This file is indexed.

/usr/share/go-1.6/src/runtime/runtime2.go is in golang-1.6-src 1.6.1-0ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package runtime

import (
	"runtime/internal/atomic"
	"runtime/internal/sys"
	"unsafe"
)

/*
 * defined constants
 */
const (
	// G status
	//
	// If you add to this list, add to the list
	// of "okay during garbage collection" status
	// in mgcmark.go too.
	_Gidle            = iota // 0
	_Grunnable               // 1 runnable and on a run queue
	_Grunning                // 2
	_Gsyscall                // 3
	_Gwaiting                // 4
	_Gmoribund_unused        // 5 currently unused, but hardcoded in gdb scripts
	_Gdead                   // 6
	_Genqueue                // 7 Only the Gscanenqueue is used.
	_Gcopystack              // 8 in this state when newstack is moving the stack
	// the following encode that the GC is scanning the stack and what to do when it is done
	_Gscan = 0x1000 // atomicstatus&~Gscan = the non-scan state,
	// _Gscanidle =     _Gscan + _Gidle,      // Not used. Gidle only used with newly malloced gs
	_Gscanrunnable = _Gscan + _Grunnable //  0x1001 When scanning completes make Grunnable (it is already on run queue)
	_Gscanrunning  = _Gscan + _Grunning  //  0x1002 Used to tell preemption newstack routine to scan preempted stack.
	_Gscansyscall  = _Gscan + _Gsyscall  //  0x1003 When scanning completes make it Gsyscall
	_Gscanwaiting  = _Gscan + _Gwaiting  //  0x1004 When scanning completes make it Gwaiting
	// _Gscanmoribund_unused,               //  not possible
	// _Gscandead,                          //  not possible
	_Gscanenqueue = _Gscan + _Genqueue //  When scanning completes make it Grunnable and put on runqueue
)

const (
	// P status
	_Pidle    = iota
	_Prunning // Only this P is allowed to change from _Prunning.
	_Psyscall
	_Pgcstop
	_Pdead
)

type mutex struct {
	// Futex-based impl treats it as uint32 key,
	// while sema-based impl as M* waitm.
	// Used to be a union, but unions break precise GC.
	key uintptr
}

type note struct {
	// Futex-based impl treats it as uint32 key,
	// while sema-based impl as M* waitm.
	// Used to be a union, but unions break precise GC.
	key uintptr
}

type funcval struct {
	fn uintptr
	// variable-size, fn-specific data here
}

type iface struct {
	tab  *itab
	data unsafe.Pointer
}

type eface struct {
	_type *_type
	data  unsafe.Pointer
}

func efaceOf(ep *interface{}) *eface {
	return (*eface)(unsafe.Pointer(ep))
}

// The guintptr, muintptr, and puintptr are all used to bypass write barriers.
// It is particularly important to avoid write barriers when the current P has
// been released, because the GC thinks the world is stopped, and an
// unexpected write barrier would not be synchronized with the GC,
// which can lead to a half-executed write barrier that has marked the object
// but not queued it. If the GC skips the object and completes before the
// queuing can occur, it will incorrectly free the object.
//
// We tried using special assignment functions invoked only when not
// holding a running P, but then some updates to a particular memory
// word went through write barriers and some did not. This breaks the
// write barrier shadow checking mode, and it is also scary: better to have
// a word that is completely ignored by the GC than to have one for which
// only a few updates are ignored.
//
// Gs, Ms, and Ps are always reachable via true pointers in the
// allgs, allm, and allp lists or (during allocation before they reach those lists)
// from stack variables.

// A guintptr holds a goroutine pointer, but typed as a uintptr
// to bypass write barriers. It is used in the Gobuf goroutine state
// and in scheduling lists that are manipulated without a P.
//
// The Gobuf.g goroutine pointer is almost always updated by assembly code.
// In one of the few places it is updated by Go code - func save - it must be
// treated as a uintptr to avoid a write barrier being emitted at a bad time.
// Instead of figuring out how to emit the write barriers missing in the
// assembly manipulation, we change the type of the field to uintptr,
// so that it does not require write barriers at all.
//
// Goroutine structs are published in the allg list and never freed.
// That will keep the goroutine structs from being collected.
// There is never a time that Gobuf.g's contain the only references
// to a goroutine: the publishing of the goroutine in allg comes first.
// Goroutine pointers are also kept in non-GC-visible places like TLS,
// so I can't see them ever moving. If we did want to start moving data
// in the GC, we'd need to allocate the goroutine structs from an
// alternate arena. Using guintptr doesn't make that problem any worse.
type guintptr uintptr

//go:nosplit
func (gp guintptr) ptr() *g { return (*g)(unsafe.Pointer(gp)) }

//go:nosplit
func (gp *guintptr) set(g *g) { *gp = guintptr(unsafe.Pointer(g)) }

//go:nosplit
func (gp *guintptr) cas(old, new guintptr) bool {
	return atomic.Casuintptr((*uintptr)(unsafe.Pointer(gp)), uintptr(old), uintptr(new))
}

type puintptr uintptr

//go:nosplit
func (pp puintptr) ptr() *p { return (*p)(unsafe.Pointer(pp)) }

//go:nosplit
func (pp *puintptr) set(p *p) { *pp = puintptr(unsafe.Pointer(p)) }

type muintptr uintptr

//go:nosplit
func (mp muintptr) ptr() *m { return (*m)(unsafe.Pointer(mp)) }

//go:nosplit
func (mp *muintptr) set(m *m) { *mp = muintptr(unsafe.Pointer(m)) }

type gobuf struct {
	// The offsets of sp, pc, and g are known to (hard-coded in) libmach.
	sp   uintptr
	pc   uintptr
	g    guintptr
	ctxt unsafe.Pointer // this has to be a pointer so that gc scans it
	ret  sys.Uintreg
	lr   uintptr
	bp   uintptr // for GOEXPERIMENT=framepointer
}

// Known to compiler.
// Changes here must also be made in src/cmd/internal/gc/select.go's selecttype.
type sudog struct {
	g           *g
	selectdone  *uint32
	next        *sudog
	prev        *sudog
	elem        unsafe.Pointer // data element
	releasetime int64
	nrelease    int32  // -1 for acquire
	waitlink    *sudog // g.waiting list
}

type gcstats struct {
	// the struct must consist of only uint64's,
	// because it is casted to uint64[].
	nhandoff    uint64
	nhandoffcnt uint64
	nprocyield  uint64
	nosyield    uint64
	nsleep      uint64
}

type libcall struct {
	fn   uintptr
	n    uintptr // number of parameters
	args uintptr // parameters
	r1   uintptr // return values
	r2   uintptr
	err  uintptr // error number
}

// describes how to handle callback
type wincallbackcontext struct {
	gobody       unsafe.Pointer // go function to call
	argsize      uintptr        // callback arguments size (in bytes)
	restorestack uintptr        // adjust stack on return by (in bytes) (386 only)
	cleanstack   bool
}

// Stack describes a Go execution stack.
// The bounds of the stack are exactly [lo, hi),
// with no implicit data structures on either side.
type stack struct {
	lo uintptr
	hi uintptr
}

// stkbar records the state of a G's stack barrier.
type stkbar struct {
	savedLRPtr uintptr // location overwritten by stack barrier PC
	savedLRVal uintptr // value overwritten at savedLRPtr
}

type g struct {
	// Stack parameters.
	// stack describes the actual stack memory: [stack.lo, stack.hi).
	// stackguard0 is the stack pointer compared in the Go stack growth prologue.
	// It is stack.lo+StackGuard normally, but can be StackPreempt to trigger a preemption.
	// stackguard1 is the stack pointer compared in the C stack growth prologue.
	// It is stack.lo+StackGuard on g0 and gsignal stacks.
	// It is ~0 on other goroutine stacks, to trigger a call to morestackc (and crash).
	stack       stack   // offset known to runtime/cgo
	stackguard0 uintptr // offset known to liblink
	stackguard1 uintptr // offset known to liblink

	_panic         *_panic // innermost panic - offset known to liblink
	_defer         *_defer // innermost defer
	m              *m      // current m; offset known to arm liblink
	stackAlloc     uintptr // stack allocation is [stack.lo,stack.lo+stackAlloc)
	sched          gobuf
	syscallsp      uintptr        // if status==Gsyscall, syscallsp = sched.sp to use during gc
	syscallpc      uintptr        // if status==Gsyscall, syscallpc = sched.pc to use during gc
	stkbar         []stkbar       // stack barriers, from low to high (see top of mstkbar.go)
	stkbarPos      uintptr        // index of lowest stack barrier not hit
	stktopsp       uintptr        // expected sp at top of stack, to check in traceback
	param          unsafe.Pointer // passed parameter on wakeup
	atomicstatus   uint32
	stackLock      uint32 // sigprof/scang lock; TODO: fold in to atomicstatus
	goid           int64
	waitsince      int64  // approx time when the g become blocked
	waitreason     string // if status==Gwaiting
	schedlink      guintptr
	preempt        bool   // preemption signal, duplicates stackguard0 = stackpreempt
	paniconfault   bool   // panic (instead of crash) on unexpected fault address
	preemptscan    bool   // preempted g does scan for gc
	gcscandone     bool   // g has scanned stack; protected by _Gscan bit in status
	gcscanvalid    bool   // false at start of gc cycle, true if G has not run since last scan
	throwsplit     bool   // must not split stack
	raceignore     int8   // ignore race detection events
	sysblocktraced bool   // StartTrace has emitted EvGoInSyscall about this goroutine
	sysexitticks   int64  // cputicks when syscall has returned (for tracing)
	sysexitseq     uint64 // trace seq when syscall has returned (for tracing)
	lockedm        *m
	sig            uint32
	writebuf       []byte
	sigcode0       uintptr
	sigcode1       uintptr
	sigpc          uintptr
	gopc           uintptr // pc of go statement that created this goroutine
	startpc        uintptr // pc of goroutine function
	racectx        uintptr
	waiting        *sudog // sudog structures this g is waiting on (that have a valid elem ptr)

	// Per-G gcController state

	// gcAssistBytes is this G's GC assist credit in terms of
	// bytes allocated. If this is positive, then the G has credit
	// to allocate gcAssistBytes bytes without assisting. If this
	// is negative, then the G must correct this by performing
	// scan work. We track this in bytes to make it fast to update
	// and check for debt in the malloc hot path. The assist ratio
	// determines how this corresponds to scan work debt.
	gcAssistBytes int64
}

type m struct {
	g0      *g     // goroutine with scheduling stack
	morebuf gobuf  // gobuf arg to morestack
	divmod  uint32 // div/mod denominator for arm - known to liblink

	// Fields not known to debuggers.
	procid        uint64     // for debuggers, but offset not hard-coded
	gsignal       *g         // signal-handling g
	sigmask       sigset     // storage for saved signal mask
	tls           [6]uintptr // thread-local storage (for x86 extern register)
	mstartfn      func()
	curg          *g       // current running goroutine
	caughtsig     guintptr // goroutine running during fatal signal
	p             puintptr // attached p for executing go code (nil if not executing go code)
	nextp         puintptr
	id            int32
	mallocing     int32
	throwing      int32
	preemptoff    string // if != "", keep curg running on this m
	locks         int32
	softfloat     int32
	dying         int32
	profilehz     int32
	helpgc        int32
	spinning      bool // m is out of work and is actively looking for work
	blocked       bool // m is blocked on a note
	inwb          bool // m is executing a write barrier
	newSigstack   bool // minit on C thread called sigaltstack
	printlock     int8
	fastrand      uint32
	ncgocall      uint64 // number of cgo calls in total
	ncgo          int32  // number of cgo calls currently in progress
	park          note
	alllink       *m // on allm
	schedlink     muintptr
	machport      uint32 // return address for mach ipc (os x)
	mcache        *mcache
	lockedg       *g
	createstack   [32]uintptr // stack that created this thread.
	freglo        [16]uint32  // d[i] lsb and f[i]
	freghi        [16]uint32  // d[i] msb and f[i+16]
	fflag         uint32      // floating point compare flags
	locked        uint32      // tracking for lockosthread
	nextwaitm     uintptr     // next m waiting for lock
	gcstats       gcstats
	needextram    bool
	traceback     uint8
	waitunlockf   unsafe.Pointer // todo go func(*g, unsafe.pointer) bool
	waitlock      unsafe.Pointer
	waittraceev   byte
	waittraceskip int
	startingtrace bool
	syscalltick   uint32
	//#ifdef GOOS_windows
	thread uintptr // thread handle
	// these are here because they are too large to be on the stack
	// of low-level NOSPLIT functions.
	libcall   libcall
	libcallpc uintptr // for cpu profiler
	libcallsp uintptr
	libcallg  guintptr
	syscall   libcall // stores syscall parameters on windows
	//#endif
	mOS
}

type p struct {
	lock mutex

	id          int32
	status      uint32 // one of pidle/prunning/...
	link        puintptr
	schedtick   uint32   // incremented on every scheduler call
	syscalltick uint32   // incremented on every system call
	m           muintptr // back-link to associated m (nil if idle)
	mcache      *mcache

	deferpool    [5][]*_defer // pool of available defer structs of different sizes (see panic.go)
	deferpoolbuf [5][32]*_defer

	// Cache of goroutine ids, amortizes accesses to runtime·sched.goidgen.
	goidcache    uint64
	goidcacheend uint64

	// Queue of runnable goroutines. Accessed without lock.
	runqhead uint32
	runqtail uint32
	runq     [256]guintptr
	// runnext, if non-nil, is a runnable G that was ready'd by
	// the current G and should be run next instead of what's in
	// runq if there's time remaining in the running G's time
	// slice. It will inherit the time left in the current time
	// slice. If a set of goroutines is locked in a
	// communicate-and-wait pattern, this schedules that set as a
	// unit and eliminates the (potentially large) scheduling
	// latency that otherwise arises from adding the ready'd
	// goroutines to the end of the run queue.
	runnext guintptr

	// Available G's (status == Gdead)
	gfree    *g
	gfreecnt int32

	sudogcache []*sudog
	sudogbuf   [128]*sudog

	tracebuf traceBufPtr

	palloc persistentAlloc // per-P to avoid mutex

	// Per-P GC state
	gcAssistTime     int64 // Nanoseconds in assistAlloc
	gcBgMarkWorker   guintptr
	gcMarkWorkerMode gcMarkWorkerMode

	// gcw is this P's GC work buffer cache. The work buffer is
	// filled by write barriers, drained by mutator assists, and
	// disposed on certain GC state transitions.
	gcw gcWork

	runSafePointFn uint32 // if 1, run sched.safePointFn at next safe point

	pad [64]byte
}

const (
	// The max value of GOMAXPROCS.
	// There are no fundamental restrictions on the value.
	_MaxGomaxprocs = 1 << 8
)

type schedt struct {
	// accessed atomically. keep at top to ensure alignment on 32-bit systems.
	goidgen  uint64
	lastpoll uint64

	lock mutex

	midle        muintptr // idle m's waiting for work
	nmidle       int32    // number of idle m's waiting for work
	nmidlelocked int32    // number of locked m's waiting for work
	mcount       int32    // number of m's that have been created
	maxmcount    int32    // maximum number of m's allowed (or die)

	ngsys uint32 // number of system goroutines; updated atomically

	pidle      puintptr // idle p's
	npidle     uint32
	nmspinning uint32 // See "Worker thread parking/unparking" comment in proc.go.

	// Global runnable queue.
	runqhead guintptr
	runqtail guintptr
	runqsize int32

	// Global cache of dead G's.
	gflock mutex
	gfree  *g
	ngfree int32

	// Central cache of sudog structs.
	sudoglock  mutex
	sudogcache *sudog

	// Central pool of available defer structs of different sizes.
	deferlock mutex
	deferpool [5]*_defer

	gcwaiting  uint32 // gc is waiting to run
	stopwait   int32
	stopnote   note
	sysmonwait uint32
	sysmonnote note

	// safepointFn should be called on each P at the next GC
	// safepoint if p.runSafePointFn is set.
	safePointFn   func(*p)
	safePointWait int32
	safePointNote note

	profilehz int32 // cpu profiling rate

	procresizetime int64 // nanotime() of last change to gomaxprocs
	totaltime      int64 // ∫gomaxprocs dt up to procresizetime
}

// The m->locked word holds two pieces of state counting active calls to LockOSThread/lockOSThread.
// The low bit (LockExternal) is a boolean reporting whether any LockOSThread call is active.
// External locks are not recursive; a second lock is silently ignored.
// The upper bits of m->locked record the nesting depth of calls to lockOSThread
// (counting up by LockInternal), popped by unlockOSThread (counting down by LockInternal).
// Internal locks can be recursive. For instance, a lock for cgo can occur while the main
// goroutine is holding the lock during the initialization phase.
const (
	_LockExternal = 1
	_LockInternal = 2
)

type sigtabtt struct {
	flags int32
	name  *int8
}

const (
	_SigNotify   = 1 << iota // let signal.Notify have signal, even if from kernel
	_SigKill                 // if signal.Notify doesn't take it, exit quietly
	_SigThrow                // if signal.Notify doesn't take it, exit loudly
	_SigPanic                // if the signal is from the kernel, panic
	_SigDefault              // if the signal isn't explicitly requested, don't monitor it
	_SigHandling             // our signal handler is registered
	_SigGoExit               // cause all runtime procs to exit (only used on Plan 9).
	_SigSetStack             // add SA_ONSTACK to libc handler
	_SigUnblock              // unblocked in minit
)

// Layout of in-memory per-function information prepared by linker
// See https://golang.org/s/go12symtab.
// Keep in sync with linker
// and with package debug/gosym and with symtab.go in package runtime.
type _func struct {
	entry   uintptr // start pc
	nameoff int32   // function name

	args int32 // in/out args size
	_    int32 // previously legacy frame size; kept for layout compatibility

	pcsp      int32
	pcfile    int32
	pcln      int32
	npcdata   int32
	nfuncdata int32
}

// layout of Itab known to compilers
// allocated in non-garbage-collected memory
type itab struct {
	inter  *interfacetype
	_type  *_type
	link   *itab
	bad    int32
	unused int32
	fun    [1]uintptr // variable sized
}

// Lock-free stack node.
// // Also known to export_test.go.
type lfnode struct {
	next    uint64
	pushcnt uintptr
}

type forcegcstate struct {
	lock mutex
	g    *g
	idle uint32
}

/*
 * known to compiler
 */
const (
	_Structrnd = sys.RegSize
)

// startup_random_data holds random bytes initialized at startup.  These come from
// the ELF AT_RANDOM auxiliary vector (vdso_linux_amd64.go or os_linux_386.go).
var startupRandomData []byte

// extendRandom extends the random numbers in r[:n] to the whole slice r.
// Treats n<0 as n==0.
func extendRandom(r []byte, n int) {
	if n < 0 {
		n = 0
	}
	for n < len(r) {
		// Extend random bits using hash function & time seed
		w := n
		if w > 16 {
			w = 16
		}
		h := memhash(unsafe.Pointer(&r[n-w]), uintptr(nanotime()), uintptr(w))
		for i := 0; i < sys.PtrSize && n < len(r); i++ {
			r[n] = byte(h)
			n++
			h >>= 8
		}
	}
}

/*
 * deferred subroutine calls
 */
type _defer struct {
	siz     int32
	started bool
	sp      uintptr // sp at time of defer
	pc      uintptr
	fn      *funcval
	_panic  *_panic // panic that is running defer
	link    *_defer
}

/*
 * panics
 */
type _panic struct {
	argp      unsafe.Pointer // pointer to arguments of deferred call run during panic; cannot move - known to liblink
	arg       interface{}    // argument to panic
	link      *_panic        // link to earlier panic
	recovered bool           // whether this panic is over
	aborted   bool           // the panic was aborted
}

/*
 * stack traces
 */

type stkframe struct {
	fn       *_func     // function being run
	pc       uintptr    // program counter within fn
	continpc uintptr    // program counter where execution can continue, or 0 if not
	lr       uintptr    // program counter at caller aka link register
	sp       uintptr    // stack pointer at pc
	fp       uintptr    // stack pointer at caller aka frame pointer
	varp     uintptr    // top of local variables
	argp     uintptr    // pointer to function arguments
	arglen   uintptr    // number of bytes at argp
	argmap   *bitvector // force use of this argmap
}

const (
	_TraceRuntimeFrames = 1 << iota // include frames for internal runtime functions.
	_TraceTrap                      // the initial PC, SP are from a trap, not a return PC from a call
	_TraceJumpStack                 // if traceback is on a systemstack, resume trace at g that called into it
)

const (
	// The maximum number of frames we print for a traceback
	_TracebackMaxFrames = 100
)

var (
	emptystring string
	allglen     uintptr
	allm        *m
	allp        [_MaxGomaxprocs + 1]*p
	gomaxprocs  int32
	panicking   uint32
	ncpu        int32
	forcegc     forcegcstate
	sched       schedt
	newprocs    int32

	// Information about what cpu features are available.
	// Set on startup in asm_{x86,amd64}.s.
	cpuid_ecx         uint32
	cpuid_edx         uint32
	lfenceBeforeRdtsc bool
	support_avx       bool
	support_avx2      bool

	goarm uint8 // set by cmd/link on arm systems
)

// Set by the linker so the runtime can determine the buildmode.
var (
	islibrary bool // -buildmode=c-shared
	isarchive bool // -buildmode=c-archive
)

/*
 * mutual exclusion locks.  in the uncontended case,
 * as fast as spin locks (just a few user-level instructions),
 * but on the contention path they sleep in the kernel.
 * a zeroed Mutex is unlocked (no need to initialize each lock).
 */

/*
 * sleep and wakeup on one-time events.
 * before any calls to notesleep or notewakeup,
 * must call noteclear to initialize the Note.
 * then, exactly one thread can call notesleep
 * and exactly one thread can call notewakeup (once).
 * once notewakeup has been called, the notesleep
 * will return.  future notesleep will return immediately.
 * subsequent noteclear must be called only after
 * previous notesleep has returned, e.g. it's disallowed
 * to call noteclear straight after notewakeup.
 *
 * notetsleep is like notesleep but wakes up after
 * a given number of nanoseconds even if the event
 * has not yet happened.  if a goroutine uses notetsleep to
 * wake up early, it must wait to call noteclear until it
 * can be sure that no other goroutine is calling
 * notewakeup.
 *
 * notesleep/notetsleep are generally called on g0,
 * notetsleepg is similar to notetsleep but is called on user g.
 */
// bool	runtime·notetsleep(Note*, int64);  // false - timeout
// bool	runtime·notetsleepg(Note*, int64);  // false - timeout

/*
 * Lock-free stack.
 * Initialize uint64 head to 0, compare with 0 to test for emptiness.
 * The stack does not keep pointers to nodes,
 * so they can be garbage collected if there are no other pointers to nodes.
 */

// for mmap, we only pass the lower 32 bits of file offset to the
// assembly routine; the higher bits (if required), should be provided
// by the assembly routine as 0.