This file is indexed.

/usr/include/glibmm-2.4/glibmm/threads.h is in libglibmm-2.4-dev 2.46.3-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
// -*- c++ -*-
// Generated by gmmproc 2.46.3 -- DO NOT MODIFY!
#ifndef _GLIBMM_THREADS_H
#define _GLIBMM_THREADS_H

#include <glibmmconfig.h>


/* Copyright (C) 2002 The gtkmm Development Team
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free
 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */


#include <glib.h>
#include <glibmm/error.h>
#include <sigc++/sigc++.h>
#include <string>
#include <cstddef>

namespace Glib
{

namespace Threads
{
//The GMMPROC_EXTRA_NAMESPACE() macro is a hint to generate_wrap_init.pl to put it in the Threads sub-namespace


/** @defgroup Threads Threads
 * %Thread abstraction; including threads, different mutexes,
 * conditions and thread private data.
 * @{
 */

enum NotLock { NOT_LOCK };
enum TryLock { TRY_LOCK };

class Mutex;
class RecMutex;
class RWLock;

/** %Exception class for thread-related errors.
 */
class ThreadError : public Glib::Error
{
public:
  /**  @var Code AGAIN
   * A thread couldn't be created due to resource
   * shortage. Try again later.
   * 
   *  @enum Code
   * 
   * Possible errors of thread related functions.
   */
  enum Code
  {
    AGAIN
  };

  ThreadError(Code error_code, const Glib::ustring& error_message);
  explicit ThreadError(GError* gobject);
  Code code() const;

#ifndef DOXYGEN_SHOULD_SKIP_THIS
private:

  static void throw_func(GError* gobject);

  friend void wrap_init(); // uses throw_func()

  #endif //DOXYGEN_SHOULD_SKIP_THIS
};


/** Represents a running thread.
 * An instance of this class can only be obtained with create(), self(),
 * or wrap(GThread*).  It's not possible to delete a Thread object.
 * You must call join() to avoid a memory leak.
 *
 * @note g_thread_exit() is not wrapped, because that function exits a thread
 * without any cleanup.  That's especially dangerous in C++ code, since the
 * destructors of automatic objects won't be invoked.  Instead, you can throw
 * a Threads::Thread::Exit exception, which will be caught by the internal thread
 * entry function.
 *
 * @note The thread entry slot doesn't have the void* return value that a
 * GThreadFunc has.  If you want to return any data from your thread,
 * you can pass an additional output argument to the thread's entry slot.
 */
class Thread
{
public:

  Thread(const Thread&) = delete;
  Thread& operator=(const Thread&) = delete;

  class Exit;

  //See http://bugzilla.gnome.org/show_bug.cgi?id=512348 about the sigc::trackable issue.
  // TODO: At the next ABI break, consider changing const sigc::slot<void>& slot
  // to const std::function<void()>& func, if it can be assumed that all supported
  // compilers understand the C++11 template class std::function<>.
  /** Creates a new thread.
   * You can wait for this thread's termination by calling join().
   *
   * The new thread executes the function or method @a slot points to.  You can
   * pass additional arguments using sigc::bind().  If the thread was created
   * successfully, it is returned, otherwise a Threads::ThreadError exception is thrown.
   *
   * Because sigc::trackable is not thread-safe, if the slot represents a
   * non-static class method and is created by sigc::mem_fun(), the class concerned
   * should not derive from sigc::trackable. You can use, say, boost::bind() or,
   * in C++11, std::bind() or a C++11 lambda expression instead of sigc::mem_fun().
   *
   * @param slot A slot to execute in the new thread.
   * @return The new Thread* on success.
   * @throw Glib::Threads::ThreadError
   */
  static Thread* create(const sigc::slot<void>& slot);

  // TODO: At next ABI break, remove the single parameter create
  //       method and default name to std::string()

  /** Creates a new named thread.
   * You can wait for this thread's termination by calling join().
   *
   * The new thread executes the function or method @a slot points to.  You can
   * pass additional arguments using sigc::bind().  If the thread was created
   * successfully, it is returned, otherwise a Threads::ThreadError exception is thrown.
   *
   * Because sigc::trackable is not thread-safe, if the slot represents a
   * non-static class method and is created by sigc::mem_fun(), the class concerned
   * should not derive from sigc::trackable. You can use, say, boost::bind() or,
   * in C++11, std::bind() or a C++11 lambda expression instead of sigc::mem_fun().
   *
   * The @a name can be useful for discriminating threads in a debugger.
   * It is not used for other purposes and does not have to be unique.
   * Some systems restrict the length of @a name to 16 bytes.
   *
   * @param slot A slot to execute in the new thread.
   * @param name A name for the new thread.
   * @return The new Thread* on success.
   * @throw Glib::Threads::ThreadError
   *
   * @newin{2,36}
   */
  static Thread* create(const sigc::slot<void>& slot, const std::string& name);

  /** Returns the Thread* corresponding to the calling thread.
   * @return The current thread.
   */
  static Thread* self();

  /** Waits until the thread finishes.
   * Waits until the thread finishes, i.e. the slot, as given to create(),
   * returns or g_thread_exit() is called by the thread.  (Calling
   * g_thread_exit() in a C++ program should be avoided.)  All resources of
   * the thread including the Glib::Threads::Thread object are released.
   */
  void join();

  /** Gives way to other threads waiting to be scheduled.
   * This function is often used as a method to make busy wait less evil.  But
   * in most cases, you will encounter, there are better methods to do that.
   * So in general you shouldn't use this function.
   */
  static void yield();

  GThread*       gobj();
  const GThread* gobj() const;

private:
  // Glib::Thread can neither be constructed nor deleted.
  Thread();
  void operator delete(void*, std::size_t);
};

/** %Exception class used to exit from a thread.
 * @code
 * throw Glib::Threads::Thread::Exit();
 * @endcode
 * Write this if you want to exit from a thread created by Threads::Thread::create().
 * Of course you must make sure not to catch Threads::Thread::Exit by accident, i.e.
 * when using <tt>catch(...)</tt> somewhere in your code.
 */
class Thread::Exit
{};

/** A C++ wrapper for the C object.
 *
 * @param gobject The C instance.
 * @return The C++ wrapper.
 *
 * @relates Glib::Threads::Thread
 */
Thread* wrap(GThread* gobject);

/** Represents a mutex (mutual exclusion).
 * It can be used to protect data against shared access.  Try to use
 * Mutex::Lock instead of calling lock() and unlock() directly&nbsp;--
 * it will make your life much easier.
 *
 * @note Glib::Threads::Mutex is not recursive, i.e. a thread will deadlock, if it
 * already has locked the mutex while calling lock().  Use Glib::Threads::RecMutex
 * instead, if you need recursive mutexes.
 */
class Mutex
{
public:
  class Lock;

  Mutex();

  Mutex(const Mutex&) = delete;
  Mutex& operator=(const Mutex&) = delete;

  ~Mutex();

  /** Locks the mutex.
   * If mutex is already locked by another thread, the current thread will
   * block until mutex is unlocked by the other thread.
   * @see Mutex::Lock
   */
  void lock();

  /** Tries to lock the mutex.
   * If the mutex is already locked by another thread, it immediately returns
   * @c false.  Otherwise it locks the mutex and returns @c true.
   * @return Whether the mutex could be locked.
   * @see Mutex::Lock
   */
  bool trylock();

  /** Unlocks the mutex.
   * If another thread is blocked in a lock() call for this mutex, it will be
   * woken and can lock the mutex itself.
   * @see Mutex::Lock
   */
  void unlock();

  GMutex* gobj() { return &gobject_; }

private:
  GMutex gobject_;
};

/** Utility class for exception-safe mutex locking.
 * @par Usage example:
 * @code
 * {
 *   Glib::Threads::Mutex::Lock lock(mutex); // calls mutex.lock()
 *   do_something();
 * } // the destructor calls mutex.unlock()
 * @endcode
 * As you can see, the compiler takes care of the unlocking.  This is not
 * only exception-safe but also much less error-prone.  You could even
 * <tt>return</tt> while still holding the lock and it will be released
 * properly.
 */
class Mutex::Lock
{
public:
  explicit inline Lock(Mutex& mutex);
  inline Lock(Mutex& mutex, NotLock);
  inline Lock(Mutex& mutex, TryLock);

  Lock(const Mutex::Lock&) = delete;
  Mutex::Lock& operator=(const Mutex::Lock&) = delete;

  inline ~Lock();

  inline void acquire();
  inline bool try_acquire();
  inline void release();
  inline bool locked() const;

private:
  Mutex&  mutex_;
  bool    locked_;
};

/** A C++ wrapper for the C object.
 * Do not use operator delete on the returned pointer. If the caller owns the
 * GMutex object, the caller must destroy it in the same way as if this function
 * had not been called.
 *
 * @param gobject The C instance.
 * @result The GMutex* cast to a Glib::Threads::Mutex*.
 *
 * @relates Glib::Threads::Mutex
 */
Mutex* wrap(GMutex* gobject);

/** This represents a recursive mutex.
 * It is similar to a Mutex with the difference
 * that it is possible to lock a RecMutex multiple times in the same
 * thread without deadlock. When doing so, care has to be taken to
 * unlock the recursive mutex as often as it has been locked.
 */
class RecMutex
{
public:
  class Lock;

  RecMutex();

  RecMutex(const RecMutex&) = delete;
  RecMutex& operator=(const RecMutex&) = delete;

  ~RecMutex();

  void lock();
  bool trylock();
  void unlock();

  GRecMutex* gobj() { return &gobject_; }

private:
  GRecMutex gobject_;
};

/** Utility class for exception-safe locking of recursive mutexes.
 */
class RecMutex::Lock
{
public:
  explicit inline Lock(RecMutex& mutex);
  inline Lock(RecMutex& mutex, NotLock);
  inline Lock(RecMutex& mutex, TryLock);

  Lock(const RecMutex::Lock&) = delete;
  RecMutex::Lock& operator=(const RecMutex::Lock&) = delete;

  inline ~Lock();

  inline void acquire();
  inline bool try_acquire();
  inline void release();
  inline bool locked() const;

private:
  RecMutex& mutex_;
  bool      locked_;
};

/** A C++ wrapper for the C object.
 * Do not use operator delete on the returned pointer. If the caller owns the
 * GRecMutex object, the caller must destroy it in the same way as if this function
 * had not been called.
 *
 * @param gobject The C instance.
 * @result The GRecMutex* cast to a Glib::Threads::RecMutex*.
 *
 * @relates Glib::Threads::RecMutex
 */
RecMutex* wrap(GRecMutex* gobject);

/** This represents a reader-writer lock.
 * It is similar to a Mutex in that it allows
 * multiple threads to coordinate access to a shared resource.
 *
 * The difference to a mutex is that a reader-writer lock discriminates
 * between read-only ('reader') and full ('writer') access. While only
 * one thread at a time is allowed write access (by holding the 'writer'
 * lock via writer_lock()), multiple threads can gain
 * simultaneous read-only access (by holding the 'reader' lock via
 * reader_lock()).
 */
class RWLock
{
public:
  class ReaderLock;
  class WriterLock;

  RWLock();

  RWLock(const RWLock&) = delete;
  RWLock& operator=(const RWLock&) = delete;

  ~RWLock();

  void reader_lock();
  bool reader_trylock();
  void reader_unlock();

  void writer_lock();
  bool writer_trylock();
  void writer_unlock();

  GRWLock* gobj() { return &gobject_; }

private:
  GRWLock gobject_;
};

/** Utility class for exception-safe locking of read/write locks.
 */
class RWLock::ReaderLock
{
public:
  explicit inline ReaderLock(RWLock& rwlock);
  inline ReaderLock(RWLock& rwlock, NotLock);
  inline ReaderLock(RWLock& rwlock, TryLock);

  ReaderLock(const RWLock::ReaderLock&) = delete;
  RWLock::ReaderLock& operator=(const RWLock::ReaderLock&) = delete;

  inline ~ReaderLock();

  inline void acquire();
  inline bool try_acquire();
  inline void release();
  inline bool locked() const;

private:
  RWLock& rwlock_;
  bool    locked_;
};

/** Utility class for exception-safe locking of read/write locks.
 */
class RWLock::WriterLock
{
public:
  explicit inline WriterLock(RWLock& rwlock);
  inline WriterLock(RWLock& rwlock, NotLock);
  inline WriterLock(RWLock& rwlock, TryLock);

  WriterLock(const RWLock::WriterLock&) = delete;
  RWLock::WriterLock& operator=(const RWLock::WriterLock&) = delete;

  inline ~WriterLock();

  inline void acquire();
  inline bool try_acquire();
  inline void release();
  inline bool locked() const;

private:
  RWLock& rwlock_;
  bool    locked_;
};

/** An opaque data structure to represent a condition.
 * A @a Cond is an object that threads can block on, if they find a certain
 * condition to be false. If other threads change the state of this condition
 * they can signal the @a Cond, such that the waiting thread is woken up.
 * @par Usage example:
 * @code
 * Glib::Threads::Cond  data_cond;
 * Glib::Threads::Mutex data_mutex;
 * void* current_data = nullptr;
 *
 * void push_data(void* data)
 * {
 *   Glib::Threads::Mutex::Lock lock(data_mutex);
 *
 *   current_data = data;
 *   data_cond.signal();
 * }
 *
 * void* pop_data()
 * {
 *   Glib::Threads::Mutex::Lock lock(data_mutex);
 *
 *   while (!current_data)
 *     data_cond.wait(data_mutex);
 *
 *   void* const data = current_data;
 *   current_data = nullptr;
 *
 *   return data;
 * }
 * @endcode
 */
class Cond
{
public:
  Cond();

  Cond(const Cond&) = delete;
  Cond& operator=(const Cond&) = delete;

  ~Cond();

  /** If threads are waiting for this @a Cond, exactly one of them is woken up.
   * It is good practice to hold the same lock as the waiting thread, while calling
   * this method, though not required.
   */
  void signal();

  /** If threads are waiting for this @a Cond, all of them are woken up.
   * It is good practice to hold the same lock as the waiting threads, while calling
   * this method, though not required.
   */
  void broadcast();

  /** Waits until this thread is woken up on this @a Cond.
   * The mutex is unlocked before falling asleep and locked again before resuming.
   *
   * @param mutex A @a Mutex that is currently locked.
   *
   * @note It is important to use the @a wait() and @a wait_until() methods
   * only inside a loop, which checks for the condition to be true as it is not
   * guaranteed that the waiting thread will find it fulfilled, even if the signaling
   * thread left the condition in that state. This is because another thread can have
   * altered the condition, before the waiting thread got the chance to be woken up,
   * even if the condition itself is protected by a @a Mutex.
   */
  void wait(Mutex& mutex);

  /** Waits until this thread is woken up on this @a Cond, but not longer
   * than until the time specified by @a end_time.
   * The mutex is unlocked before falling asleep and locked again before resuming.
   *
   * @par Usage example:
   * Extending the example presented in the documentation of class Cond.
   * @code
   * void* pop_data_timed()
   * {
   *   Glib::Threads::Mutex::Lock lock(data_mutex);
   *
   *   // Wait at most 5 seconds.
   *   const gint64 end_time = g_get_monotonic_time() + 5 * G_TIME_SPAN_SECOND;
   *   while (!current_data)
   *     if (!data_cond.wait_until(data_mutex, end_time)
   *       return 0; // timeout
   *
   *   void* const data = current_data;
   *   current_data = nullptr;
   *
   *   return data;
   * }
   * @endcode
   * The end time is calculated once, before entering the loop, and reused.
   * This is the motivation behind the use of absolute time. If a relative time
   * of 5 seconds were passed directly to the call and a spurious wakeup
   * occurred, the program would have to start over waiting again, which would
   * lead to a total wait time of more than 5 seconds.
   *
   * @param mutex A @a Mutex that is currently locked.
   * @param end_time The monotonic time to wait until, in microseconds.
   *                 See g_get_monotonic_time().
   * @return <tt>true</tt> if the condition variable was signalled (or in the case
   *         of a spurious wakeup), <tt>false</tt> if @a end_time has passed.
   *
   * @note It is important to use the @a wait() and @a wait_until() methods
   * only inside a loop, which checks for the condition to be true as it is not
   * guaranteed that the waiting thread will find it fulfilled, even if the signaling
   * thread left the condition in that state. This is because another thread can have
   * altered the condition, before the waiting thread got the chance to be woken up,
   * even if the condition itself is protected by a @a Mutex.
   */
  bool wait_until(Mutex& mutex, gint64 end_time);

  GCond* gobj() { return &gobject_; }

private:
  GCond gobject_;
};

/** Thread-local data pointer.
 *
 * It is recommended that all instances of this class are statically allocated.
 * The first time an instance is used (get(), set() or replace() is called)
 * glib allocates a scarce OS resource that cannot be deallocated.
 */
template <class T>
class Private
{
public:
  Private(const Private<T>&) = delete;
  Private<T>& operator=(const Private<T>&) = delete;

  typedef void (*DestructorFunc) (void*);

  /** Deletes static_cast<T*>(data)
   */
  static void delete_ptr(void* data);

  /** Constructor.
   *
   * @param destructor_func Function pointer, or 0. If @a destructor_func is not 0
   * and the stored data pointer is not 0, this function is called when replace()
   * is called and when the thread exits.
   */
  explicit inline Private(DestructorFunc destructor_func = &Private<T>::delete_ptr);

  /** Gets the pointer stored in the calling thread.
   *
   * @return If no value has yet been set in this thread, 0 is returned.
   */
  inline T* get();

  /** Sets the pointer in the calling thread without calling <tt>destructor_func()</tt>.
   */
  inline void set(T* data);

  /** Sets the pointer in the calling thread and calls <tt>destructor_func()</tt>.
   * If a function pointer (and not 0) was specified in the constructor, and
   * the stored data pointer before the call to replace() is not 0, then
   * <tt>destructor_func()</tt> is called with this old pointer value.
   *
   * @newin{2,32}
   */
  inline void replace(T* data);

  GPrivate* gobj() { return gobject_; }

private:
  GPrivate gobject_;
};

/** @} group Threads */

/*! A glibmm thread example.
 * @example thread/thread.cc
 */


#ifndef DOXYGEN_SHOULD_SKIP_THIS

/***************************************************************************/
/*  inline implementation                                                  */
/***************************************************************************/

/**** Glib::Threads::Mutex::Lock *******************************************/

inline
Mutex::Lock::Lock(Mutex& mutex)
:
  mutex_  (mutex),
  locked_ (true)
{
  mutex_.lock();
}

inline
Mutex::Lock::Lock(Mutex& mutex, NotLock)
:
  mutex_  (mutex),
  locked_ (false)
{}

inline
Mutex::Lock::Lock(Mutex& mutex, TryLock)
:
  mutex_  (mutex),
  locked_ (mutex.trylock())
{}

inline
Mutex::Lock::~Lock()
{
  if(locked_)
    mutex_.unlock();
}

inline
void Mutex::Lock::acquire()
{
  mutex_.lock();
  locked_ = true;
}

inline
bool Mutex::Lock::try_acquire()
{
  locked_ = mutex_.trylock();
  return locked_;
}

inline
void Mutex::Lock::release()
{
  mutex_.unlock();
  locked_ = false;
}

inline
bool Mutex::Lock::locked() const
{
  return locked_;
}


/**** Glib::Threads::RecMutex::Lock ****************************************/

inline
RecMutex::Lock::Lock(RecMutex& mutex)
:
  mutex_  (mutex),
  locked_ (true)
{
  mutex_.lock();
}

inline
RecMutex::Lock::Lock(RecMutex& mutex, NotLock)
:
  mutex_  (mutex),
  locked_ (false)
{}

inline
RecMutex::Lock::Lock(RecMutex& mutex, TryLock)
:
  mutex_  (mutex),
  locked_ (mutex.trylock())
{}

inline
RecMutex::Lock::~Lock()
{
  if(locked_)
    mutex_.unlock();
}

inline
void RecMutex::Lock::acquire()
{
  mutex_.lock();
  locked_ = true;
}

inline
bool RecMutex::Lock::try_acquire()
{
  locked_ = mutex_.trylock();
  return locked_;
}

inline
void RecMutex::Lock::release()
{
  mutex_.unlock();
  locked_ = false;
}

inline
bool RecMutex::Lock::locked() const
{
  return locked_;
}


/**** Glib::Threads::RWLock::ReaderLock ************************************/

inline
RWLock::ReaderLock::ReaderLock(RWLock& rwlock)
:
  rwlock_ (rwlock),
  locked_ (true)
{
  rwlock_.reader_lock();
}

inline
RWLock::ReaderLock::ReaderLock(RWLock& rwlock, NotLock)
:
  rwlock_ (rwlock),
  locked_ (false)
{}

inline
RWLock::ReaderLock::ReaderLock(RWLock& rwlock, TryLock)
:
  rwlock_ (rwlock),
  locked_ (rwlock.reader_trylock())
{}

inline
RWLock::ReaderLock::~ReaderLock()
{
  if(locked_)
    rwlock_.reader_unlock();
}

inline
void RWLock::ReaderLock::acquire()
{
  rwlock_.reader_lock();
  locked_ = true;
}

inline
bool RWLock::ReaderLock::try_acquire()
{
  locked_ = rwlock_.reader_trylock();
  return locked_;
}

inline
void RWLock::ReaderLock::release()
{
  rwlock_.reader_unlock();
  locked_ = false;
}

inline
bool RWLock::ReaderLock::locked() const
{
  return locked_;
}


/**** Glib::Threads::RWLock::WriterLock ************************************/

inline
RWLock::WriterLock::WriterLock(RWLock& rwlock)
:
  rwlock_ (rwlock),
  locked_ (true)
{
  rwlock_.writer_lock();
}

inline
RWLock::WriterLock::WriterLock(RWLock& rwlock, NotLock)
:
  rwlock_ (rwlock),
  locked_ (false)
{}

inline
RWLock::WriterLock::WriterLock(RWLock& rwlock, TryLock)
:
  rwlock_ (rwlock),
  locked_ (rwlock.writer_trylock())
{}

inline
RWLock::WriterLock::~WriterLock()
{
  if(locked_)
    rwlock_.writer_unlock();
}

inline
void RWLock::WriterLock::acquire()
{
  rwlock_.writer_lock();
  locked_ = true;
}

inline
bool RWLock::WriterLock::try_acquire()
{
  locked_ = rwlock_.writer_trylock();
  return locked_;
}

inline
void RWLock::WriterLock::release()
{
  rwlock_.writer_unlock();
  locked_ = false;
}

inline
bool RWLock::WriterLock::locked() const
{
  return locked_;
}

/**** Glib::Threads::Private<T> ********************************************/

// static
template <class T>
void Private<T>::delete_ptr(void* data)
{
  delete static_cast<T*>(data);
}

template <class T> inline
Private<T>::Private(typename Private<T>::DestructorFunc destructor_func)
{
  // gobject_ = G_PRIVATE_INIT(destructor_func);
  // does not compile with --enable-warnings=fatal.
  // GPrivate is a struct, and G_PRIVATE_INIT is an initializer of type { ... }.
  // G_PRIVATE_INIT can be used only in initializations.
  const GPrivate temp = G_PRIVATE_INIT(destructor_func);
  gobject_ = temp;
}

template <class T> inline
T* Private<T>::get()
{
  return static_cast<T*>(g_private_get(&gobject_));
}

template <class T> inline
void Private<T>::set(T* data)
{
  g_private_set(&gobject_, data);
}

template <class T> inline
void Private<T>::replace(T* data)
{
  g_private_replace(&gobject_, data);
}

#endif /* DOXYGEN_SHOULD_SKIP_THIS */

} //namespace Threads

} // namespace Glib


#endif /* _GLIBMM_THREADS_H */