This file is indexed.

/usr/include/boost/lambda/if.hpp is in libboost1.58-dev 1.58.0+dfsg-5ubuntu3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
// Boost Lambda Library -- if.hpp ------------------------------------------

// Copyright (C) 1999, 2000 Jaakko Jarvi (jaakko.jarvi@cs.utu.fi)
// Copyright (C) 2000 Gary Powell (powellg@amazon.com)
// Copyright (C) 2001-2002 Joel de Guzman
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
// For more information, see www.boost.org

// --------------------------------------------------------------------------

#if !defined(BOOST_LAMBDA_IF_HPP)
#define BOOST_LAMBDA_IF_HPP

#include "boost/lambda/core.hpp"

// Arithmetic type promotion needed for if_then_else_return
#include "boost/lambda/detail/operator_actions.hpp"
#include "boost/lambda/detail/operator_return_type_traits.hpp"

namespace boost { 
namespace lambda {

// -- if control construct actions ----------------------

class ifthen_action {};
class ifthenelse_action {};
class ifthenelsereturn_action {};

// Specialization for if_then.
template<class Args>
class 
lambda_functor_base<ifthen_action, Args> {
public:
  Args args;
  template <class T> struct sig { typedef void type; };
public:
  explicit lambda_functor_base(const Args& a) : args(a) {}

  template<class RET, CALL_TEMPLATE_ARGS>
  RET call(CALL_FORMAL_ARGS) const {
    if (detail::select(boost::tuples::get<0>(args), CALL_ACTUAL_ARGS)) 
      detail::select(boost::tuples::get<1>(args), CALL_ACTUAL_ARGS); 
  }
};

// If Then
template <class Arg1, class Arg2>
inline const 
lambda_functor<
  lambda_functor_base<
    ifthen_action, 
    tuple<lambda_functor<Arg1>, lambda_functor<Arg2> >
  > 
>
if_then(const lambda_functor<Arg1>& a1, const lambda_functor<Arg2>& a2) {
  return 
    lambda_functor_base<
      ifthen_action, 
      tuple<lambda_functor<Arg1>, lambda_functor<Arg2> > 
    > 
    ( tuple<lambda_functor<Arg1>, lambda_functor<Arg2> >(a1, a2) );
}


// Specialization for if_then_else.
template<class Args>
class 
lambda_functor_base<ifthenelse_action, Args> {
public:
  Args args;
  template <class T> struct sig { typedef void type; };
public:
  explicit lambda_functor_base(const Args& a) : args(a) {}

  template<class RET, CALL_TEMPLATE_ARGS>
  RET call(CALL_FORMAL_ARGS) const {
    if (detail::select(boost::tuples::get<0>(args), CALL_ACTUAL_ARGS)) 
      detail::select(boost::tuples::get<1>(args), CALL_ACTUAL_ARGS); 
    else 
      detail::select(boost::tuples::get<2>(args), CALL_ACTUAL_ARGS);
  }
};



// If then else

template <class Arg1, class Arg2, class Arg3>
inline const 
lambda_functor<
  lambda_functor_base<
    ifthenelse_action, 
    tuple<lambda_functor<Arg1>, lambda_functor<Arg2>, lambda_functor<Arg3> >
  > 
>
if_then_else(const lambda_functor<Arg1>& a1, const lambda_functor<Arg2>& a2, 
             const lambda_functor<Arg3>& a3) {
  return 
    lambda_functor_base<
      ifthenelse_action, 
      tuple<lambda_functor<Arg1>, lambda_functor<Arg2>, lambda_functor<Arg3> >
    > 
    (tuple<lambda_functor<Arg1>, lambda_functor<Arg2>, lambda_functor<Arg3> >
       (a1, a2, a3) );
}

// Our version of operator?:()

template <class Arg1, class Arg2, class Arg3>
inline const 
  lambda_functor<
    lambda_functor_base<
      other_action<ifthenelsereturn_action>, 
      tuple<lambda_functor<Arg1>,
          typename const_copy_argument<Arg2>::type,
          typename const_copy_argument<Arg3>::type>
  > 
>
if_then_else_return(const lambda_functor<Arg1>& a1, 
                    const Arg2 & a2, 
                    const Arg3 & a3) {
  return 
      lambda_functor_base<
        other_action<ifthenelsereturn_action>, 
        tuple<lambda_functor<Arg1>,
              typename const_copy_argument<Arg2>::type,
              typename const_copy_argument<Arg3>::type>
      > ( tuple<lambda_functor<Arg1>,
              typename const_copy_argument<Arg2>::type,
              typename const_copy_argument<Arg3>::type> (a1, a2, a3) );
}

namespace detail {

// return type specialization for conditional expression begins -----------
// start reading below and move upwards

// PHASE 6:1 
// check if A is conbertible to B and B to A
template<int Phase, bool AtoB, bool BtoA, bool SameType, class A, class B>
struct return_type_2_ifthenelsereturn;

// if A can be converted to B and vice versa -> ambiguous
template<int Phase, class A, class B>
struct return_type_2_ifthenelsereturn<Phase, true, true, false, A, B> {
  typedef 
    detail::return_type_deduction_failure<return_type_2_ifthenelsereturn> type;
  // ambiguous type in conditional expression
};
// if A can be converted to B and vice versa and are of same type
template<int Phase, class A, class B>
struct return_type_2_ifthenelsereturn<Phase, true, true, true, A, B> {
  typedef A type;
};


// A can be converted to B
template<int Phase, class A, class B>
struct return_type_2_ifthenelsereturn<Phase, true, false, false, A, B> {
  typedef B type;
};

// B can be converted to A
template<int Phase, class A, class B>
struct return_type_2_ifthenelsereturn<Phase, false, true, false, A, B> {
  typedef A type;
};

// neither can be converted. Then we drop the potential references, and
// try again
template<class A, class B>
struct return_type_2_ifthenelsereturn<1, false, false, false, A, B> {
  // it is safe to add const, since the result will be an rvalue and thus
  // const anyway. The const are needed eg. if the types 
  // are 'const int*' and 'void *'. The remaining type should be 'const void*'
  typedef const typename boost::remove_reference<A>::type plainA; 
  typedef const typename boost::remove_reference<B>::type plainB; 
  // TODO: Add support for volatile ?

  typedef typename
       return_type_2_ifthenelsereturn<
         2,
         boost::is_convertible<plainA,plainB>::value, 
         boost::is_convertible<plainB,plainA>::value,
         boost::is_same<plainA,plainB>::value,
         plainA, 
         plainB>::type type;
};

// PHASE 6:2
template<class A, class B>
struct return_type_2_ifthenelsereturn<2, false, false, false, A, B> {
  typedef 
    detail::return_type_deduction_failure<return_type_2_ifthenelsereturn> type;
  // types_do_not_match_in_conditional_expression 
};



// PHASE 5: now we know that types are not arithmetic.
template<class A, class B>
struct non_numeric_types {
  typedef typename 
    return_type_2_ifthenelsereturn<
      1, // phase 1 
      is_convertible<A,B>::value, 
      is_convertible<B,A>::value, 
      is_same<A,B>::value,
      A, 
      B>::type type;
};

// PHASE 4 : 
// the base case covers arithmetic types with differing promote codes
// use the type deduction of arithmetic_actions
template<int CodeA, int CodeB, class A, class B>
struct arithmetic_or_not {
  typedef typename
    return_type_2<arithmetic_action<plus_action>, A, B>::type type; 
  // plus_action is just a random pick, has to be a concrete instance
};

// this case covers the case of artihmetic types with the same promote codes. 
// non numeric deduction is used since e.g. integral promotion is not 
// performed with operator ?: 
template<int CodeA, class A, class B>
struct arithmetic_or_not<CodeA, CodeA, A, B> {
  typedef typename non_numeric_types<A, B>::type type; 
};

// if either A or B has promote code -1 it is not an arithmetic type
template<class A, class B>
struct arithmetic_or_not <-1, -1, A, B> {
  typedef typename non_numeric_types<A, B>::type type;
};
template<int CodeB, class A, class B>
struct arithmetic_or_not <-1, CodeB, A, B> {
  typedef typename non_numeric_types<A, B>::type type;
};
template<int CodeA, class A, class B>
struct arithmetic_or_not <CodeA, -1, A, B> {
  typedef typename non_numeric_types<A, B>::type type;
};




// PHASE 3 : Are the types same?
// No, check if they are arithmetic or not
template <class A, class B>
struct same_or_not {
  typedef typename detail::remove_reference_and_cv<A>::type plainA;
  typedef typename detail::remove_reference_and_cv<B>::type plainB;

  typedef typename 
    arithmetic_or_not<
      detail::promote_code<plainA>::value, 
      detail::promote_code<plainB>::value, 
      A, 
      B>::type type;
};
// Yes, clear.
template <class A> struct same_or_not<A, A> {
  typedef A type;
};

} // detail

// PHASE 2 : Perform first the potential array_to_pointer conversion 
template<class A, class B>
struct return_type_2<other_action<ifthenelsereturn_action>, A, B> { 

  typedef typename detail::array_to_pointer<A>::type A1;
  typedef typename detail::array_to_pointer<B>::type B1;

  typedef typename 
    boost::add_const<typename detail::same_or_not<A1, B1>::type>::type type;
};

// PHASE 1 : Deduction is based on the second and third operand


// return type specialization for conditional expression ends -----------


// Specialization of lambda_functor_base for if_then_else_return.
template<class Args>
class 
lambda_functor_base<other_action<ifthenelsereturn_action>, Args> {
public:
  Args args;

  template <class SigArgs> struct sig {
  private:
    typedef typename detail::nth_return_type_sig<1, Args, SigArgs>::type ret1;
    typedef typename detail::nth_return_type_sig<2, Args, SigArgs>::type ret2;
  public:
    typedef typename return_type_2<
      other_action<ifthenelsereturn_action>, ret1, ret2
    >::type type;
  };

public:
  explicit lambda_functor_base(const Args& a) : args(a) {}

  template<class RET, CALL_TEMPLATE_ARGS>
  RET call(CALL_FORMAL_ARGS) const {
    return (detail::select(boost::tuples::get<0>(args), CALL_ACTUAL_ARGS)) ?
       detail::select(boost::tuples::get<1>(args), CALL_ACTUAL_ARGS) 
    : 
       detail::select(boost::tuples::get<2>(args), CALL_ACTUAL_ARGS);
  }
};

  // The code below is from Joel de Guzman, some name changes etc. 
  // has been made.

///////////////////////////////////////////////////////////////////////////////
//
//  if_then_else_composite
//
//      This composite has two (2) forms:
//
//          if_(condition)
//          [
//              statement
//          ]
//
//      and
//
//          if_(condition)
//          [
//              true_statement
//          ]
//          .else_
//          [
//              false_statement
//          ]
//
//      where condition is an lambda_functor that evaluates to bool. If condition
//      is true, the true_statement (again an lambda_functor) is executed
//      otherwise, the false_statement (another lambda_functor) is executed. The
//      result type of this is void. Note the trailing underscore after
//      if_ and the leading dot and the trailing underscore before
//      and after .else_.
//
///////////////////////////////////////////////////////////////////////////////
template <typename CondT, typename ThenT, typename ElseT>
struct if_then_else_composite {

    typedef if_then_else_composite<CondT, ThenT, ElseT> self_t;

    template <class SigArgs>
    struct sig { typedef void type; };

    if_then_else_composite(
        CondT const& cond_,
        ThenT const& then_,
        ElseT const& else__)
    :   cond(cond_), then(then_), else_(else__) {}

    template <class Ret, CALL_TEMPLATE_ARGS>
    Ret call(CALL_FORMAL_ARGS) const
    {
        if (cond.internal_call(CALL_ACTUAL_ARGS))
            then.internal_call(CALL_ACTUAL_ARGS);
        else
            else_.internal_call(CALL_ACTUAL_ARGS);
    }

    CondT cond; ThenT then; ElseT else_; //  lambda_functors
};

//////////////////////////////////
template <typename CondT, typename ThenT>
struct else_gen {

    else_gen(CondT const& cond_, ThenT const& then_)
    :   cond(cond_), then(then_) {}

    template <typename ElseT>
    lambda_functor<if_then_else_composite<CondT, ThenT,
        typename as_lambda_functor<ElseT>::type> >
    operator[](ElseT const& else_)
    {
        typedef if_then_else_composite<CondT, ThenT,
            typename as_lambda_functor<ElseT>::type>
        result;

        return result(cond, then, to_lambda_functor(else_));
    }

    CondT cond; ThenT then;
};

//////////////////////////////////
template <typename CondT, typename ThenT>
struct if_then_composite {

    template <class SigArgs>
    struct sig { typedef void type; };

    if_then_composite(CondT const& cond_, ThenT const& then_)
    :   cond(cond_), then(then_), else_(cond, then) {}

    template <class Ret, CALL_TEMPLATE_ARGS>
    Ret call(CALL_FORMAL_ARGS) const
    {
      if (cond.internal_call(CALL_ACTUAL_ARGS))
            then.internal_call(CALL_ACTUAL_ARGS);
    }

    CondT cond; ThenT then; //  lambda_functors
    else_gen<CondT, ThenT> else_;
};

//////////////////////////////////
template <typename CondT>
struct if_gen {

    if_gen(CondT const& cond_)
    :   cond(cond_) {}

    template <typename ThenT>
    lambda_functor<if_then_composite<
        typename as_lambda_functor<CondT>::type,
        typename as_lambda_functor<ThenT>::type> >
    operator[](ThenT const& then) const
    {
        typedef if_then_composite<
            typename as_lambda_functor<CondT>::type,
            typename as_lambda_functor<ThenT>::type>
        result;

        return result(
            to_lambda_functor(cond),
            to_lambda_functor(then));
    }

    CondT cond;
};

//////////////////////////////////
template <typename CondT>
inline if_gen<CondT>
if_(CondT const& cond)
{
    return if_gen<CondT>(cond);
}



} // lambda
} // boost

#endif // BOOST_LAMBDA_IF_HPP