.
*
* @newin{2,28}
* @ingroup Variant
*/
class VariantContainerBase : public VariantBase
{
// Trick gmmproc into thinking this is derived from GVariant to wrap some methods.
public:
#ifndef DOXYGEN_SHOULD_SKIP_THIS
typedef VariantContainerBase CppObjectType;
typedef GVariant BaseObjectType;
#endif /* DOXYGEN_SHOULD_SKIP_THIS */
private:
public:
typedef GVariant* CType;
typedef VariantContainerBase CppType;
/// Default constructor.
VariantContainerBase();
/** GVariant constructor.
* @param castitem The GVariant to wrap.
* @param take_a_reference Whether to take an extra reference of the
* GVariant or not (not taking one could destroy the GVariant with the
* wrapper).
*/
explicit VariantContainerBase(GVariant* castitem, bool take_a_reference = false);
/** Create a tuple variant from a vector of its variant children.
* @param children The vector containing the children of the container.
* @return The newly created tuple variant (as a VariantContainerBase).
*/
static VariantContainerBase create_tuple(const std::vector<VariantBase>& children);
/** Create a tuple variant with a single variant child.
* @param child The child variant.
* @return The newly created tuple variant (as a VariantContainerBase).
*/
static VariantContainerBase create_tuple(const VariantBase& child);
/** Depending on if @a child is <tt>0</tt>, either wraps @a child inside of a
* maybe container or creates a Nothing instance for the given @a type.
*
* At least one of @a child_type and @a child must be non-<tt>0</tt>.
* If @a child_type is non-<tt>0</tt> then it must be a definite type.
* If they are both non-<tt>0</tt> then @a child_type must be the type
* of @a child.
*
* If @a child is a floating reference (see g_variant_ref_sink()), the new
* instance takes ownership of @a child.
*
* @newin{2,24}
*
* @param child_type The VariantType of the child, or <tt>0</tt>.
* @param child The child value, or <tt>0</tt>.
* @return A floating reference to a new Variant maybe instance.
*/
static VariantContainerBase create_maybe(const VariantType& child_type,
const VariantBase& child = VariantBase());
/** Determines the number of children in a container Variant instance.
* This includes variants, maybes, arrays, tuples and dictionary
* entries. It is an error to call this function on any other type of
* Variant.
*
* For variants, the return value is always 1. For values with maybe
* types, it is always zero or one. For arrays, it is the length of the
* array. For tuples it is the number of tuple items (which depends
* only on the type). For dictionary entries, it is always 2
*
* This function is O(1).
*
* @newin{2,24}
*
* @return The number of children in the container.
*/
gsize get_n_children() const;
/** Reads a child item out of this instance. This method is valid for
* variants, maybes, arrays, tuples and dictionary entries.
*
* It is an error if @a index is greater than the number of child items in
* the container. See get_n_children().
*
* This function is O(1).
*
* @param index The index of the child to fetch.
* @param child A location in which to store the child at the specified
* index.
* @throw std::out_of_range
* @newin{2,28}
*/
void get_child(VariantBase& child, gsize index = 0) const;
/** Reads a child item out of a container Variant instance. This
* includes variants, maybes, arrays, tuples and dictionary
* entries. It is an error to call this function on any other type of
* Variant.
*
* It is an error if @a index is greater than the number of child items
* in the container. See g_variant_n_children().
*
* The returned value is never floating. You should free it with
* g_variant_unref() when you're done with it.
*
* This function is O(1).
*
* @newin{2,24}
*
* @param index The index of the child to fetch.
* @return The child at the specified index.
*/
VariantBase get_child(gsize index = 0);
/* TODO?:
/// A get() method to return the contents of the variant in the container.
template <class DataType>
DataType get_child(gsize index = 0) const;
*/
/** If this is a maybe-typed instance, extract its value. If the value is
* Nothing, then this function returns <tt>false</tt>.
*
* @param maybe A place in which to return the value (the value may be
* <tt>0</tt>).
* @newin{2,28}
*/
bool get_maybe(VariantBase& maybe) const;
protected:
#ifndef DOXYGEN_SHOULD_SKIP_THIS
/** Used by get_iter() in the subclasses.
* @newin{2,46}
*/
VariantIter get_iter(const VariantType& container_variant_type) const;
#endif //DOXYGEN_SHOULD_SKIP_THIS
};
template<>
VariantContainerBase VariantBase::cast_dynamic<VariantContainerBase>(const VariantBase& v)
throw(std::bad_cast);
/** Template class used for the specialization of the Variant<> classes.
* @newin{2,28}
* @ingroup Variant
*/
template<class T>
class Variant : public VariantBase
{
public:
typedef T CppType;
};
/****************** Specializations ***********************************/
/** Specialization of Variant containing a VariantBase.
* @newin{2,28}
* @ingroup Variant
*/
template<>
class Variant<VariantBase> : public VariantContainerBase
{
// Trick gmmproc into thinking this is derived from GVariant to wrap some methods.
public:
#ifndef DOXYGEN_SHOULD_SKIP_THIS
typedef Variant<VariantBase> CppObjectType;
typedef GVariant BaseObjectType;
#endif /* DOXYGEN_SHOULD_SKIP_THIS */
private:
public:
typedef GVariant* CType;
typedef VariantBase CppType;
typedef Variant<VariantBase> CppContainerType;
/// Default constructor.
Variant<VariantBase>();
/** GVariant constructor.
* @param castitem The GVariant to wrap.
* @param take_a_reference Whether to take an extra reference of the
* GVariant or not (not taking one could destroy the GVariant with the
* wrapper).
*/
explicit Variant<VariantBase>(GVariant* castitem, bool take_a_reference = false);
/** Gets the VariantType.
* @return The VariantType.
* @newin{2,28}
*/
static const VariantType& variant_type() G_GNUC_CONST;
//This must have a create() method because otherwise it would be a copy
//constructor.
/** Creates a new Variant<VariantBase>.
* @param data The value of the new Variant.
* @return The new Variant.
* @newin{2,28}
*/
static Variant<VariantBase> create(const VariantBase& data);
//TODO: Documentation
void get(VariantBase& variant) const;
//TODO: Deprecate this in favour of get(VariantBase&)?
/** Unboxes @a value. The result is the Variant instance that was
* contained in @a value.
*
* @newin{2,24}
*
* @return The item contained in the variant.
*/
VariantBase get() const;
};
/** Specialization of Variant containing a Variant<T>.
* @newin{2,36}
* @ingroup Variant
*/
template<class T>
class Variant< Variant<T> > : public VariantContainerBase
{
public:
typedef GVariant* CType;
typedef Variant<T> CppType;
typedef Variant<CppType> CppContainerType;
/// Default constructor.
Variant< Variant<T> >();
/** GVariant constructor.
* @param castitem The GVariant to wrap.
* @param take_a_reference Whether to take an extra reference of the
* GVariant or not (not taking one could destroy the GVariant with the
* wrapper).
* @newin{2,36}
*/
explicit Variant< Variant<T> >(GVariant* castitem, bool take_a_reference = false);
/** Gets the VariantType.
* @return The VariantType.
* @newin{2,36}
*/
static const VariantType& variant_type() G_GNUC_CONST;
/** Creates a new Variant< Variant<T> >.
* @param data The value of the new Variant.
* @return The new Variant.
* @newin{2,36}
*/
static Variant< Variant<T> > create(const Variant<T>& data);
/** Gets the contents of the Variant.
* @return The contents of the Variant.
* @newin{2,36}
*/
Variant<T> get() const;
};
/** Specialization of Variant containing a Glib::ustring, for variants of type
* string, object path, or signature.
* @newin{2,28}
* @ingroup Variant
*/
template<>
class Variant<Glib::ustring> : public VariantStringBase
{
// Trick gmmproc into thinking this is derived from GVariant to wrap some methods.
public:
#ifndef DOXYGEN_SHOULD_SKIP_THIS
typedef Variant<Glib::ustring> CppObjectType;
typedef GVariant BaseObjectType;
#endif /* DOXYGEN_SHOULD_SKIP_THIS */
private:
public:
typedef char* CType;
typedef Glib::ustring CppType;
/// Default constructor.
Variant<Glib::ustring>();
/** GVariant constructor.
* @param castitem The GVariant to wrap.
* @param take_a_reference Whether to take an extra reference of the
* GVariant or not (not taking one could destroy the GVariant with the
* wrapper).
*/
explicit Variant<Glib::ustring>(GVariant* castitem, bool take_a_reference = false);
/** Gets the VariantType.
* @return The VariantType.
* @newin{2,28}
*/
static const VariantType& variant_type() G_GNUC_CONST;
/** Creates a new Variant<Glib::ustring>.
* @param data The value of the new Variant.
* @return The new Variant.
* @newin{2,28}
*/
static Variant<Glib::ustring> create(const Glib::ustring& data);
//We can't use WRAP_METHOD() here because g_variant_get_string() takes an extra length parameter.
/** Gets the contents of the Variant.
* @return The contents of the Variant.
* @newin{2,28}
*/
Glib::ustring get() const;
};
//TODO: When we can break ABI, remove this template specialization.
template<>
Variant<Glib::ustring> VariantBase::cast_dynamic< Variant<Glib::ustring> >(const VariantBase& v)
throw(std::bad_cast);
/** Specialization of Variant containing a std::string, for variants of type
* bytestring, string, object path, or signature.
* See also Variant<Glib::ustring> for UTF-8 strings.
* @newin{2,28}
* @ingroup Variant
*/
template<>
class Variant<std::string> : public VariantStringBase
{
// Trick gmmproc into thinking this is derived from GVariant to wrap some methods.
public:
#ifndef DOXYGEN_SHOULD_SKIP_THIS
typedef Variant<std::string> CppObjectType;
typedef GVariant BaseObjectType;
#endif /* DOXYGEN_SHOULD_SKIP_THIS */
private:
public:
typedef char* CType;
typedef std::string CppType;
/// Default constructor.
Variant<std::string>();
/** GVariant constructor.
* @param castitem The GVariant to wrap.
* @param take_a_reference Whether to take an extra reference of the
* GVariant or not (not taking one could destroy the GVariant with the
* wrapper).
*/
explicit Variant<std::string>(GVariant* castitem, bool take_a_reference = false);
/** Gets the VariantType.
* @return The VariantType.
* @newin{2,28}
*/
static const VariantType& variant_type() G_GNUC_CONST;
/** Creates a new Variant<std::string>.
* @param data The value of the new Variant.
* @return The new Variant.
* @newin{2,28}
*/
static Variant<std::string> create(const std::string& data);
//TODO: Documentation.
std::string get() const;
};
//TODO: When we can break ABI, remove this template specialization.
template<>
Variant<std::string> VariantBase::cast_dynamic< Variant<std::string> >(const VariantBase& v)
throw(std::bad_cast);
/** Specialization of Variant containing a dictionary entry. See also
* Variant< std::map<K, V> >.
* @newin{2,28}
* @ingroup Variant
*/
template<class K, class V>
class Variant< std::pair<K, V> > : public VariantContainerBase
{
public:
typedef std::pair<K, V> CppType;
typedef Variant<CppType> CppContainerType;
/// Default constructor.
Variant< std::pair<K, V> >()
: VariantContainerBase()
{}
/** GVariant constructor.
* @param castitem The GVariant to wrap.
* @param take_a_reference Whether to take an extra reference of the
* GVariant or not (not taking one could destroy the GVariant with the
* wrapper).
*/
explicit Variant< std::pair<K, V> >(GVariant* castitem,
bool take_a_reference = false)
: VariantContainerBase(castitem, take_a_reference)
{}
/** Gets the VariantType.
* @return The VariantType.
* @newin{2,28}
*/
static const VariantType& variant_type() G_GNUC_CONST;
/** Creates a new Variant< std::pair<K, V> >.
* @param data The value of the new Variant.
* @return The new Variant.
* @newin{2,28}
*/
static Variant< std::pair<K, V> > create(const std::pair<K, V>& data);
/** Gets the contents of the Variant.
* @return The contents of the Variant.
* @throw std::out_of_range
* @newin{2,28}
*/
std::pair<K, V> get() const;
};
/** Specialization of Variant containing an array of items.
* @newin{2,28}
* @ingroup Variant
*/
template<class T>
class Variant< std::vector<T> > : public VariantContainerBase
{
public:
typedef T CppType;
typedef std::vector<T> CppContainerType;
/// Default constructor.
Variant< std::vector<T> >()
: VariantContainerBase()
{}
/** GVariant constructor.
* @param castitem The GVariant to wrap.
* @param take_a_reference Whether to take an extra reference of the
* GVariant or not (not taking one could destroy the GVariant with the
* wrapper).
*/
explicit Variant< std::vector<T> >(GVariant* castitem,
bool take_a_reference = false)
: VariantContainerBase(castitem, take_a_reference)
{}
/** Gets the VariantType.
* @return The VariantType.
* @newin{2,28}
*/
static const VariantType& variant_type() G_GNUC_CONST;
/** Creates a new Variant from an array of numeric types.
* @param data The array to use for creation.
* @return The new Variant.
* @newin{2,28}
*/
static Variant< std::vector<T> > create(const std::vector<T>& data);
/** Gets a specific element of the array. It is an error if @a index is
* greater than the number of child items in the container. See
* VariantContainerBase::get_n_children().
*
* This function is O(1).
*
* @param index The index of the element.
* @return The element at index @a index.
* @throw std::out_of_range
* @newin{2,28}
*/
T get_child(gsize index) const;
/** Gets the vector of the Variant.
* @return The vector.
* @newin{2,28}
*/
std::vector<T> get() const;
/** Gets a VariantIter of the Variant.
* @return the VaraintIter.
* @newin{2,28}
*/
VariantIter get_iter() const;
};
/** Specialization of Variant containing an array of UTF-8 capable
* strings.
* @newin{2,28}
* @ingroup Variant
*/
template<>
class Variant< std::vector<Glib::ustring> > : public VariantContainerBase
{
public:
typedef Glib::ustring CppType;
typedef std::vector<Glib::ustring> CppContainerType;
/// Default constructor.
Variant< std::vector<Glib::ustring> >();
/** GVariant constructor.
* @param castitem The GVariant to wrap.
* @param take_a_reference Whether to take an extra reference of the
* GVariant or not (not taking one could destroy the GVariant with the
* wrapper).
*/
explicit Variant< std::vector<Glib::ustring> >(GVariant* castitem, bool take_a_reference = false);
/** Gets the VariantType.
* @return The VariantType.
* @newin{2,28}
*/
static const VariantType& variant_type() G_GNUC_CONST;
/** Creates a new Variant from an array of strings.
* @param data The array to use for creation.
* @return The new Variant.
* @newin{2,28}
*/
static Variant< std::vector<Glib::ustring> >
create(const std::vector<Glib::ustring>& data);
/** Gets a specific element of the string array. It is an error if @a index
* is greater than the number of child items in the container. See
* VariantContainerBase::get_n_children().
*
* This function is O(1).
*
* @param index The index of the element.
* @return The element at index @a index.
* @throw std::out_of_range
* @newin{2,28}
*/
Glib::ustring get_child(gsize index) const;
/** Gets the string vector of the Variant.
* @return The vector.
* @newin{2,28}
*/
std::vector<Glib::ustring> get() const;
/** Gets a VariantIter of the Variant.
* @return the VaraintIter.
* @newin{2,28}
*/
VariantIter get_iter() const;
};
/** Specialization of Variant containing an array of non-UTF-8 strings
* (byte string arrays).
* @newin{2,28}
* @ingroup Variant
*/
template<>
class Variant< std::vector<std::string> > : public VariantContainerBase
{
public:
typedef std::string CppType;
typedef std::vector<std::string> CppContainerType;
/// Default constructor.
Variant< std::vector<std::string> >();
/** GVariant constructor.
* @param castitem The GVariant to wrap.
* @param take_a_reference Whether to take an extra reference of the
* GVariant or not (not taking one could destroy the GVariant with the
* wrapper).
*/
explicit Variant< std::vector<std::string> >(GVariant* castitem, bool take_a_reference = false);
/** Gets the VariantType.
* @return The VariantType.
* @newin{2,28}
*/
static const VariantType& variant_type() G_GNUC_CONST;
/** Creates a new Variant from an array of strings.
* @param data The array to use for creation.
* @return The new Variant.
* @newin{2,28}
*/
static Variant< std::vector<std::string> >
create(const std::vector<std::string>& data);
/** Creates a new Variant from an array of D-Bus object paths.
* @param paths The array to use for creation.
* @return The new Variant.
* @newin{2,36}
*/
static Variant< std::vector<std::string> >
create_from_object_paths(const std::vector<std::string>& paths);
/** Gets a specific element of the string array. It is an error if @a index
* is greater than the number of child items in the container. See
* VariantContainerBase::get_n_children().
*
* This function is O(1).
*
* @param index The index of the element.
* @return The element at index @a index.
* @throw std::out_of_range
* @newin{2,28}
*/
std::string get_child(gsize index) const;
/** Gets the string vector of the Variant.
* @return The vector.
* @newin{2,28}
*/
std::vector<std::string> get() const;
// Object paths are merely strings so it is possible to get them already with
// the existing get() methods in this class.
/** Gets a VariantIter of the Variant.
* @return the VaraintIter.
* @newin{2,28}
*/
VariantIter get_iter() const;
};
/** Specialization of Variant containing a dictionary (a map of (key,
* value) elements).
* @newin{2,28}
* @ingroup Variant
*/
template<class K, class V>
class Variant< std::map<K, V> >: public VariantContainerBase
{
public:
typedef std::pair<K, V> CppType;
typedef std::map<K, V> CppContainerType;
/// Default constructor.
Variant< std::map<K, V> >()
: VariantContainerBase()
{}
/** GVariant constructor.
* @param castitem The GVariant to wrap.
* @param take_a_reference Whether to take an extra reference of the
* GVariant or not (not taking one could destroy the GVariant with the
* wrapper).
*/
explicit Variant< std::map<K, V> >(GVariant* castitem,
bool take_a_reference = false)
: VariantContainerBase(castitem, take_a_reference)
{}
/** Gets the VariantType.
* @return The VariantType.
* @newin{2,28}
*/
static const VariantType& variant_type() G_GNUC_CONST;
/** Creates a new Variant containing a dictionary from a map.
* @param data The map to use for creation.
* @return The new Variant holding a dictionary.
* @newin{2,28}
*/
static Variant< std::map<K, V> > create(const std::map<K, V>& data);
/** Gets a specific dictionary entry from the string array. It is an error
* if @a index is greater than the number of child items in the container.
* See VariantContainerBase::get_n_children().
*
* This function is O(1).
*
* @param index The index of the element.
* @return The dictionary entry at index @a index.
* @throw std::out_of_range
* @newin{2,28}
*/
std::pair<K, V> get_child(gsize index) const;
/** Looks up a value in a dictionary Variant.
* @param key The key to look up.
* @param value A location in which to store the value if found.
* @return <tt>true</tt> if the key is found, <tt>false</tt> otherwise.
*/
bool lookup(const K& key, V& value) const;
/** Gets the map (the dictionary) of the Variant.
* @return The vector.
* @newin{2,28}
*/
std::map<K, V> get() const;
/** Gets a VariantIter of the Variant.
* @return the VaraintIter.
* @newin{2,28}
*/
VariantIter get_iter() const;
};
} // namespace Glib
//We ignore g_variant_get_*() methods that are wrapped by Variant<> specializations, such as in variant_basictypes.h.m4.
/* Include generated specializations of Variant<> for fundamental types:
*/
#define _GLIBMM_VARIANT_H_INCLUDE_VARIANT_BASICTYPES_H
#include <glibmm/variant_basictypes.h>
#undef _GLIBMM_VARIANT_H_INCLUDE_VARIANT_BASICTYPES_H
namespace Glib
{
/*--------------------Variant< Variant<T> >---------------------*/
template<class T>
Variant< Variant<T> >::Variant()
: VariantContainerBase()
{
}
template<class T>
Variant< Variant<T> >::Variant(GVariant* castitem, bool take_a_reference)
: VariantContainerBase(castitem, take_a_reference)
{
}
// static
template<class T>
const VariantType& Variant< Variant<T> >::variant_type()
{
return VARIANT_TYPE_VARIANT;
}
template<class T>
Variant< Variant<T> > Variant< Variant<T> >::create(const Variant<T>& data)
{
Variant< Variant<T> > result = Variant< Variant<T> >(
g_variant_new_variant(const_cast<GVariant*>(data.gobj())));
return result;
}
template<class T>
Variant<T> Variant< Variant<T> >::get() const
{
GVariant* const gvariant = g_variant_get_variant(gobject_);
return Variant<T>(gvariant);
}
/*--------------------Variant< std::pair<K, V> >---------------------*/
// static
template<class K, class V>
const VariantType& Variant< std::pair<K, V> >::variant_type()
{
static VariantType type(
g_variant_type_new_dict_entry(Variant<K>::variant_type().gobj(),
Variant<V>::variant_type().gobj()));
return type;
}
template<class K, class V>
Variant< std::pair<K, V> >
Variant< std::pair<K, V> >::create(const std::pair<K, V>& data)
{
Variant<K> key = Variant<K>::create(data.first);
Variant<V> value = Variant<V>::create(data.second);
Variant< std::pair<K, V> > result = Variant< std::pair<K, V> >(
g_variant_new_dict_entry(key.gobj(), value.gobj()));
return result;
}
template<class K, class V>
std::pair<K, V> Variant< std::pair<K, V> >::get() const
{
// Get the key (the first element of this VariantContainerBase).
Variant<K> key;
VariantContainerBase::get_child(key, 0);
// Get the value (the second element of this VariantContainerBase).
Variant<V> value;
VariantContainerBase::get_child(value, 1);
std::pair<K, V> result(key.get(), value.get());
return result;
}
/*---------------------Variant< std::vector<T> >---------------------*/
// static
template<class T>
const VariantType& Variant< std::vector<T> >::variant_type()
{
static VariantType type =
VariantType::create_array(Variant<T>::variant_type());
return type;
}
template<class T>
Variant< std::vector<T> >
Variant< std::vector<T> >::create(const std::vector<T>& data)
{
// Get the variant type of the array.
VariantType array_variant_type = Variant< std::vector<T> >::variant_type();
// Create a GVariantBuilder to build the array.
GVariantBuilder* builder = g_variant_builder_new(array_variant_type.gobj());
// Add the elements of the vector into the builder.
for(const auto& element : data)
{
Glib::Variant<T> variant = Glib::Variant<T>::create(element);
g_variant_builder_add_value(builder, variant.gobj());
}
// Create the variant using the builder.
Variant< std::vector<T> > result =
Variant< std::vector<T> >(g_variant_new(
reinterpret_cast<const gchar*>(array_variant_type.gobj()), builder));
g_variant_builder_unref(builder);
return result;
}
template<class T>
T Variant< std::vector<T> >::get_child(gsize index) const
{
if(index >= g_variant_n_children(const_cast<GVariant*>(gobj())))
throw std::out_of_range(
"Variant< std::vector<T> >::get_child(): Index out of bounds.");
Glib::Variant<T> variant;
GVariant* gvariant =
g_variant_get_child_value(const_cast<GVariant*>(gobj()), index);
variant.init(gvariant);
return variant.get();
}
template<class T>
std::vector<T> Variant< std::vector<T> >::get() const
{
std::vector<T> result;
gsize n_children = g_variant_n_children(const_cast<GVariant*>(gobj()));
for(gsize i = 0; i < n_children; i++)
{
Glib::Variant<T> variant;
GVariant* gvariant =
g_variant_get_child_value(const_cast<GVariant*>(gobj()), i);
variant.init(gvariant);
result.push_back(variant.get());
}
return result;
}
template<class T>
VariantIter Variant< std::vector<T> >::get_iter() const
{
return VariantContainerBase::get_iter(variant_type());
}
/*---------------------Variant< std::map<K, V> > --------------------*/
// static
template<class K, class V>
const VariantType& Variant< std::map<K, V> >::variant_type()
{
static VariantType type =
VariantType::create_array(Variant< std::pair<K, V> >::variant_type());
return type;
}
template<class K, class V>
Variant< std::map<K, V> >
Variant< std::map<K, V> >::create(const std::map<K, V>& data)
{
// Get the variant type of the elements.
VariantType element_variant_type =
Variant< std::pair<K, V> >::variant_type();
// Get the variant type of the array.
VariantType array_variant_type = Variant< std::map<K, V> >::variant_type();
// Create a GVariantBuilder to build the array.
GVariantBuilder* builder = g_variant_builder_new(array_variant_type.gobj());
// Add the elements of the map into the builder.
for(const auto& element : data)
{
auto dict_entry =
Variant< std::pair<K, V> >::create(element);
g_variant_builder_add_value(builder, dict_entry.gobj());
}
// Create the variant using the builder.
Variant< std::map<K, V> > result = Variant< std::map<K, V> >(g_variant_new(
reinterpret_cast<const gchar*>(array_variant_type.gobj()), builder));
g_variant_builder_unref(builder);
return result;
}
template<class K, class V>
std::pair<K, V>
Variant< std::map<K, V> >::get_child(gsize index) const
{
Variant< std::pair<K, V> > dict_entry;
VariantContainerBase::get_child(dict_entry, index);
return dict_entry.get();
}
template<class K, class V>
bool Variant< std::map<K, V> >::lookup(const K& key, V& value) const
{
// The code in this method pretty much reflects the g_variant_lookup_value()
// function except that it's more general to deal with keys that are not
// just strings.
VariantIter iter = get_iter();
Variant< std::pair<K, V> > entry;
while(iter.next_value(entry))
{
std::pair<K, V> element = entry.get();
if(element.first == key)
{
value = element.second;
return true;
}
}
return false;
}
template<class K, class V>
std::map<K, V> Variant< std::map<K, V> >::get() const
{
std::map<K, V> result;
VariantIter iter = get_iter();
Variant< std::pair<K, V> > entry;
while(iter.next_value(entry))
{
result.insert(entry.get());
}
return result;
}
template<class K, class V>
VariantIter Variant< std::map<K, V> >::get_iter() const
{
return VariantContainerBase::get_iter(variant_type());
}
} // namespace Glib
namespace Glib
{
/** @relates Glib::VariantBase
* @param lhs The left-hand side
* @param rhs The right-hand side
*/
inline void swap(VariantBase& lhs, VariantBase& rhs) noexcept
{ lhs.swap(rhs); }
} // namespace Glib
namespace Glib
{
/** A Glib::wrap() method for this object.
*
* @param object The C instance.
* @param take_copy False if the result should take ownership of the C instance. True if it should take a new copy or ref.
* @result A C++ instance that wraps this C instance.
*
* @relates Glib::VariantBase
*/
Glib::VariantBase wrap(GVariant* object, bool take_copy = false);
} // namespace Glib
#endif /* _GLIBMM_VARIANT_H */
|