/usr/include/glibmm-2.4/glibmm/nodetree.h is in libglibmm-2.4-dev 2.46.3-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 | // -*- c++ -*-
// Generated by gmmproc 2.46.3 -- DO NOT MODIFY!
#ifndef _GLIBMM_NODETREE_H
#define _GLIBMM_NODETREE_H
/* Copyright (C) 2007 glibmm development team
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free
* Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <map>
#include <stack>
#include <deque>
#include <glibmm/refptr.h>
#include <glibmm/ustring.h>
#include <glibmm/error.h>
#include <glibmm/arrayhandle.h>
#include <glib.h>
namespace Glib
{
//Hand-written, instead of using _WRAP_ENUM,
//because the C enum values don't have a prefix.
/** Specifies the type of traveral performed by methods such as NodeTree::_traverse() and NodeTree::find().
*
* @ingroup glibmmEnums
*/
enum TraverseType
{
TRAVERSE_IN_ORDER = G_IN_ORDER, /*!< Visits a node's left child first, then the node itself, then its right child. This is the one to use if you want the output sorted according to the compare function. */
TRAVERSE_PRE_ORDER = G_PRE_ORDER, /*!< Visits a node, then its children. */
TRAVERSE_POST_ORDER = G_POST_ORDER, /*!< Visits the node's children, then the node itself. */
TRAVERSE_LEVEL_ORDER = G_LEVEL_ORDER /*!< For NodeTree, it vists the root node first, then its children, then its grandchildren, and so on. Note that this is less efficient than the other orders. This is not implemented for Glib::Tree. */
};
/** N-ary Trees - trees of data with any number of branches
* The NodeTree class and its associated functions provide an N-ary tree data structure, in which nodes in the tree can contain arbitrary data.
*
* To insert a node into a tree use insert(), insert_before(), append() or prepend().
*
* To create a new node and insert it into a tree use insert_data(), insert_data_before(), append_data() and prepend_data().
*
* To reverse the children of a node use reverse_children().
*
* To find a node use root(), find(), find_child(), index_of(), child_index(), first_child(), last_child(), nth_child(), first_sibling(), prev_sibling(), next_sibling() or last_sibling().
*
* To get information about a node or tree use is_leaf(), is_root(), depth(), node_count(), child_count(), is_ancestor() or max_height().
*
* To traverse a tree, calling a function for each node visited in the traversal, use traverse() or foreach().
*
* To remove a node or subtree from a tree use unlink().
*
* @newin{2,18}
*/
template <typename T>
class NodeTree
{
public:
#ifndef DOXYGEN_SHOULD_SKIP_THIS
typedef NodeTree CppObjectType;
typedef GNode BaseObjectType;
#endif /* DOXYGEN_SHOULD_SKIP_THIS */
private:
public:
typedef sigc::slot<bool, NodeTree<T>&> TraverseFunc;
typedef sigc::slot<void, NodeTree<T>&> ForeachFunc;
private:
static NodeTree<T>* wrap(GNode* node)
{
if (!node)
return 0;
return reinterpret_cast<NodeTree<T>* >(node->data);
}
public:
NodeTree()
{
clone();
}
explicit NodeTree(const T& the_data) :
data_(the_data)
{
clone();
}
NodeTree(const NodeTree<T>& node) :
data_(node.data())
{
clone(&node);
}
//TODO: Add move operations, being careful of universal references and overload resolution.
/** Removes the instance and its children from the tree,
* freeing any memory allocated.
*/
~NodeTree()
{
if(!is_root())
unlink();
clear();
}
NodeTree<T>& operator=(const NodeTree<T>& node)
{
clear();
clone(&node);
data_ = node.data();
return *this;
}
/// Provides access to the underlying C GObject.
inline GNode* gobj()
{
return gobject_;
}
/// Provides access to the underlying C GObject.
inline const GNode* gobj() const
{
return gobject_;
}
/** Inserts a NodeTree beneath the parent at the given position.
*
* @param position the position to place node at, with respect to its siblings
* If position is -1, node is inserted as the last child of parent
* @param node the NodeTree to insert
* @return the inserted NodeTree
*/
NodeTree<T>& insert(int position, NodeTree<T>& node)
{
g_node_insert(gobj(), position, node.gobj());
return node;
}
/** Inserts a NodeTree beneath the parent before the given sibling.
*
* @param sibling the sibling NodeTree to place node before.
* @param node the NodeTree to insert
* @return the inserted NodeTree
*/
NodeTree<T>& insert_before(NodeTree<T>& sibling, NodeTree<T>& node)
{
g_node_insert_before(gobj(), sibling.gobj(), node.gobj());
return node;
}
/** Inserts a NodeTree beneath the parent after the given sibling.
*
* @param sibling the sibling NodeTree to place node after.
* @param node the NodeTree to insert
* @return the inserted NodeTree
*/
NodeTree<T>& insert_after(NodeTree<T>& sibling, NodeTree<T>& node)
{
g_node_insert_after(gobj(), sibling.gobj(), node.gobj());
return node;
}
/** Inserts a NodeTree as the last child.
*
* @param node the NodeTree to append
* @return the new NodeTree
*/
NodeTree<T>& append(NodeTree<T>& node)
{
g_node_append(gobj(), node.gobj());
return node;
}
/** Inserts a NodeTree as the first child.
*
* @param node the NodeTree to prepend
* @return the NodeTree
*/
NodeTree<T>& prepend(NodeTree<T>& node)
{
g_node_prepend(gobj(), node.gobj());
return node;
}
/** Inserts a new NodeTree at the given position.
*
* @param position the position to place the new NodeTree at.
* If position is -1, the new NodeTree is inserted as the last child of parent
* @param the_data the data for the new NodeTree
* @return the new NodeTree
*/
NodeTree<T>* insert_data(int position, const T& the_data)
{
NodeTree<T>* node = new NodeTree<T>(the_data);
insert(position, *node);
return node;
}
/** Inserts a new NodeTree before the given sibling.
*
* @param sibling the sibling NodeTree to place node before.
* @param the_data the data for the new NodeTree
* @return the new NodeTree
*/
NodeTree<T>* insert_data_before(NodeTree<T>& sibling, const T& the_data)
{
NodeTree<T>* node = new NodeTree<T>(the_data);
insert_before(sibling, *node);
return node;
}
/** Inserts a new NodeTree as the last child.
*
* @param the_data the data for the new NodeTree
* @return the new NodeTree
*/
NodeTree<T>* append_data(const T& the_data)
{
NodeTree<T>* node = new NodeTree<T>(the_data);
append(*node);
return node;
}
/** Inserts a new NodeTree as the first child.
*
* @param the_data the data for the new NodeTree
* @return the new NodeTree
*/
NodeTree<T>* prepend_data(const T& the_data)
{
NodeTree<T>* node = new NodeTree<T>(the_data);
prepend(*node);
return node;
}
/** Reverses the order of the children.
*/
void reverse_children()
{
g_node_reverse_children(gobj());
}
/** Returns a pointer to the root of the tree.
*
* @return A pointer to the root of the tree.
*/
NodeTree<T>* get_root()
{
return wrap(g_node_get_root(gobj()));
}
const NodeTree<T>* get_root() const
{
return wrap(g_node_get_root(const_cast<GNode*>(gobj())));
}
/** Specifies which nodes are visited during several of the NodeTree methods,
* including traverse() and find().
*
* @ingroup glibmmEnums
*/
enum TraverseFlags
{
TRAVERSE_LEAVES = G_TRAVERSE_LEAVES, /*!< Only leaf nodes should be visited. */
TRAVERSE_NON_LEAVES = G_TRAVERSE_NON_LEAVES, /*!< Only non-leaf nodes should be visited. */
TRAVERSE_ALL = G_TRAVERSE_ALL, /*!< All nodes should be visited. */
TRAVERSE_MASK = G_TRAVERSE_MASK /*!< A mask of all traverse flags. */
};
/** Traverses a tree starting at the current node.
* It calls the given function for each node visited.
* The traversal can be halted at any point by returning true from @a func.
*
* @param order The order in which nodes are visited.
* @param flags Which types of children are to be visited.
* @param max_depth The maximum depth of the traversal.
* Nodes below this depth will not be visited.
* If max_depth is -1 all nodes in the tree are visited.
* If max_depth is 1, only the root is visited.
* If max_depth is 2, the root and its children are visited. And so on.
* @param func the slot to invoke for each visited child
*/
void traverse(const TraverseFunc& func, TraverseType order = TRAVERSE_IN_ORDER, TraverseFlags flags = TRAVERSE_ALL, int max_depth = -1)
{
TraverseFunc func_copy = func;
g_node_traverse(gobj(), (GTraverseType)order, (GTraverseFlags)flags, max_depth, c_callback_traverse, reinterpret_cast<gpointer>(&func_copy));
}
;
/** Calls a function for each of the children of a NodeTree.
* Note that it doesn't descend beneath the child nodes.
*
* @param flags Wwhich types of children are to be visited.
* @param func The slot to invoke for each visited node.
*/
void foreach(const ForeachFunc& func, TraverseFlags flags = TRAVERSE_ALL)
{
ForeachFunc func_copy = func;
g_node_children_foreach(gobj(), (GTraverseFlags)flags, c_callback_foreach, reinterpret_cast<gpointer>(&func_copy));
}
/** Finds the first child of a NodeTree with the given data.
*
* @param flags Which types of children are to be visited, one of TRAVERSE_ALL, TRAVERSE_LEAVES and TRAVERSE_NON_LEAVES.
* @param the_data The data for which to search.
* @return the found child, or 0 if the data is not found
*/
NodeTree<T>* find_child(const T& the_data, TraverseFlags flags = TRAVERSE_ALL)
{
sigc::slot<void, GNode*, const T&, GNode**> real_slot = sigc::ptr_fun(on_compare_child);
GNode* child = nullptr;
typedef sigc::slot<void, GNode*> type_foreach_gnode_slot;
type_foreach_gnode_slot bound_slot = sigc::bind(real_slot, the_data, &child);
g_node_children_foreach(gobj(), (GTraverseFlags)flags, c_callback_foreach_compare_child, reinterpret_cast<gpointer>(&bound_slot));
return wrap(child);
}
/** Finds the first child of a NodeTree with the given data.
*
* @param flags Which types of children are to be visited, one of TRAVERSE_ALL, TRAVERSE_LEAVES and TRAVERSE_NON_LEAVES.
* @param the_data The data for which to search.
* @return the found child, or 0 if the data is not found
*/
const NodeTree<T>* find_child(const T& the_data, TraverseFlags flags = TRAVERSE_ALL) const
{
return const_cast<NodeTree<T>*>(this)->find_child(flags, the_data);
}
/** Finds a node in a tree.
*
* @param order The order in which nodes are visited: IN_ORDER, TRAVERSE_PRE_ORDER, TRAVERSE_POST_ORDER, or TRAVERSE_LEVEL_ORDER
* @param flags Which types of children are to be visited: one of TRAVERSE_ALL, TRAVERSE_LEAVES and TRAVERSE_NON_LEAVES.
* @param the_data The data for which to search.
* @return The found node, or 0 if the data is not found.
*/
NodeTree<T>* find(const T& the_data, TraverseType order = TRAVERSE_IN_ORDER, TraverseFlags flags = TRAVERSE_ALL)
{
//We use a sigc::slot for the C callback, so we can bind some extra data.
sigc::slot<gboolean, GNode*, const T&, GNode**> real_slot = sigc::ptr_fun(on_compare_node);
GNode* child = nullptr;
typedef sigc::slot<gboolean, GNode*> type_traverse_gnode_slot;
type_traverse_gnode_slot bound_slot = sigc::bind(real_slot, the_data, &child);
g_node_traverse(const_cast<GNode*>(gobj()), (GTraverseType)order, (GTraverseFlags)flags, -1, c_callback_traverse_compare_node, reinterpret_cast<gpointer>(&bound_slot));
return wrap(child);
}
/** Finds a node in a tree.
*
* @param order The order in which nodes are visited.
* @param flags Which types of children are to be visited.
* @param the_data The data for which to search.
* @return The found node, or 0 if the data is not found.
*/
const NodeTree<T>* find(const T& the_data, TraverseType order = TRAVERSE_IN_ORDER, TraverseFlags flags = TRAVERSE_ALL) const
{
return const_cast<NodeTree<T>*>(this)->find(order, flags, the_data);
}
/** Gets the position of the first child which contains the given data.
*
* @param the_data The data to find.
* @return The index of the child which contains data, or -1 if the data is not found.
*/
int child_index(const T& the_data) const
{
int n = 0;
for(const NodeTree<T>* i = first_child(); i != 0; i = i->next_sibling())
{
if((i->data()) == the_data)
return n;
n++;
}
return -1;
}
/** Gets the position with respect to its siblings.
* child must be a child of node.
* The first child is numbered 0, the second 1, and so on.
*
* @param child A child
* @return The position of @a child with respect to its siblings.
*/
int child_position(const NodeTree<T>& child) const
{
return g_node_child_position(const_cast<GNode*>(gobj()), const_cast<GNode*>(child.gobj()));
}
/** Gets the first child.
*
* @return The first child, or 0 if the node has no children.
*/
NodeTree<T>* first_child()
{
return wrap(g_node_first_child(gobj()));
}
/** Gets the first child.
*
* @return The first child, or 0 if the node has no children.
*/
const NodeTree<T>* first_child() const
{
return const_cast<NodeTree<T>*>(this)->first_child();
}
/** Gets the last child.
*
* @return The last child, or 0 if the node has no children.
*/
NodeTree<T>* last_child()
{
return wrap(g_node_last_child(gobj()));
}
/** Gets the last child.
*
* @return The last child, or 0 if the node has no children.
*/
const NodeTree<T>* last_child() const
{
return const_cast<NodeTree<T>*>(this)->last_child();
}
/** Gets the nth child.
*
* @return The nth child, or 0 if n is too large.
*/
NodeTree<T>* nth_child(int n)
{
return wrap(g_node_nth_child(gobj(), n));
}
/** Gets the nth child.
*
* @return The nth child, or 0 if n is too large.
*/
const NodeTree<T>* nth_child(int n) const
{
return const_cast<NodeTree<T>*>(this)->nth_child(n);
}
/** Gets the first sibling
* @return The first sibling, or 0 if the node has no siblings.
*/
NodeTree<T>* first_sibling()
{
return wrap(g_node_first_sibling(gobj()));
}
/** Gets the first sibling
* @return The first sibling, or 0 if the node has no siblings.
*/
const NodeTree<T>* first_sibling() const
{
return const_cast<NodeTree<T>*>(this)->first_sibling();
}
/** Gets the previous sibling.
*
* @return The previous sibling, or 0 if the node has no siblings.
*/
NodeTree<T>* prev_sibling()
{
return wrap(g_node_prev_sibling(gobj()));
}
/** Gets the previous sibling.
*
* @return The previous sibling, or 0 if the node has no siblings.
*/
const NodeTree<T>* prev_sibling() const
{
return const_cast<NodeTree<T>*>(this)->prev_sibling();
}
/** Gets the next sibling
*
* @return The next sibling, or 0 if the node has no siblings.
*/
NodeTree<T>* next_sibling()
{
return wrap(g_node_next_sibling(gobj()));
}
/** Gets the next sibling
*
* @return The next sibling, or 0 if the node has no siblings.
*/
const NodeTree<T>* next_sibling() const
{
return const_cast<NodeTree<T>*>(this)->next_sibling();
}
/** Gets the last sibling.
*
* @return The last sibling, or 0 if the node has no siblings.
*/
NodeTree<T>* last_sibling()
{
return wrap(g_node_last_sibling(gobj()));
}
/** Gets the last sibling.
*
* @return The last sibling, or 0 if the node has no siblings.
*/
const NodeTree<T>* last_sibling() const
{
return const_cast<NodeTree<T>*>(this)->last_sibling();
}
/** Returns true if this is a leaf node.
*
* @return true if this is a leaf node.
*/
bool is_leaf() const
{
return G_NODE_IS_LEAF(const_cast<GNode*>(gobj()));
}
/** Returns true if this is the root node.
*
* @return true if this is the root node.
*/
bool is_root() const
{
return G_NODE_IS_ROOT(const_cast<GNode*>(gobj()));
}
/** Gets the depth of this node.
* The root node has a depth of 1.
* For the children of the root node the depth is 2. And so on.
*
* @return the depth of this node
*/
guint depth() const
{
return g_node_depth(const_cast<GNode*>(gobj()));
}
/** Gets the number of nodes in a tree.
*
* @param flags Which types of children are to be counted: one of TRAVERSE_ALL, TRAVERSE_LEAVES and TRAVERSE_NON_LEAVES
* @return The number of nodes in the tree.
*/
guint node_count(TraverseFlags flags = TRAVERSE_ALL) const
{
return g_node_n_nodes(const_cast<GNode*>(gobj()), (GTraverseFlags)flags);
}
/** Gets the number children.
*
* @return The number of children.
*/
guint child_count() const
{
return g_node_n_children(const_cast<GNode*>(gobj()));
}
/** Returns true if this is an ancestor of @a descendant.
* This is true if this is the parent of @a descendant,
* or if this is the grandparent of @a descendant etc.
*
* @param descendant A node.
* @return true if this is an ancestor of descendant.
*/
bool is_ancestor(const NodeTree<T>& descendant) const
{
return g_node_is_ancestor(const_cast<GNode*>(gobj()), const_cast<GNode*>(descendant.gobj()));
}
/** Gets the maximum height of all branches beneath this node.
* This is the maximum distance from the node to all leaf nodes.
* If root has no children, 1 is returned. If root has children, 2 is returned. And so on.
*
* @return The maximum height of all branches.
*/
guint get_max_height() const
{
return g_node_max_height(const_cast<GNode*>(gobj()));
}
/** Unlinks a node from a tree, resulting in two separate trees.
*/
void unlink()
{
g_node_unlink(gobj());
}
#if 0 //Commented-out because people can just use the copy constructor.
/** Recursively copies a node and it's data.
*
* Returns: a new node containing the copies of the data.
*/
NodeTree<T>* copy_deep() const
{
//Use copy constructor instead of g_node_copy_deep to create C++ wrappers also not only the wrapped C objects.
return new NodeTree<T>(*this);
}
#endif
/// Accessor for this node's data
T& data()
{
return data_;
}
/// Accessor for this node's data
const T& data() const
{
return data_;
}
/** Accessor for this node's parent.
*
* @return The node's parent.
*/
const NodeTree<T>* parent() const
{
return wrap(gobj()->parent);
}
// Do not wrap this shallow copy function, because it is not useful:
private:
void clear()
{
//Free the children (not just with g_node_destroy(), to avoid the leaking of C++ wrapper objects):
while(NodeTree<T>* i = first_child())
delete i;
//Free the wrapped object (g_node_free not available)
g_slice_free(GNode, gobject_);
gobject_ = nullptr;
}
///Create a new GNode, taking the contents of an existing node if one is specified.
void clone(const NodeTree<T>* node = nullptr)
{
//Store the this pointer in the GNode so we can discover this wrapper later:
gobject_ = g_node_new(reinterpret_cast<gpointer>(this));
if(node)
{
//Prepend the copied children of @node to the constructing node.
for(const NodeTree<T>* i = node->last_child(); i != nullptr; i = i->prev_sibling())
prepend(*(new NodeTree<T>(*i)));
}
}
/// Wrapper for invoking a TraverseFunc.
static gboolean c_callback_traverse(GNode* node, gpointer slot)
{
const TraverseFunc* tf = reinterpret_cast<const TraverseFunc*>(slot);
return (*tf)(*wrap(node));
}
/// Wrapper for invoking a ForeachFunc.
static void c_callback_foreach(GNode* node, gpointer slot)
{
const ForeachFunc* ff = reinterpret_cast<const ForeachFunc*>(slot);
(*ff)(*wrap(node));
}
/// Method for comparing a single child (Internal use).
static void on_compare_child(GNode* node, const T& needle, GNode** result)
{
if((0 != result) && (wrap(node)->data() == needle))
{
*result = node;
}
}
/// Wrapper for invoking a sigc::slot<void,GNode*> (Internal use).
static void c_callback_foreach_compare_child(GNode* node, gpointer data)
{
const ForeachFunc* slot = reinterpret_cast<const ForeachFunc*>(data);
(*slot)(*wrap(node));
}
/// Method for comparing a single node (Internal use).
static gboolean on_compare_node(GNode* node, const T& needle, GNode** result)
{
if(wrap(node)->data() == needle)
{
*result = node;
return TRUE;
}
return FALSE;
}
/// Wrapper for invoking a sigc::slot<gboolean,GNode*> (Internal use).
static gboolean c_callback_traverse_compare_node(GNode* node, gpointer data)
{
const TraverseFunc* slot = reinterpret_cast<const TraverseFunc*>(data);
return (*slot)(*wrap(node));
}
GNode* gobject_;
T data_;
};
} // namespace Glib
#endif /* _GLIBMM_NODETREE_H */
|