This file is indexed.

/usr/share/go-1.6/src/runtime/stack.go is in golang-1.6-src 1.6.1-0ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package runtime

import (
	"runtime/internal/atomic"
	"runtime/internal/sys"
	"unsafe"
)

/*
Stack layout parameters.
Included both by runtime (compiled via 6c) and linkers (compiled via gcc).

The per-goroutine g->stackguard is set to point StackGuard bytes
above the bottom of the stack.  Each function compares its stack
pointer against g->stackguard to check for overflow.  To cut one
instruction from the check sequence for functions with tiny frames,
the stack is allowed to protrude StackSmall bytes below the stack
guard.  Functions with large frames don't bother with the check and
always call morestack.  The sequences are (for amd64, others are
similar):

	guard = g->stackguard
	frame = function's stack frame size
	argsize = size of function arguments (call + return)

	stack frame size <= StackSmall:
		CMPQ guard, SP
		JHI 3(PC)
		MOVQ m->morearg, $(argsize << 32)
		CALL morestack(SB)

	stack frame size > StackSmall but < StackBig
		LEAQ (frame-StackSmall)(SP), R0
		CMPQ guard, R0
		JHI 3(PC)
		MOVQ m->morearg, $(argsize << 32)
		CALL morestack(SB)

	stack frame size >= StackBig:
		MOVQ m->morearg, $((argsize << 32) | frame)
		CALL morestack(SB)

The bottom StackGuard - StackSmall bytes are important: there has
to be enough room to execute functions that refuse to check for
stack overflow, either because they need to be adjacent to the
actual caller's frame (deferproc) or because they handle the imminent
stack overflow (morestack).

For example, deferproc might call malloc, which does one of the
above checks (without allocating a full frame), which might trigger
a call to morestack.  This sequence needs to fit in the bottom
section of the stack.  On amd64, morestack's frame is 40 bytes, and
deferproc's frame is 56 bytes.  That fits well within the
StackGuard - StackSmall bytes at the bottom.
The linkers explore all possible call traces involving non-splitting
functions to make sure that this limit cannot be violated.
*/

const (
	// StackSystem is a number of additional bytes to add
	// to each stack below the usual guard area for OS-specific
	// purposes like signal handling. Used on Windows, Plan 9,
	// and Darwin/ARM because they do not use a separate stack.
	_StackSystem = sys.GoosWindows*512*sys.PtrSize + sys.GoosPlan9*512 + sys.GoosDarwin*sys.GoarchArm*1024

	// The minimum size of stack used by Go code
	_StackMin = 2048

	// The minimum stack size to allocate.
	// The hackery here rounds FixedStack0 up to a power of 2.
	_FixedStack0 = _StackMin + _StackSystem
	_FixedStack1 = _FixedStack0 - 1
	_FixedStack2 = _FixedStack1 | (_FixedStack1 >> 1)
	_FixedStack3 = _FixedStack2 | (_FixedStack2 >> 2)
	_FixedStack4 = _FixedStack3 | (_FixedStack3 >> 4)
	_FixedStack5 = _FixedStack4 | (_FixedStack4 >> 8)
	_FixedStack6 = _FixedStack5 | (_FixedStack5 >> 16)
	_FixedStack  = _FixedStack6 + 1

	// Functions that need frames bigger than this use an extra
	// instruction to do the stack split check, to avoid overflow
	// in case SP - framesize wraps below zero.
	// This value can be no bigger than the size of the unmapped
	// space at zero.
	_StackBig = 4096

	// The stack guard is a pointer this many bytes above the
	// bottom of the stack.
	_StackGuard = 720*sys.StackGuardMultiplier + _StackSystem

	// After a stack split check the SP is allowed to be this
	// many bytes below the stack guard.  This saves an instruction
	// in the checking sequence for tiny frames.
	_StackSmall = 128

	// The maximum number of bytes that a chain of NOSPLIT
	// functions can use.
	_StackLimit = _StackGuard - _StackSystem - _StackSmall
)

// Goroutine preemption request.
// Stored into g->stackguard0 to cause split stack check failure.
// Must be greater than any real sp.
// 0xfffffade in hex.
const (
	_StackPreempt = uintptrMask & -1314
	_StackFork    = uintptrMask & -1234
)

const (
	// stackDebug == 0: no logging
	//            == 1: logging of per-stack operations
	//            == 2: logging of per-frame operations
	//            == 3: logging of per-word updates
	//            == 4: logging of per-word reads
	stackDebug       = 0
	stackFromSystem  = 0 // allocate stacks from system memory instead of the heap
	stackFaultOnFree = 0 // old stacks are mapped noaccess to detect use after free
	stackPoisonCopy  = 0 // fill stack that should not be accessed with garbage, to detect bad dereferences during copy

	stackCache = 1
)

const (
	uintptrMask = 1<<(8*sys.PtrSize) - 1
	poisonStack = uintptrMask & 0x6868686868686868

	// Goroutine preemption request.
	// Stored into g->stackguard0 to cause split stack check failure.
	// Must be greater than any real sp.
	// 0xfffffade in hex.
	stackPreempt = uintptrMask & -1314

	// Thread is forking.
	// Stored into g->stackguard0 to cause split stack check failure.
	// Must be greater than any real sp.
	stackFork = uintptrMask & -1234
)

// Global pool of spans that have free stacks.
// Stacks are assigned an order according to size.
//     order = log_2(size/FixedStack)
// There is a free list for each order.
// TODO: one lock per order?
var stackpool [_NumStackOrders]mSpanList
var stackpoolmu mutex

// Global pool of large stack spans.
var stackLarge struct {
	lock mutex
	free [_MHeapMap_Bits]mSpanList // free lists by log_2(s.npages)
}

// Cached value of haveexperiment("framepointer")
var framepointer_enabled bool

func stackinit() {
	if _StackCacheSize&_PageMask != 0 {
		throw("cache size must be a multiple of page size")
	}
	for i := range stackpool {
		stackpool[i].init()
	}
	for i := range stackLarge.free {
		stackLarge.free[i].init()
	}
}

// stacklog2 returns ⌊log_2(n)⌋.
func stacklog2(n uintptr) int {
	log2 := 0
	for n > 1 {
		n >>= 1
		log2++
	}
	return log2
}

// Allocates a stack from the free pool.  Must be called with
// stackpoolmu held.
func stackpoolalloc(order uint8) gclinkptr {
	list := &stackpool[order]
	s := list.first
	if s == nil {
		// no free stacks.  Allocate another span worth.
		s = mheap_.allocStack(_StackCacheSize >> _PageShift)
		if s == nil {
			throw("out of memory")
		}
		if s.ref != 0 {
			throw("bad ref")
		}
		if s.freelist.ptr() != nil {
			throw("bad freelist")
		}
		for i := uintptr(0); i < _StackCacheSize; i += _FixedStack << order {
			x := gclinkptr(uintptr(s.start)<<_PageShift + i)
			x.ptr().next = s.freelist
			s.freelist = x
		}
		list.insert(s)
	}
	x := s.freelist
	if x.ptr() == nil {
		throw("span has no free stacks")
	}
	s.freelist = x.ptr().next
	s.ref++
	if s.freelist.ptr() == nil {
		// all stacks in s are allocated.
		list.remove(s)
	}
	return x
}

// Adds stack x to the free pool.  Must be called with stackpoolmu held.
func stackpoolfree(x gclinkptr, order uint8) {
	s := mheap_.lookup(unsafe.Pointer(x))
	if s.state != _MSpanStack {
		throw("freeing stack not in a stack span")
	}
	if s.freelist.ptr() == nil {
		// s will now have a free stack
		stackpool[order].insert(s)
	}
	x.ptr().next = s.freelist
	s.freelist = x
	s.ref--
	if gcphase == _GCoff && s.ref == 0 {
		// Span is completely free. Return it to the heap
		// immediately if we're sweeping.
		//
		// If GC is active, we delay the free until the end of
		// GC to avoid the following type of situation:
		//
		// 1) GC starts, scans a SudoG but does not yet mark the SudoG.elem pointer
		// 2) The stack that pointer points to is copied
		// 3) The old stack is freed
		// 4) The containing span is marked free
		// 5) GC attempts to mark the SudoG.elem pointer. The
		//    marking fails because the pointer looks like a
		//    pointer into a free span.
		//
		// By not freeing, we prevent step #4 until GC is done.
		stackpool[order].remove(s)
		s.freelist = 0
		mheap_.freeStack(s)
	}
}

// stackcacherefill/stackcacherelease implement a global pool of stack segments.
// The pool is required to prevent unlimited growth of per-thread caches.
func stackcacherefill(c *mcache, order uint8) {
	if stackDebug >= 1 {
		print("stackcacherefill order=", order, "\n")
	}

	// Grab some stacks from the global cache.
	// Grab half of the allowed capacity (to prevent thrashing).
	var list gclinkptr
	var size uintptr
	lock(&stackpoolmu)
	for size < _StackCacheSize/2 {
		x := stackpoolalloc(order)
		x.ptr().next = list
		list = x
		size += _FixedStack << order
	}
	unlock(&stackpoolmu)
	c.stackcache[order].list = list
	c.stackcache[order].size = size
}

func stackcacherelease(c *mcache, order uint8) {
	if stackDebug >= 1 {
		print("stackcacherelease order=", order, "\n")
	}
	x := c.stackcache[order].list
	size := c.stackcache[order].size
	lock(&stackpoolmu)
	for size > _StackCacheSize/2 {
		y := x.ptr().next
		stackpoolfree(x, order)
		x = y
		size -= _FixedStack << order
	}
	unlock(&stackpoolmu)
	c.stackcache[order].list = x
	c.stackcache[order].size = size
}

func stackcache_clear(c *mcache) {
	if stackDebug >= 1 {
		print("stackcache clear\n")
	}
	lock(&stackpoolmu)
	for order := uint8(0); order < _NumStackOrders; order++ {
		x := c.stackcache[order].list
		for x.ptr() != nil {
			y := x.ptr().next
			stackpoolfree(x, order)
			x = y
		}
		c.stackcache[order].list = 0
		c.stackcache[order].size = 0
	}
	unlock(&stackpoolmu)
}

func stackalloc(n uint32) (stack, []stkbar) {
	// Stackalloc must be called on scheduler stack, so that we
	// never try to grow the stack during the code that stackalloc runs.
	// Doing so would cause a deadlock (issue 1547).
	thisg := getg()
	if thisg != thisg.m.g0 {
		throw("stackalloc not on scheduler stack")
	}
	if n&(n-1) != 0 {
		throw("stack size not a power of 2")
	}
	if stackDebug >= 1 {
		print("stackalloc ", n, "\n")
	}

	// Compute the size of stack barrier array.
	maxstkbar := gcMaxStackBarriers(int(n))
	nstkbar := unsafe.Sizeof(stkbar{}) * uintptr(maxstkbar)

	if debug.efence != 0 || stackFromSystem != 0 {
		v := sysAlloc(round(uintptr(n), _PageSize), &memstats.stacks_sys)
		if v == nil {
			throw("out of memory (stackalloc)")
		}
		top := uintptr(n) - nstkbar
		stkbarSlice := slice{add(v, top), 0, maxstkbar}
		return stack{uintptr(v), uintptr(v) + top}, *(*[]stkbar)(unsafe.Pointer(&stkbarSlice))
	}

	// Small stacks are allocated with a fixed-size free-list allocator.
	// If we need a stack of a bigger size, we fall back on allocating
	// a dedicated span.
	var v unsafe.Pointer
	if stackCache != 0 && n < _FixedStack<<_NumStackOrders && n < _StackCacheSize {
		order := uint8(0)
		n2 := n
		for n2 > _FixedStack {
			order++
			n2 >>= 1
		}
		var x gclinkptr
		c := thisg.m.mcache
		if c == nil || thisg.m.preemptoff != "" || thisg.m.helpgc != 0 {
			// c == nil can happen in the guts of exitsyscall or
			// procresize. Just get a stack from the global pool.
			// Also don't touch stackcache during gc
			// as it's flushed concurrently.
			lock(&stackpoolmu)
			x = stackpoolalloc(order)
			unlock(&stackpoolmu)
		} else {
			x = c.stackcache[order].list
			if x.ptr() == nil {
				stackcacherefill(c, order)
				x = c.stackcache[order].list
			}
			c.stackcache[order].list = x.ptr().next
			c.stackcache[order].size -= uintptr(n)
		}
		v = unsafe.Pointer(x)
	} else {
		var s *mspan
		npage := uintptr(n) >> _PageShift
		log2npage := stacklog2(npage)

		// Try to get a stack from the large stack cache.
		lock(&stackLarge.lock)
		if !stackLarge.free[log2npage].isEmpty() {
			s = stackLarge.free[log2npage].first
			stackLarge.free[log2npage].remove(s)
		}
		unlock(&stackLarge.lock)

		if s == nil {
			// Allocate a new stack from the heap.
			s = mheap_.allocStack(npage)
			if s == nil {
				throw("out of memory")
			}
		}
		v = unsafe.Pointer(s.start << _PageShift)
	}

	if raceenabled {
		racemalloc(v, uintptr(n))
	}
	if msanenabled {
		msanmalloc(v, uintptr(n))
	}
	if stackDebug >= 1 {
		print("  allocated ", v, "\n")
	}
	top := uintptr(n) - nstkbar
	stkbarSlice := slice{add(v, top), 0, maxstkbar}
	return stack{uintptr(v), uintptr(v) + top}, *(*[]stkbar)(unsafe.Pointer(&stkbarSlice))
}

func stackfree(stk stack, n uintptr) {
	gp := getg()
	v := unsafe.Pointer(stk.lo)
	if n&(n-1) != 0 {
		throw("stack not a power of 2")
	}
	if stk.lo+n < stk.hi {
		throw("bad stack size")
	}
	if stackDebug >= 1 {
		println("stackfree", v, n)
		memclr(v, n) // for testing, clobber stack data
	}
	if debug.efence != 0 || stackFromSystem != 0 {
		if debug.efence != 0 || stackFaultOnFree != 0 {
			sysFault(v, n)
		} else {
			sysFree(v, n, &memstats.stacks_sys)
		}
		return
	}
	if msanenabled {
		msanfree(v, n)
	}
	if stackCache != 0 && n < _FixedStack<<_NumStackOrders && n < _StackCacheSize {
		order := uint8(0)
		n2 := n
		for n2 > _FixedStack {
			order++
			n2 >>= 1
		}
		x := gclinkptr(v)
		c := gp.m.mcache
		if c == nil || gp.m.preemptoff != "" || gp.m.helpgc != 0 {
			lock(&stackpoolmu)
			stackpoolfree(x, order)
			unlock(&stackpoolmu)
		} else {
			if c.stackcache[order].size >= _StackCacheSize {
				stackcacherelease(c, order)
			}
			x.ptr().next = c.stackcache[order].list
			c.stackcache[order].list = x
			c.stackcache[order].size += n
		}
	} else {
		s := mheap_.lookup(v)
		if s.state != _MSpanStack {
			println(hex(s.start<<_PageShift), v)
			throw("bad span state")
		}
		if gcphase == _GCoff {
			// Free the stack immediately if we're
			// sweeping.
			mheap_.freeStack(s)
		} else {
			// If the GC is running, we can't return a
			// stack span to the heap because it could be
			// reused as a heap span, and this state
			// change would race with GC. Add it to the
			// large stack cache instead.
			log2npage := stacklog2(s.npages)
			lock(&stackLarge.lock)
			stackLarge.free[log2npage].insert(s)
			unlock(&stackLarge.lock)
		}
	}
}

var maxstacksize uintptr = 1 << 20 // enough until runtime.main sets it for real

var ptrnames = []string{
	0: "scalar",
	1: "ptr",
}

// Stack frame layout
//
// (x86)
// +------------------+
// | args from caller |
// +------------------+ <- frame->argp
// |  return address  |
// +------------------+
// |  caller's BP (*) | (*) if framepointer_enabled && varp < sp
// +------------------+ <- frame->varp
// |     locals       |
// +------------------+
// |  args to callee  |
// +------------------+ <- frame->sp
//
// (arm)
// +------------------+
// | args from caller |
// +------------------+ <- frame->argp
// | caller's retaddr |
// +------------------+ <- frame->varp
// |     locals       |
// +------------------+
// |  args to callee  |
// +------------------+
// |  return address  |
// +------------------+ <- frame->sp

type adjustinfo struct {
	old   stack
	delta uintptr // ptr distance from old to new stack (newbase - oldbase)
	cache pcvalueCache
}

// Adjustpointer checks whether *vpp is in the old stack described by adjinfo.
// If so, it rewrites *vpp to point into the new stack.
func adjustpointer(adjinfo *adjustinfo, vpp unsafe.Pointer) {
	pp := (*unsafe.Pointer)(vpp)
	p := *pp
	if stackDebug >= 4 {
		print("        ", pp, ":", p, "\n")
	}
	if adjinfo.old.lo <= uintptr(p) && uintptr(p) < adjinfo.old.hi {
		*pp = add(p, adjinfo.delta)
		if stackDebug >= 3 {
			print("        adjust ptr ", pp, ":", p, " -> ", *pp, "\n")
		}
	}
}

// Information from the compiler about the layout of stack frames.
type bitvector struct {
	n        int32 // # of bits
	bytedata *uint8
}

type gobitvector struct {
	n        uintptr
	bytedata []uint8
}

func gobv(bv bitvector) gobitvector {
	return gobitvector{
		uintptr(bv.n),
		(*[1 << 30]byte)(unsafe.Pointer(bv.bytedata))[:(bv.n+7)/8],
	}
}

func ptrbit(bv *gobitvector, i uintptr) uint8 {
	return (bv.bytedata[i/8] >> (i % 8)) & 1
}

// bv describes the memory starting at address scanp.
// Adjust any pointers contained therein.
func adjustpointers(scanp unsafe.Pointer, cbv *bitvector, adjinfo *adjustinfo, f *_func) {
	bv := gobv(*cbv)
	minp := adjinfo.old.lo
	maxp := adjinfo.old.hi
	delta := adjinfo.delta
	num := uintptr(bv.n)
	for i := uintptr(0); i < num; i++ {
		if stackDebug >= 4 {
			print("        ", add(scanp, i*sys.PtrSize), ":", ptrnames[ptrbit(&bv, i)], ":", hex(*(*uintptr)(add(scanp, i*sys.PtrSize))), " # ", i, " ", bv.bytedata[i/8], "\n")
		}
		if ptrbit(&bv, i) == 1 {
			pp := (*uintptr)(add(scanp, i*sys.PtrSize))
			p := *pp
			if f != nil && 0 < p && p < _PageSize && debug.invalidptr != 0 || p == poisonStack {
				// Looks like a junk value in a pointer slot.
				// Live analysis wrong?
				getg().m.traceback = 2
				print("runtime: bad pointer in frame ", funcname(f), " at ", pp, ": ", hex(p), "\n")
				throw("invalid stack pointer")
			}
			if minp <= p && p < maxp {
				if stackDebug >= 3 {
					print("adjust ptr ", p, " ", funcname(f), "\n")
				}
				*pp = p + delta
			}
		}
	}
}

// Note: the argument/return area is adjusted by the callee.
func adjustframe(frame *stkframe, arg unsafe.Pointer) bool {
	adjinfo := (*adjustinfo)(arg)
	targetpc := frame.continpc
	if targetpc == 0 {
		// Frame is dead.
		return true
	}
	f := frame.fn
	if stackDebug >= 2 {
		print("    adjusting ", funcname(f), " frame=[", hex(frame.sp), ",", hex(frame.fp), "] pc=", hex(frame.pc), " continpc=", hex(frame.continpc), "\n")
	}
	if f.entry == systemstack_switchPC {
		// A special routine at the bottom of stack of a goroutine that does an systemstack call.
		// We will allow it to be copied even though we don't
		// have full GC info for it (because it is written in asm).
		return true
	}
	if targetpc != f.entry {
		targetpc--
	}
	pcdata := pcdatavalue(f, _PCDATA_StackMapIndex, targetpc, &adjinfo.cache)
	if pcdata == -1 {
		pcdata = 0 // in prologue
	}

	// Adjust local variables if stack frame has been allocated.
	size := frame.varp - frame.sp
	var minsize uintptr
	switch sys.TheChar {
	case '7':
		minsize = sys.SpAlign
	default:
		minsize = sys.MinFrameSize
	}
	if size > minsize {
		var bv bitvector
		stackmap := (*stackmap)(funcdata(f, _FUNCDATA_LocalsPointerMaps))
		if stackmap == nil || stackmap.n <= 0 {
			print("runtime: frame ", funcname(f), " untyped locals ", hex(frame.varp-size), "+", hex(size), "\n")
			throw("missing stackmap")
		}
		// Locals bitmap information, scan just the pointers in locals.
		if pcdata < 0 || pcdata >= stackmap.n {
			// don't know where we are
			print("runtime: pcdata is ", pcdata, " and ", stackmap.n, " locals stack map entries for ", funcname(f), " (targetpc=", targetpc, ")\n")
			throw("bad symbol table")
		}
		bv = stackmapdata(stackmap, pcdata)
		size = uintptr(bv.n) * sys.PtrSize
		if stackDebug >= 3 {
			print("      locals ", pcdata, "/", stackmap.n, " ", size/sys.PtrSize, " words ", bv.bytedata, "\n")
		}
		adjustpointers(unsafe.Pointer(frame.varp-size), &bv, adjinfo, f)
	}

	// Adjust saved base pointer if there is one.
	if sys.TheChar == '6' && frame.argp-frame.varp == 2*sys.RegSize {
		if !framepointer_enabled {
			print("runtime: found space for saved base pointer, but no framepointer experiment\n")
			print("argp=", hex(frame.argp), " varp=", hex(frame.varp), "\n")
			throw("bad frame layout")
		}
		if stackDebug >= 3 {
			print("      saved bp\n")
		}
		adjustpointer(adjinfo, unsafe.Pointer(frame.varp))
	}

	// Adjust arguments.
	if frame.arglen > 0 {
		var bv bitvector
		if frame.argmap != nil {
			bv = *frame.argmap
		} else {
			stackmap := (*stackmap)(funcdata(f, _FUNCDATA_ArgsPointerMaps))
			if stackmap == nil || stackmap.n <= 0 {
				print("runtime: frame ", funcname(f), " untyped args ", frame.argp, "+", uintptr(frame.arglen), "\n")
				throw("missing stackmap")
			}
			if pcdata < 0 || pcdata >= stackmap.n {
				// don't know where we are
				print("runtime: pcdata is ", pcdata, " and ", stackmap.n, " args stack map entries for ", funcname(f), " (targetpc=", targetpc, ")\n")
				throw("bad symbol table")
			}
			bv = stackmapdata(stackmap, pcdata)
		}
		if stackDebug >= 3 {
			print("      args\n")
		}
		adjustpointers(unsafe.Pointer(frame.argp), &bv, adjinfo, nil)
	}
	return true
}

func adjustctxt(gp *g, adjinfo *adjustinfo) {
	adjustpointer(adjinfo, unsafe.Pointer(&gp.sched.ctxt))
}

func adjustdefers(gp *g, adjinfo *adjustinfo) {
	// Adjust defer argument blocks the same way we adjust active stack frames.
	tracebackdefers(gp, adjustframe, noescape(unsafe.Pointer(adjinfo)))

	// Adjust pointers in the Defer structs.
	// Defer structs themselves are never on the stack.
	for d := gp._defer; d != nil; d = d.link {
		adjustpointer(adjinfo, unsafe.Pointer(&d.fn))
		adjustpointer(adjinfo, unsafe.Pointer(&d.sp))
		adjustpointer(adjinfo, unsafe.Pointer(&d._panic))
	}
}

func adjustpanics(gp *g, adjinfo *adjustinfo) {
	// Panics are on stack and already adjusted.
	// Update pointer to head of list in G.
	adjustpointer(adjinfo, unsafe.Pointer(&gp._panic))
}

func adjustsudogs(gp *g, adjinfo *adjustinfo) {
	// the data elements pointed to by a SudoG structure
	// might be in the stack.
	for s := gp.waiting; s != nil; s = s.waitlink {
		adjustpointer(adjinfo, unsafe.Pointer(&s.elem))
		adjustpointer(adjinfo, unsafe.Pointer(&s.selectdone))
	}
}

func adjuststkbar(gp *g, adjinfo *adjustinfo) {
	for i := int(gp.stkbarPos); i < len(gp.stkbar); i++ {
		adjustpointer(adjinfo, unsafe.Pointer(&gp.stkbar[i].savedLRPtr))
	}
}

func fillstack(stk stack, b byte) {
	for p := stk.lo; p < stk.hi; p++ {
		*(*byte)(unsafe.Pointer(p)) = b
	}
}

// Copies gp's stack to a new stack of a different size.
// Caller must have changed gp status to Gcopystack.
func copystack(gp *g, newsize uintptr) {
	if gp.syscallsp != 0 {
		throw("stack growth not allowed in system call")
	}
	old := gp.stack
	if old.lo == 0 {
		throw("nil stackbase")
	}
	used := old.hi - gp.sched.sp

	// allocate new stack
	new, newstkbar := stackalloc(uint32(newsize))
	if stackPoisonCopy != 0 {
		fillstack(new, 0xfd)
	}
	if stackDebug >= 1 {
		print("copystack gp=", gp, " [", hex(old.lo), " ", hex(old.hi-used), " ", hex(old.hi), "]/", gp.stackAlloc, " -> [", hex(new.lo), " ", hex(new.hi-used), " ", hex(new.hi), "]/", newsize, "\n")
	}

	// Disallow sigprof scans of this stack and block if there's
	// one in progress.
	gcLockStackBarriers(gp)

	// adjust pointers in the to-be-copied frames
	var adjinfo adjustinfo
	adjinfo.old = old
	adjinfo.delta = new.hi - old.hi
	gentraceback(^uintptr(0), ^uintptr(0), 0, gp, 0, nil, 0x7fffffff, adjustframe, noescape(unsafe.Pointer(&adjinfo)), 0)

	// adjust other miscellaneous things that have pointers into stacks.
	adjustctxt(gp, &adjinfo)
	adjustdefers(gp, &adjinfo)
	adjustpanics(gp, &adjinfo)
	adjustsudogs(gp, &adjinfo)
	adjuststkbar(gp, &adjinfo)

	// copy the stack to the new location
	if stackPoisonCopy != 0 {
		fillstack(new, 0xfb)
	}
	memmove(unsafe.Pointer(new.hi-used), unsafe.Pointer(old.hi-used), used)

	// copy old stack barriers to new stack barrier array
	newstkbar = newstkbar[:len(gp.stkbar)]
	copy(newstkbar, gp.stkbar)

	// Swap out old stack for new one
	gp.stack = new
	gp.stackguard0 = new.lo + _StackGuard // NOTE: might clobber a preempt request
	gp.sched.sp = new.hi - used
	oldsize := gp.stackAlloc
	gp.stackAlloc = newsize
	gp.stkbar = newstkbar
	gp.stktopsp += adjinfo.delta

	gcUnlockStackBarriers(gp)

	// free old stack
	if stackPoisonCopy != 0 {
		fillstack(old, 0xfc)
	}
	stackfree(old, oldsize)
}

// round x up to a power of 2.
func round2(x int32) int32 {
	s := uint(0)
	for 1<<s < x {
		s++
	}
	return 1 << s
}

// Called from runtime·morestack when more stack is needed.
// Allocate larger stack and relocate to new stack.
// Stack growth is multiplicative, for constant amortized cost.
//
// g->atomicstatus will be Grunning or Gscanrunning upon entry.
// If the GC is trying to stop this g then it will set preemptscan to true.
func newstack() {
	thisg := getg()
	// TODO: double check all gp. shouldn't be getg().
	if thisg.m.morebuf.g.ptr().stackguard0 == stackFork {
		throw("stack growth after fork")
	}
	if thisg.m.morebuf.g.ptr() != thisg.m.curg {
		print("runtime: newstack called from g=", hex(thisg.m.morebuf.g), "\n"+"\tm=", thisg.m, " m->curg=", thisg.m.curg, " m->g0=", thisg.m.g0, " m->gsignal=", thisg.m.gsignal, "\n")
		morebuf := thisg.m.morebuf
		traceback(morebuf.pc, morebuf.sp, morebuf.lr, morebuf.g.ptr())
		throw("runtime: wrong goroutine in newstack")
	}
	if thisg.m.curg.throwsplit {
		gp := thisg.m.curg
		// Update syscallsp, syscallpc in case traceback uses them.
		morebuf := thisg.m.morebuf
		gp.syscallsp = morebuf.sp
		gp.syscallpc = morebuf.pc
		print("runtime: newstack sp=", hex(gp.sched.sp), " stack=[", hex(gp.stack.lo), ", ", hex(gp.stack.hi), "]\n",
			"\tmorebuf={pc:", hex(morebuf.pc), " sp:", hex(morebuf.sp), " lr:", hex(morebuf.lr), "}\n",
			"\tsched={pc:", hex(gp.sched.pc), " sp:", hex(gp.sched.sp), " lr:", hex(gp.sched.lr), " ctxt:", gp.sched.ctxt, "}\n")

		traceback(morebuf.pc, morebuf.sp, morebuf.lr, gp)
		throw("runtime: stack split at bad time")
	}

	gp := thisg.m.curg
	morebuf := thisg.m.morebuf
	thisg.m.morebuf.pc = 0
	thisg.m.morebuf.lr = 0
	thisg.m.morebuf.sp = 0
	thisg.m.morebuf.g = 0
	rewindmorestack(&gp.sched)

	// NOTE: stackguard0 may change underfoot, if another thread
	// is about to try to preempt gp. Read it just once and use that same
	// value now and below.
	preempt := atomic.Loaduintptr(&gp.stackguard0) == stackPreempt

	// Be conservative about where we preempt.
	// We are interested in preempting user Go code, not runtime code.
	// If we're holding locks, mallocing, or preemption is disabled, don't
	// preempt.
	// This check is very early in newstack so that even the status change
	// from Grunning to Gwaiting and back doesn't happen in this case.
	// That status change by itself can be viewed as a small preemption,
	// because the GC might change Gwaiting to Gscanwaiting, and then
	// this goroutine has to wait for the GC to finish before continuing.
	// If the GC is in some way dependent on this goroutine (for example,
	// it needs a lock held by the goroutine), that small preemption turns
	// into a real deadlock.
	if preempt {
		if thisg.m.locks != 0 || thisg.m.mallocing != 0 || thisg.m.preemptoff != "" || thisg.m.p.ptr().status != _Prunning {
			// Let the goroutine keep running for now.
			// gp->preempt is set, so it will be preempted next time.
			gp.stackguard0 = gp.stack.lo + _StackGuard
			gogo(&gp.sched) // never return
		}
	}

	// The goroutine must be executing in order to call newstack,
	// so it must be Grunning (or Gscanrunning).
	casgstatus(gp, _Grunning, _Gwaiting)
	gp.waitreason = "stack growth"

	if gp.stack.lo == 0 {
		throw("missing stack in newstack")
	}
	sp := gp.sched.sp
	if sys.TheChar == '6' || sys.TheChar == '8' {
		// The call to morestack cost a word.
		sp -= sys.PtrSize
	}
	if stackDebug >= 1 || sp < gp.stack.lo {
		print("runtime: newstack sp=", hex(sp), " stack=[", hex(gp.stack.lo), ", ", hex(gp.stack.hi), "]\n",
			"\tmorebuf={pc:", hex(morebuf.pc), " sp:", hex(morebuf.sp), " lr:", hex(morebuf.lr), "}\n",
			"\tsched={pc:", hex(gp.sched.pc), " sp:", hex(gp.sched.sp), " lr:", hex(gp.sched.lr), " ctxt:", gp.sched.ctxt, "}\n")
	}
	if sp < gp.stack.lo {
		print("runtime: gp=", gp, ", gp->status=", hex(readgstatus(gp)), "\n ")
		print("runtime: split stack overflow: ", hex(sp), " < ", hex(gp.stack.lo), "\n")
		throw("runtime: split stack overflow")
	}

	if gp.sched.ctxt != nil {
		// morestack wrote sched.ctxt on its way in here,
		// without a write barrier. Run the write barrier now.
		// It is not possible to be preempted between then
		// and now, so it's okay.
		writebarrierptr_nostore((*uintptr)(unsafe.Pointer(&gp.sched.ctxt)), uintptr(gp.sched.ctxt))
	}

	if preempt {
		if gp == thisg.m.g0 {
			throw("runtime: preempt g0")
		}
		if thisg.m.p == 0 && thisg.m.locks == 0 {
			throw("runtime: g is running but p is not")
		}
		if gp.preemptscan {
			for !castogscanstatus(gp, _Gwaiting, _Gscanwaiting) {
				// Likely to be racing with the GC as
				// it sees a _Gwaiting and does the
				// stack scan. If so, gcworkdone will
				// be set and gcphasework will simply
				// return.
			}
			if !gp.gcscandone {
				scanstack(gp)
				gp.gcscandone = true
			}
			gp.preemptscan = false
			gp.preempt = false
			casfrom_Gscanstatus(gp, _Gscanwaiting, _Gwaiting)
			casgstatus(gp, _Gwaiting, _Grunning)
			gp.stackguard0 = gp.stack.lo + _StackGuard
			gogo(&gp.sched) // never return
		}

		// Act like goroutine called runtime.Gosched.
		casgstatus(gp, _Gwaiting, _Grunning)
		gopreempt_m(gp) // never return
	}

	// Allocate a bigger segment and move the stack.
	oldsize := int(gp.stackAlloc)
	newsize := oldsize * 2
	if uintptr(newsize) > maxstacksize {
		print("runtime: goroutine stack exceeds ", maxstacksize, "-byte limit\n")
		throw("stack overflow")
	}

	casgstatus(gp, _Gwaiting, _Gcopystack)

	// The concurrent GC will not scan the stack while we are doing the copy since
	// the gp is in a Gcopystack status.
	copystack(gp, uintptr(newsize))
	if stackDebug >= 1 {
		print("stack grow done\n")
	}
	casgstatus(gp, _Gcopystack, _Grunning)
	gogo(&gp.sched)
}

//go:nosplit
func nilfunc() {
	*(*uint8)(nil) = 0
}

// adjust Gobuf as if it executed a call to fn
// and then did an immediate gosave.
func gostartcallfn(gobuf *gobuf, fv *funcval) {
	var fn unsafe.Pointer
	if fv != nil {
		fn = unsafe.Pointer(fv.fn)
	} else {
		fn = unsafe.Pointer(funcPC(nilfunc))
	}
	gostartcall(gobuf, fn, unsafe.Pointer(fv))
}

// Maybe shrink the stack being used by gp.
// Called at garbage collection time.
func shrinkstack(gp *g) {
	if readgstatus(gp) == _Gdead {
		if gp.stack.lo != 0 {
			// Free whole stack - it will get reallocated
			// if G is used again.
			stackfree(gp.stack, gp.stackAlloc)
			gp.stack.lo = 0
			gp.stack.hi = 0
			gp.stkbar = nil
			gp.stkbarPos = 0
		}
		return
	}
	if gp.stack.lo == 0 {
		throw("missing stack in shrinkstack")
	}

	if debug.gcshrinkstackoff > 0 {
		return
	}

	oldsize := gp.stackAlloc
	newsize := oldsize / 2
	// Don't shrink the allocation below the minimum-sized stack
	// allocation.
	if newsize < _FixedStack {
		return
	}
	// Compute how much of the stack is currently in use and only
	// shrink the stack if gp is using less than a quarter of its
	// current stack. The currently used stack includes everything
	// down to the SP plus the stack guard space that ensures
	// there's room for nosplit functions.
	avail := gp.stack.hi - gp.stack.lo
	if used := gp.stack.hi - gp.sched.sp + _StackLimit; used >= avail/4 {
		return
	}

	// We can't copy the stack if we're in a syscall.
	// The syscall might have pointers into the stack.
	if gp.syscallsp != 0 {
		return
	}
	if sys.GoosWindows != 0 && gp.m != nil && gp.m.libcallsp != 0 {
		return
	}

	if stackDebug > 0 {
		print("shrinking stack ", oldsize, "->", newsize, "\n")
	}

	oldstatus := casgcopystack(gp)
	copystack(gp, newsize)
	casgstatus(gp, _Gcopystack, oldstatus)
}

// freeStackSpans frees unused stack spans at the end of GC.
func freeStackSpans() {
	lock(&stackpoolmu)

	// Scan stack pools for empty stack spans.
	for order := range stackpool {
		list := &stackpool[order]
		for s := list.first; s != nil; {
			next := s.next
			if s.ref == 0 {
				list.remove(s)
				s.freelist = 0
				mheap_.freeStack(s)
			}
			s = next
		}
	}

	unlock(&stackpoolmu)

	// Free large stack spans.
	lock(&stackLarge.lock)
	for i := range stackLarge.free {
		for s := stackLarge.free[i].first; s != nil; {
			next := s.next
			stackLarge.free[i].remove(s)
			mheap_.freeStack(s)
			s = next
		}
	}
	unlock(&stackLarge.lock)
}

//go:nosplit
func morestackc() {
	systemstack(func() {
		throw("attempt to execute C code on Go stack")
	})
}