This file is indexed.

/usr/share/go-1.6/src/runtime/slice.go is in golang-1.6-src 1.6.1-0ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package runtime

import (
	"unsafe"
)

type slice struct {
	array unsafe.Pointer
	len   int
	cap   int
}

// TODO: take uintptrs instead of int64s?
func makeslice(t *slicetype, len64, cap64 int64) slice {
	// NOTE: The len > MaxMem/elemsize check here is not strictly necessary,
	// but it produces a 'len out of range' error instead of a 'cap out of range' error
	// when someone does make([]T, bignumber). 'cap out of range' is true too,
	// but since the cap is only being supplied implicitly, saying len is clearer.
	// See issue 4085.
	len := int(len64)
	if len64 < 0 || int64(len) != len64 || t.elem.size > 0 && uintptr(len) > _MaxMem/uintptr(t.elem.size) {
		panic(errorString("makeslice: len out of range"))
	}
	cap := int(cap64)
	if cap < len || int64(cap) != cap64 || t.elem.size > 0 && uintptr(cap) > _MaxMem/uintptr(t.elem.size) {
		panic(errorString("makeslice: cap out of range"))
	}
	p := newarray(t.elem, uintptr(cap))
	return slice{p, len, cap}
}

// growslice_n is a variant of growslice that takes the number of new elements
// instead of the new minimum capacity.
// TODO(rsc): This is used by append(slice, slice...).
// The compiler should change that code to use growslice directly (issue #11419).
func growslice_n(t *slicetype, old slice, n int) slice {
	if n < 1 {
		panic(errorString("growslice: invalid n"))
	}
	return growslice(t, old, old.cap+n)
}

// growslice handles slice growth during append.
// It is passed the slice type, the old slice, and the desired new minimum capacity,
// and it returns a new slice with at least that capacity, with the old data
// copied into it.
func growslice(t *slicetype, old slice, cap int) slice {
	if cap < old.cap || t.elem.size > 0 && uintptr(cap) > _MaxMem/uintptr(t.elem.size) {
		panic(errorString("growslice: cap out of range"))
	}

	if raceenabled {
		callerpc := getcallerpc(unsafe.Pointer(&t))
		racereadrangepc(old.array, uintptr(old.len*int(t.elem.size)), callerpc, funcPC(growslice))
	}
	if msanenabled {
		msanread(old.array, uintptr(old.len*int(t.elem.size)))
	}

	et := t.elem
	if et.size == 0 {
		// append should not create a slice with nil pointer but non-zero len.
		// We assume that append doesn't need to preserve old.array in this case.
		return slice{unsafe.Pointer(&zerobase), old.len, cap}
	}

	newcap := old.cap
	if newcap+newcap < cap {
		newcap = cap
	} else {
		for {
			if old.len < 1024 {
				newcap += newcap
			} else {
				newcap += newcap / 4
			}
			if newcap >= cap {
				break
			}
		}
	}

	if uintptr(newcap) >= _MaxMem/uintptr(et.size) {
		panic(errorString("growslice: cap out of range"))
	}
	lenmem := uintptr(old.len) * uintptr(et.size)
	capmem := roundupsize(uintptr(newcap) * uintptr(et.size))
	newcap = int(capmem / uintptr(et.size))
	var p unsafe.Pointer
	if et.kind&kindNoPointers != 0 {
		p = rawmem(capmem)
		memmove(p, old.array, lenmem)
		memclr(add(p, lenmem), capmem-lenmem)
	} else {
		// Note: can't use rawmem (which avoids zeroing of memory), because then GC can scan uninitialized memory.
		p = newarray(et, uintptr(newcap))
		if !writeBarrier.enabled {
			memmove(p, old.array, lenmem)
		} else {
			for i := uintptr(0); i < lenmem; i += et.size {
				typedmemmove(et, add(p, i), add(old.array, i))
			}
		}
	}

	return slice{p, old.len, newcap}
}

func slicecopy(to, fm slice, width uintptr) int {
	if fm.len == 0 || to.len == 0 {
		return 0
	}

	n := fm.len
	if to.len < n {
		n = to.len
	}

	if width == 0 {
		return n
	}

	if raceenabled {
		callerpc := getcallerpc(unsafe.Pointer(&to))
		pc := funcPC(slicecopy)
		racewriterangepc(to.array, uintptr(n*int(width)), callerpc, pc)
		racereadrangepc(fm.array, uintptr(n*int(width)), callerpc, pc)
	}
	if msanenabled {
		msanwrite(to.array, uintptr(n*int(width)))
		msanread(fm.array, uintptr(n*int(width)))
	}

	size := uintptr(n) * width
	if size == 1 { // common case worth about 2x to do here
		// TODO: is this still worth it with new memmove impl?
		*(*byte)(to.array) = *(*byte)(fm.array) // known to be a byte pointer
	} else {
		memmove(to.array, fm.array, size)
	}
	return int(n)
}

func slicestringcopy(to []byte, fm string) int {
	if len(fm) == 0 || len(to) == 0 {
		return 0
	}

	n := len(fm)
	if len(to) < n {
		n = len(to)
	}

	if raceenabled {
		callerpc := getcallerpc(unsafe.Pointer(&to))
		pc := funcPC(slicestringcopy)
		racewriterangepc(unsafe.Pointer(&to[0]), uintptr(n), callerpc, pc)
	}
	if msanenabled {
		msanwrite(unsafe.Pointer(&to[0]), uintptr(n))
	}

	memmove(unsafe.Pointer(&to[0]), unsafe.Pointer(stringStructOf(&fm).str), uintptr(n))
	return n
}