/usr/share/go-1.6/test/chan/powser1.go is in golang-1.6-src 1.6.1-0ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 | // run
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Test concurrency primitives: power series.
// Power series package
// A power series is a channel, along which flow rational
// coefficients. A denominator of zero signifies the end.
// Original code in Newsqueak by Doug McIlroy.
// See Squinting at Power Series by Doug McIlroy,
// http://www.cs.bell-labs.com/who/rsc/thread/squint.pdf
package main
import "os"
type rat struct {
num, den int64 // numerator, denominator
}
func (u rat) pr() {
if u.den==1 {
print(u.num)
} else {
print(u.num, "/", u.den)
}
print(" ")
}
func (u rat) eq(c rat) bool {
return u.num == c.num && u.den == c.den
}
type dch struct {
req chan int
dat chan rat
nam int
}
type dch2 [2] *dch
var chnames string
var chnameserial int
var seqno int
func mkdch() *dch {
c := chnameserial % len(chnames)
chnameserial++
d := new(dch)
d.req = make(chan int)
d.dat = make(chan rat)
d.nam = c
return d
}
func mkdch2() *dch2 {
d2 := new(dch2)
d2[0] = mkdch()
d2[1] = mkdch()
return d2
}
// split reads a single demand channel and replicates its
// output onto two, which may be read at different rates.
// A process is created at first demand for a rat and dies
// after the rat has been sent to both outputs.
// When multiple generations of split exist, the newest
// will service requests on one channel, which is
// always renamed to be out[0]; the oldest will service
// requests on the other channel, out[1]. All generations but the
// newest hold queued data that has already been sent to
// out[0]. When data has finally been sent to out[1],
// a signal on the release-wait channel tells the next newer
// generation to begin servicing out[1].
func dosplit(in *dch, out *dch2, wait chan int ) {
both := false // do not service both channels
select {
case <-out[0].req:
case <-wait:
both = true
select {
case <-out[0].req:
case <-out[1].req:
out[0], out[1] = out[1], out[0]
}
}
seqno++
in.req <- seqno
release := make(chan int)
go dosplit(in, out, release)
dat := <-in.dat
out[0].dat <- dat
if !both {
<-wait
}
<-out[1].req
out[1].dat <- dat
release <- 0
}
func split(in *dch, out *dch2) {
release := make(chan int)
go dosplit(in, out, release)
release <- 0
}
func put(dat rat, out *dch) {
<-out.req
out.dat <- dat
}
func get(in *dch) rat {
seqno++
in.req <- seqno
return <-in.dat
}
// Get one rat from each of n demand channels
func getn(in []*dch) []rat {
n := len(in)
if n != 2 { panic("bad n in getn") }
req := new([2] chan int)
dat := new([2] chan rat)
out := make([]rat, 2)
var i int
var it rat
for i=0; i<n; i++ {
req[i] = in[i].req
dat[i] = nil
}
for n=2*n; n>0; n-- {
seqno++
select {
case req[0] <- seqno:
dat[0] = in[0].dat
req[0] = nil
case req[1] <- seqno:
dat[1] = in[1].dat
req[1] = nil
case it = <-dat[0]:
out[0] = it
dat[0] = nil
case it = <-dat[1]:
out[1] = it
dat[1] = nil
}
}
return out
}
// Get one rat from each of 2 demand channels
func get2(in0 *dch, in1 *dch) []rat {
return getn([]*dch{in0, in1})
}
func copy(in *dch, out *dch) {
for {
<-out.req
out.dat <- get(in)
}
}
func repeat(dat rat, out *dch) {
for {
put(dat, out)
}
}
type PS *dch // power series
type PS2 *[2] PS // pair of power series
var Ones PS
var Twos PS
func mkPS() *dch {
return mkdch()
}
func mkPS2() *dch2 {
return mkdch2()
}
// Conventions
// Upper-case for power series.
// Lower-case for rationals.
// Input variables: U,V,...
// Output variables: ...,Y,Z
// Integer gcd; needed for rational arithmetic
func gcd (u, v int64) int64 {
if u < 0 { return gcd(-u, v) }
if u == 0 { return v }
return gcd(v%u, u)
}
// Make a rational from two ints and from one int
func i2tor(u, v int64) rat {
g := gcd(u,v)
var r rat
if v > 0 {
r.num = u/g
r.den = v/g
} else {
r.num = -u/g
r.den = -v/g
}
return r
}
func itor(u int64) rat {
return i2tor(u, 1)
}
var zero rat
var one rat
// End mark and end test
var finis rat
func end(u rat) int64 {
if u.den==0 { return 1 }
return 0
}
// Operations on rationals
func add(u, v rat) rat {
g := gcd(u.den,v.den)
return i2tor(u.num*(v.den/g)+v.num*(u.den/g),u.den*(v.den/g))
}
func mul(u, v rat) rat {
g1 := gcd(u.num,v.den)
g2 := gcd(u.den,v.num)
var r rat
r.num = (u.num/g1)*(v.num/g2)
r.den = (u.den/g2)*(v.den/g1)
return r
}
func neg(u rat) rat {
return i2tor(-u.num, u.den)
}
func sub(u, v rat) rat {
return add(u, neg(v))
}
func inv(u rat) rat { // invert a rat
if u.num == 0 { panic("zero divide in inv") }
return i2tor(u.den, u.num)
}
// print eval in floating point of PS at x=c to n terms
func evaln(c rat, U PS, n int) {
xn := float64(1)
x := float64(c.num)/float64(c.den)
val := float64(0)
for i:=0; i<n; i++ {
u := get(U)
if end(u) != 0 {
break
}
val = val + x * float64(u.num)/float64(u.den)
xn = xn*x
}
print(val, "\n")
}
// Print n terms of a power series
func printn(U PS, n int) {
done := false
for ; !done && n>0; n-- {
u := get(U)
if end(u) != 0 {
done = true
} else {
u.pr()
}
}
print(("\n"))
}
// Evaluate n terms of power series U at x=c
func eval(c rat, U PS, n int) rat {
if n==0 { return zero }
y := get(U)
if end(y) != 0 { return zero }
return add(y,mul(c,eval(c,U,n-1)))
}
// Power-series constructors return channels on which power
// series flow. They start an encapsulated generator that
// puts the terms of the series on the channel.
// Make a pair of power series identical to a given power series
func Split(U PS) *dch2 {
UU := mkdch2()
go split(U,UU)
return UU
}
// Add two power series
func Add(U, V PS) PS {
Z := mkPS()
go func() {
var uv []rat
for {
<-Z.req
uv = get2(U,V)
switch end(uv[0])+2*end(uv[1]) {
case 0:
Z.dat <- add(uv[0], uv[1])
case 1:
Z.dat <- uv[1]
copy(V,Z)
case 2:
Z.dat <- uv[0]
copy(U,Z)
case 3:
Z.dat <- finis
}
}
}()
return Z
}
// Multiply a power series by a constant
func Cmul(c rat,U PS) PS {
Z := mkPS()
go func() {
done := false
for !done {
<-Z.req
u := get(U)
if end(u) != 0 {
done = true
} else {
Z.dat <- mul(c,u)
}
}
Z.dat <- finis
}()
return Z
}
// Subtract
func Sub(U, V PS) PS {
return Add(U, Cmul(neg(one), V))
}
// Multiply a power series by the monomial x^n
func Monmul(U PS, n int) PS {
Z := mkPS()
go func() {
for ; n>0; n-- { put(zero,Z) }
copy(U,Z)
}()
return Z
}
// Multiply by x
func Xmul(U PS) PS {
return Monmul(U,1)
}
func Rep(c rat) PS {
Z := mkPS()
go repeat(c,Z)
return Z
}
// Monomial c*x^n
func Mon(c rat, n int) PS {
Z:=mkPS()
go func() {
if(c.num!=0) {
for ; n>0; n=n-1 { put(zero,Z) }
put(c,Z)
}
put(finis,Z)
}()
return Z
}
func Shift(c rat, U PS) PS {
Z := mkPS()
go func() {
put(c,Z)
copy(U,Z)
}()
return Z
}
// simple pole at 1: 1/(1-x) = 1 1 1 1 1 ...
// Convert array of coefficients, constant term first
// to a (finite) power series
/*
func Poly(a []rat) PS {
Z:=mkPS()
begin func(a []rat, Z PS) {
j:=0
done:=0
for j=len(a); !done&&j>0; j=j-1)
if(a[j-1].num!=0) done=1
i:=0
for(; i<j; i=i+1) put(a[i],Z)
put(finis,Z)
}()
return Z
}
*/
// Multiply. The algorithm is
// let U = u + x*UU
// let V = v + x*VV
// then UV = u*v + x*(u*VV+v*UU) + x*x*UU*VV
func Mul(U, V PS) PS {
Z:=mkPS()
go func() {
<-Z.req
uv := get2(U,V)
if end(uv[0])!=0 || end(uv[1]) != 0 {
Z.dat <- finis
} else {
Z.dat <- mul(uv[0],uv[1])
UU := Split(U)
VV := Split(V)
W := Add(Cmul(uv[0],VV[0]),Cmul(uv[1],UU[0]))
<-Z.req
Z.dat <- get(W)
copy(Add(W,Mul(UU[1],VV[1])),Z)
}
}()
return Z
}
// Differentiate
func Diff(U PS) PS {
Z:=mkPS()
go func() {
<-Z.req
u := get(U)
if end(u) == 0 {
done:=false
for i:=1; !done; i++ {
u = get(U)
if end(u) != 0 {
done = true
} else {
Z.dat <- mul(itor(int64(i)),u)
<-Z.req
}
}
}
Z.dat <- finis
}()
return Z
}
// Integrate, with const of integration
func Integ(c rat,U PS) PS {
Z:=mkPS()
go func() {
put(c,Z)
done:=false
for i:=1; !done; i++ {
<-Z.req
u := get(U)
if end(u) != 0 { done= true }
Z.dat <- mul(i2tor(1,int64(i)),u)
}
Z.dat <- finis
}()
return Z
}
// Binomial theorem (1+x)^c
func Binom(c rat) PS {
Z:=mkPS()
go func() {
n := 1
t := itor(1)
for c.num!=0 {
put(t,Z)
t = mul(mul(t,c),i2tor(1,int64(n)))
c = sub(c,one)
n++
}
put(finis,Z)
}()
return Z
}
// Reciprocal of a power series
// let U = u + x*UU
// let Z = z + x*ZZ
// (u+x*UU)*(z+x*ZZ) = 1
// z = 1/u
// u*ZZ + z*UU +x*UU*ZZ = 0
// ZZ = -UU*(z+x*ZZ)/u
func Recip(U PS) PS {
Z:=mkPS()
go func() {
ZZ:=mkPS2()
<-Z.req
z := inv(get(U))
Z.dat <- z
split(Mul(Cmul(neg(z),U),Shift(z,ZZ[0])),ZZ)
copy(ZZ[1],Z)
}()
return Z
}
// Exponential of a power series with constant term 0
// (nonzero constant term would make nonrational coefficients)
// bug: the constant term is simply ignored
// Z = exp(U)
// DZ = Z*DU
// integrate to get Z
func Exp(U PS) PS {
ZZ := mkPS2()
split(Integ(one,Mul(ZZ[0],Diff(U))),ZZ)
return ZZ[1]
}
// Substitute V for x in U, where the leading term of V is zero
// let U = u + x*UU
// let V = v + x*VV
// then S(U,V) = u + VV*S(V,UU)
// bug: a nonzero constant term is ignored
func Subst(U, V PS) PS {
Z:= mkPS()
go func() {
VV := Split(V)
<-Z.req
u := get(U)
Z.dat <- u
if end(u) == 0 {
if end(get(VV[0])) != 0 {
put(finis,Z)
} else {
copy(Mul(VV[0],Subst(U,VV[1])),Z)
}
}
}()
return Z
}
// Monomial Substition: U(c x^n)
// Each Ui is multiplied by c^i and followed by n-1 zeros
func MonSubst(U PS, c0 rat, n int) PS {
Z:= mkPS()
go func() {
c := one
for {
<-Z.req
u := get(U)
Z.dat <- mul(u, c)
c = mul(c, c0)
if end(u) != 0 {
Z.dat <- finis
break
}
for i := 1; i < n; i++ {
<-Z.req
Z.dat <- zero
}
}
}()
return Z
}
func Init() {
chnameserial = -1
seqno = 0
chnames = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"
zero = itor(0)
one = itor(1)
finis = i2tor(1,0)
Ones = Rep(one)
Twos = Rep(itor(2))
}
func check(U PS, c rat, count int, str string) {
for i := 0; i < count; i++ {
r := get(U)
if !r.eq(c) {
print("got: ")
r.pr()
print("should get ")
c.pr()
print("\n")
panic(str)
}
}
}
const N=10
func checka(U PS, a []rat, str string) {
for i := 0; i < N; i++ {
check(U, a[i], 1, str)
}
}
func main() {
Init()
if len(os.Args) > 1 { // print
print("Ones: "); printn(Ones, 10)
print("Twos: "); printn(Twos, 10)
print("Add: "); printn(Add(Ones, Twos), 10)
print("Diff: "); printn(Diff(Ones), 10)
print("Integ: "); printn(Integ(zero, Ones), 10)
print("CMul: "); printn(Cmul(neg(one), Ones), 10)
print("Sub: "); printn(Sub(Ones, Twos), 10)
print("Mul: "); printn(Mul(Ones, Ones), 10)
print("Exp: "); printn(Exp(Ones), 15)
print("MonSubst: "); printn(MonSubst(Ones, neg(one), 2), 10)
print("ATan: "); printn(Integ(zero, MonSubst(Ones, neg(one), 2)), 10)
} else { // test
check(Ones, one, 5, "Ones")
check(Add(Ones, Ones), itor(2), 0, "Add Ones Ones") // 1 1 1 1 1
check(Add(Ones, Twos), itor(3), 0, "Add Ones Twos") // 3 3 3 3 3
a := make([]rat, N)
d := Diff(Ones)
for i:=0; i < N; i++ {
a[i] = itor(int64(i+1))
}
checka(d, a, "Diff") // 1 2 3 4 5
in := Integ(zero, Ones)
a[0] = zero // integration constant
for i:=1; i < N; i++ {
a[i] = i2tor(1, int64(i))
}
checka(in, a, "Integ") // 0 1 1/2 1/3 1/4 1/5
check(Cmul(neg(one), Twos), itor(-2), 10, "CMul") // -1 -1 -1 -1 -1
check(Sub(Ones, Twos), itor(-1), 0, "Sub Ones Twos") // -1 -1 -1 -1 -1
m := Mul(Ones, Ones)
for i:=0; i < N; i++ {
a[i] = itor(int64(i+1))
}
checka(m, a, "Mul") // 1 2 3 4 5
e := Exp(Ones)
a[0] = itor(1)
a[1] = itor(1)
a[2] = i2tor(3,2)
a[3] = i2tor(13,6)
a[4] = i2tor(73,24)
a[5] = i2tor(167,40)
a[6] = i2tor(4051,720)
a[7] = i2tor(37633,5040)
a[8] = i2tor(43817,4480)
a[9] = i2tor(4596553,362880)
checka(e, a, "Exp") // 1 1 3/2 13/6 73/24
at := Integ(zero, MonSubst(Ones, neg(one), 2))
for c, i := 1, 0; i < N; i++ {
if i%2 == 0 {
a[i] = zero
} else {
a[i] = i2tor(int64(c), int64(i))
c *= -1
}
}
checka(at, a, "ATan") // 0 -1 0 -1/3 0 -1/5
/*
t := Revert(Integ(zero, MonSubst(Ones, neg(one), 2)))
a[0] = zero
a[1] = itor(1)
a[2] = zero
a[3] = i2tor(1,3)
a[4] = zero
a[5] = i2tor(2,15)
a[6] = zero
a[7] = i2tor(17,315)
a[8] = zero
a[9] = i2tor(62,2835)
checka(t, a, "Tan") // 0 1 0 1/3 0 2/15
*/
}
}
|