This file is indexed.

/usr/include/cairomm-1.0/cairomm/matrix.h is in libcairomm-1.0-dev 1.12.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
/* Copyright (C) 2008 Jonathon Jongsma
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Library General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Library General Public License for more details.
 *
 * You should have received a copy of the GNU Library General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
 * 02110-1301, USA.
 */
#ifndef __CAIROMM_MATRIX_H
#define __CAIROMM_MATRIX_H

#include <cairo.h>

namespace Cairo
{

/** @class cairo_matrix_t
 * See the <a
 * href="http://www.cairographics.org/manual/cairo-matrix.html">cairo_matrix_t
 * reference</a> in the cairo manual for more information
 */

/** A Transformation matrix.
 *
 * Cairo::Matrix is used throughout cairomm to convert between different
 * coordinate spaces. A Matrix holds an affine transformation, such as
 * a scale, rotation, shear, or a combination of these. The transformation of
 * a point (x,y) is given by:
 *
 * @code
 * x_new = xx * x + xy * y + x0;
 * y_new = yx * x + yy * y + y0;
 * @endcode
 *
 * The current transformation matrix of a Context, represented as a
 * Matrix, defines the transformation from user-space coordinates to
 * device-space coordinates.
 * @sa Context::get_matrix()
 * @sa Context::set_matrix()
 */
class Matrix : public cairo_matrix_t
{
public:
  /** Creates an uninitialized matrix.  If you want a matrix initialized to a
   * certain value, either specify the values explicitly with the other
   * constructor or use one of the free functions for initializing matrices with
   * specific scales, rotations, etc.
   *
   * @sa identity_matrix()
   * @sa rotation_matrix()
   * @sa translation_matrix()
   * @sa scaling_matrix()
   */
  Matrix();

  /** Creates a matrix Sets to be the affine transformation given by xx, yx, xy,
   * yy, x0, y0. The transformation is given by:
   *
   * @code
   * x_new = xx * x + xy * y + x0;
   * y_new = yx * x + yy * y + y0;
   * @endcode
   *
   * @param xx xx component of the affine transformation
   * @param yx yx component of the affine transformation
   * @param xy xy component of the affine transformation
   * @param yy yy component of the affine transformation
   * @param x0 X translation component of the affine transformation
   * @param y0 Y translation component of the affine transformation
   */
  Matrix(double xx, double yx, double xy, double yy, double x0, double y0);

  /** Applies a translation by tx, ty to the transformation in matrix. The
   * effect of the new transformation is to first translate the coordinates by
   * tx and ty, then apply the original transformation to the coordinates.
   *
   * @param tx amount to translate in the X direction
   * @param ty amount to translate in the Y direction
   */
  void translate(double tx, double ty);

  /** Applies scaling by sx, sy to the transformation in matrix. The effect of
   * the new transformation is to first scale the coordinates by sx and sy, then
   * apply the original transformation to the coordinates.
   *
   * @param sx scale factor in the X direction
   * @param sy scale factor in the Y direction
   */
  void scale(double sx, double sy);

  /** Applies rotation by radians to the transformation in matrix. The effect of
   * the new transformation is to first rotate the coordinates by radians, then
   * apply the original transformation to the coordinates.
   *
   * @param radians angle of rotation, in radians. The direction of rotation is
   * defined such that positive angles rotate in the direction from the positive
   * X axis toward the positive Y axis. With the default axis orientation of
   * cairo, positive angles rotate in a clockwise direction.
   */
  void rotate(double radians);

  /** Changes matrix to be the inverse of it's original value. Not all
   * transformation matrices have inverses; if the matrix collapses points
   * together (it is degenerate), then it has no inverse and this function will
   * throw an exception.
   *
   * @exception
   */
  void invert();

  /** Multiplies the affine transformations in a and b together and stores the
   * result in this matrix. The effect of the resulting transformation is to first
   * apply the transformation in a to the coordinates and then apply the
   * transformation in b to the coordinates.
   *
   * It is allowable for result to be identical to either a or b.
   *
   * @param a a Matrix
   * @param b a Matrix
   *
   * @sa operator*()
   */
  void multiply(Matrix& a, Matrix& b);

  /** Transforms the distance vector (dx,dy) by matrix. This is similar to
   * transform_point() except that the translation components of the
   * transformation are ignored. The calculation of the returned vector is as
   * follows:
   *
   * @code
   * dx2 = dx1 * a + dy1 * c;
   * dy2 = dx1 * b + dy1 * d;
   * @endcode
   *
   * Affine transformations are position invariant, so the same vector always
   * transforms to the same vector. If (x1,y1) transforms to (x2,y2) then
   * (x1+dx1,y1+dy1) will transform to (x1+dx2,y1+dy2) for all values of x1 and
   * x2.
   *
   * @param dx X component of a distance vector. An in/out parameter
   * @param dy Y component of a distance vector. An in/out parameter
   */
  void transform_distance(double& dx, double& dy) const;

  /** Transforms the point (x, y) by this matrix.
   *
   * @param x X position. An in/out parameter
   * @param y Y position. An in/out parameter
   */
  void transform_point(double& x, double& y) const;
};

/** Returns a Matrix initialized to the identity matrix
 *
 * @relates Matrix
 */
Matrix identity_matrix();

/** Returns a Matrix initialized to a transformation that translates by tx and
 * ty in the X and Y dimensions, respectively.
 *
 * @param tx amount to translate in the X direction
 * @param ty amount to translate in the Y direction
 *
 * @relates Matrix
 */
Matrix translation_matrix(double tx, double ty);

/** Returns a Matrix initialized to a transformation that scales by sx and sy in
 * the X and Y dimensions, respectively.
 *
 * @param sx scale factor in the X direction
 * @param sy scale factor in the Y direction
 *
 * @relates Matrix
 */
Matrix scaling_matrix(double sx, double sy);

/** Returns a Matrix initialized to a transformation that rotates by radians.
 *
 * @param radians angle of rotation, in radians. The direction of rotation is
 * defined such that positive angles rotate in the direction from the positive X
 * axis toward the positive Y axis. With the default axis orientation of cairo,
 * positive angles rotate in a clockwise direction.
 *
 * @relates Matrix
 */
Matrix rotation_matrix(double radians);

/** Multiplies the affine transformations in a and b together and returns the
 * result. The effect of the resulting transformation is to first
 * apply the transformation in a to the coordinates and then apply the
 * transformation in b to the coordinates.
 *
 * It is allowable for result to be identical to either a or b.
 *
 * @param a a Matrix
 * @param b a Matrix
 *
 * @relates Matrix
 */
Matrix operator*(const Matrix& a, const Matrix& b);

} // namespace Cairo

#endif // __CAIROMM_MATRIX_H