/usr/share/go-1.6/src/runtime/proc.go is in golang-1.6-src 1.6.1-0ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 | // Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package runtime
import (
"runtime/internal/atomic"
"runtime/internal/sys"
"unsafe"
)
var buildVersion = sys.TheVersion
// Goroutine scheduler
// The scheduler's job is to distribute ready-to-run goroutines over worker threads.
//
// The main concepts are:
// G - goroutine.
// M - worker thread, or machine.
// P - processor, a resource that is required to execute Go code.
// M must have an associated P to execute Go code, however it can be
// blocked or in a syscall w/o an associated P.
//
// Design doc at https://golang.org/s/go11sched.
// Worker thread parking/unparking.
// We need to balance between keeping enough running worker threads to utilize
// available hardware parallelism and parking excessive running worker threads
// to conserve CPU resources and power. This is not simple for two reasons:
// (1) scheduler state is intentionally distributed (in particular, per-P work
// queues), so it is not possible to compute global predicates on fast paths;
// (2) for optimal thread management we would need to know the future (don't park
// a worker thread when a new goroutine will be readied in near future).
//
// Three rejected approaches that would work badly:
// 1. Centralize all scheduler state (would inhibit scalability).
// 2. Direct goroutine handoff. That is, when we ready a new goroutine and there
// is a spare P, unpark a thread and handoff it the thread and the goroutine.
// This would lead to thread state thrashing, as the thread that readied the
// goroutine can be out of work the very next moment, we will need to park it.
// Also, it would destroy locality of computation as we want to preserve
// dependent goroutines on the same thread; and introduce additional latency.
// 3. Unpark an additional thread whenever we ready a goroutine and there is an
// idle P, but don't do handoff. This would lead to excessive thread parking/
// unparking as the additional threads will instantly park without discovering
// any work to do.
//
// The current approach:
// We unpark an additional thread when we ready a goroutine if (1) there is an
// idle P and there are no "spinning" worker threads. A worker thread is considered
// spinning if it is out of local work and did not find work in global run queue/
// netpoller; the spinning state is denoted in m.spinning and in sched.nmspinning.
// Threads unparked this way are also considered spinning; we don't do goroutine
// handoff so such threads are out of work initially. Spinning threads do some
// spinning looking for work in per-P run queues before parking. If a spinning
// thread finds work it takes itself out of the spinning state and proceeds to
// execution. If it does not find work it takes itself out of the spinning state
// and then parks.
// If there is at least one spinning thread (sched.nmspinning>1), we don't unpark
// new threads when readying goroutines. To compensate for that, if the last spinning
// thread finds work and stops spinning, it must unpark a new spinning thread.
// This approach smooths out unjustified spikes of thread unparking,
// but at the same time guarantees eventual maximal CPU parallelism utilization.
//
// The main implementation complication is that we need to be very careful during
// spinning->non-spinning thread transition. This transition can race with submission
// of a new goroutine, and either one part or another needs to unpark another worker
// thread. If they both fail to do that, we can end up with semi-persistent CPU
// underutilization. The general pattern for goroutine readying is: submit a goroutine
// to local work queue, #StoreLoad-style memory barrier, check sched.nmspinning.
// The general pattern for spinning->non-spinning transition is: decrement nmspinning,
// #StoreLoad-style memory barrier, check all per-P work queues for new work.
// Note that all this complexity does not apply to global run queue as we are not
// sloppy about thread unparking when submitting to global queue. Also see comments
// for nmspinning manipulation.
var (
m0 m
g0 g
)
//go:linkname runtime_init runtime.init
func runtime_init()
//go:linkname main_init main.init
func main_init()
// main_init_done is a signal used by cgocallbackg that initialization
// has been completed. It is made before _cgo_notify_runtime_init_done,
// so all cgo calls can rely on it existing. When main_init is complete,
// it is closed, meaning cgocallbackg can reliably receive from it.
var main_init_done chan bool
//go:linkname main_main main.main
func main_main()
// runtimeInitTime is the nanotime() at which the runtime started.
var runtimeInitTime int64
// Value to use for signal mask for newly created M's.
var initSigmask sigset
// The main goroutine.
func main() {
g := getg()
// Racectx of m0->g0 is used only as the parent of the main goroutine.
// It must not be used for anything else.
g.m.g0.racectx = 0
// Max stack size is 1 GB on 64-bit, 250 MB on 32-bit.
// Using decimal instead of binary GB and MB because
// they look nicer in the stack overflow failure message.
if sys.PtrSize == 8 {
maxstacksize = 1000000000
} else {
maxstacksize = 250000000
}
// Record when the world started.
runtimeInitTime = nanotime()
systemstack(func() {
newm(sysmon, nil)
})
// Lock the main goroutine onto this, the main OS thread,
// during initialization. Most programs won't care, but a few
// do require certain calls to be made by the main thread.
// Those can arrange for main.main to run in the main thread
// by calling runtime.LockOSThread during initialization
// to preserve the lock.
lockOSThread()
if g.m != &m0 {
throw("runtime.main not on m0")
}
runtime_init() // must be before defer
// Defer unlock so that runtime.Goexit during init does the unlock too.
needUnlock := true
defer func() {
if needUnlock {
unlockOSThread()
}
}()
gcenable()
main_init_done = make(chan bool)
if iscgo {
if _cgo_thread_start == nil {
throw("_cgo_thread_start missing")
}
if _cgo_malloc == nil {
throw("_cgo_malloc missing")
}
if _cgo_free == nil {
throw("_cgo_free missing")
}
if GOOS != "windows" {
if _cgo_setenv == nil {
throw("_cgo_setenv missing")
}
if _cgo_unsetenv == nil {
throw("_cgo_unsetenv missing")
}
}
if _cgo_notify_runtime_init_done == nil {
throw("_cgo_notify_runtime_init_done missing")
}
cgocall(_cgo_notify_runtime_init_done, nil)
}
main_init()
close(main_init_done)
needUnlock = false
unlockOSThread()
if isarchive || islibrary {
// A program compiled with -buildmode=c-archive or c-shared
// has a main, but it is not executed.
return
}
main_main()
if raceenabled {
racefini()
}
// Make racy client program work: if panicking on
// another goroutine at the same time as main returns,
// let the other goroutine finish printing the panic trace.
// Once it does, it will exit. See issue 3934.
if panicking != 0 {
gopark(nil, nil, "panicwait", traceEvGoStop, 1)
}
exit(0)
for {
var x *int32
*x = 0
}
}
// os_beforeExit is called from os.Exit(0).
//go:linkname os_beforeExit os.runtime_beforeExit
func os_beforeExit() {
if raceenabled {
racefini()
}
}
// start forcegc helper goroutine
func init() {
go forcegchelper()
}
func forcegchelper() {
forcegc.g = getg()
for {
lock(&forcegc.lock)
if forcegc.idle != 0 {
throw("forcegc: phase error")
}
atomic.Store(&forcegc.idle, 1)
goparkunlock(&forcegc.lock, "force gc (idle)", traceEvGoBlock, 1)
// this goroutine is explicitly resumed by sysmon
if debug.gctrace > 0 {
println("GC forced")
}
gcStart(gcBackgroundMode, true)
}
}
//go:nosplit
// Gosched yields the processor, allowing other goroutines to run. It does not
// suspend the current goroutine, so execution resumes automatically.
func Gosched() {
mcall(gosched_m)
}
// Puts the current goroutine into a waiting state and calls unlockf.
// If unlockf returns false, the goroutine is resumed.
func gopark(unlockf func(*g, unsafe.Pointer) bool, lock unsafe.Pointer, reason string, traceEv byte, traceskip int) {
mp := acquirem()
gp := mp.curg
status := readgstatus(gp)
if status != _Grunning && status != _Gscanrunning {
throw("gopark: bad g status")
}
mp.waitlock = lock
mp.waitunlockf = *(*unsafe.Pointer)(unsafe.Pointer(&unlockf))
gp.waitreason = reason
mp.waittraceev = traceEv
mp.waittraceskip = traceskip
releasem(mp)
// can't do anything that might move the G between Ms here.
mcall(park_m)
}
// Puts the current goroutine into a waiting state and unlocks the lock.
// The goroutine can be made runnable again by calling goready(gp).
func goparkunlock(lock *mutex, reason string, traceEv byte, traceskip int) {
gopark(parkunlock_c, unsafe.Pointer(lock), reason, traceEv, traceskip)
}
func goready(gp *g, traceskip int) {
systemstack(func() {
ready(gp, traceskip)
})
}
//go:nosplit
func acquireSudog() *sudog {
// Delicate dance: the semaphore implementation calls
// acquireSudog, acquireSudog calls new(sudog),
// new calls malloc, malloc can call the garbage collector,
// and the garbage collector calls the semaphore implementation
// in stopTheWorld.
// Break the cycle by doing acquirem/releasem around new(sudog).
// The acquirem/releasem increments m.locks during new(sudog),
// which keeps the garbage collector from being invoked.
mp := acquirem()
pp := mp.p.ptr()
if len(pp.sudogcache) == 0 {
lock(&sched.sudoglock)
// First, try to grab a batch from central cache.
for len(pp.sudogcache) < cap(pp.sudogcache)/2 && sched.sudogcache != nil {
s := sched.sudogcache
sched.sudogcache = s.next
s.next = nil
pp.sudogcache = append(pp.sudogcache, s)
}
unlock(&sched.sudoglock)
// If the central cache is empty, allocate a new one.
if len(pp.sudogcache) == 0 {
pp.sudogcache = append(pp.sudogcache, new(sudog))
}
}
n := len(pp.sudogcache)
s := pp.sudogcache[n-1]
pp.sudogcache[n-1] = nil
pp.sudogcache = pp.sudogcache[:n-1]
if s.elem != nil {
throw("acquireSudog: found s.elem != nil in cache")
}
releasem(mp)
return s
}
//go:nosplit
func releaseSudog(s *sudog) {
if s.elem != nil {
throw("runtime: sudog with non-nil elem")
}
if s.selectdone != nil {
throw("runtime: sudog with non-nil selectdone")
}
if s.next != nil {
throw("runtime: sudog with non-nil next")
}
if s.prev != nil {
throw("runtime: sudog with non-nil prev")
}
if s.waitlink != nil {
throw("runtime: sudog with non-nil waitlink")
}
gp := getg()
if gp.param != nil {
throw("runtime: releaseSudog with non-nil gp.param")
}
mp := acquirem() // avoid rescheduling to another P
pp := mp.p.ptr()
if len(pp.sudogcache) == cap(pp.sudogcache) {
// Transfer half of local cache to the central cache.
var first, last *sudog
for len(pp.sudogcache) > cap(pp.sudogcache)/2 {
n := len(pp.sudogcache)
p := pp.sudogcache[n-1]
pp.sudogcache[n-1] = nil
pp.sudogcache = pp.sudogcache[:n-1]
if first == nil {
first = p
} else {
last.next = p
}
last = p
}
lock(&sched.sudoglock)
last.next = sched.sudogcache
sched.sudogcache = first
unlock(&sched.sudoglock)
}
pp.sudogcache = append(pp.sudogcache, s)
releasem(mp)
}
// funcPC returns the entry PC of the function f.
// It assumes that f is a func value. Otherwise the behavior is undefined.
//go:nosplit
func funcPC(f interface{}) uintptr {
return **(**uintptr)(add(unsafe.Pointer(&f), sys.PtrSize))
}
// called from assembly
func badmcall(fn func(*g)) {
throw("runtime: mcall called on m->g0 stack")
}
func badmcall2(fn func(*g)) {
throw("runtime: mcall function returned")
}
func badreflectcall() {
panic("runtime: arg size to reflect.call more than 1GB")
}
func lockedOSThread() bool {
gp := getg()
return gp.lockedm != nil && gp.m.lockedg != nil
}
var (
allgs []*g
allglock mutex
)
func allgadd(gp *g) {
if readgstatus(gp) == _Gidle {
throw("allgadd: bad status Gidle")
}
lock(&allglock)
allgs = append(allgs, gp)
allglen = uintptr(len(allgs))
unlock(&allglock)
}
const (
// Number of goroutine ids to grab from sched.goidgen to local per-P cache at once.
// 16 seems to provide enough amortization, but other than that it's mostly arbitrary number.
_GoidCacheBatch = 16
)
// The bootstrap sequence is:
//
// call osinit
// call schedinit
// make & queue new G
// call runtime·mstart
//
// The new G calls runtime·main.
func schedinit() {
// raceinit must be the first call to race detector.
// In particular, it must be done before mallocinit below calls racemapshadow.
_g_ := getg()
if raceenabled {
_g_.racectx = raceinit()
}
sched.maxmcount = 10000
// Cache the framepointer experiment. This affects stack unwinding.
framepointer_enabled = haveexperiment("framepointer")
tracebackinit()
moduledataverify()
stackinit()
mallocinit()
mcommoninit(_g_.m)
msigsave(_g_.m)
initSigmask = _g_.m.sigmask
goargs()
goenvs()
parsedebugvars()
gcinit()
sched.lastpoll = uint64(nanotime())
procs := int(ncpu)
if procs > _MaxGomaxprocs {
procs = _MaxGomaxprocs
}
if n := atoi(gogetenv("GOMAXPROCS")); n > 0 {
if n > _MaxGomaxprocs {
n = _MaxGomaxprocs
}
procs = n
}
if procresize(int32(procs)) != nil {
throw("unknown runnable goroutine during bootstrap")
}
if buildVersion == "" {
// Condition should never trigger. This code just serves
// to ensure runtime·buildVersion is kept in the resulting binary.
buildVersion = "unknown"
}
}
func dumpgstatus(gp *g) {
_g_ := getg()
print("runtime: gp: gp=", gp, ", goid=", gp.goid, ", gp->atomicstatus=", readgstatus(gp), "\n")
print("runtime: g: g=", _g_, ", goid=", _g_.goid, ", g->atomicstatus=", readgstatus(_g_), "\n")
}
func checkmcount() {
// sched lock is held
if sched.mcount > sched.maxmcount {
print("runtime: program exceeds ", sched.maxmcount, "-thread limit\n")
throw("thread exhaustion")
}
}
func mcommoninit(mp *m) {
_g_ := getg()
// g0 stack won't make sense for user (and is not necessary unwindable).
if _g_ != _g_.m.g0 {
callers(1, mp.createstack[:])
}
mp.fastrand = 0x49f6428a + uint32(mp.id) + uint32(cputicks())
if mp.fastrand == 0 {
mp.fastrand = 0x49f6428a
}
lock(&sched.lock)
mp.id = sched.mcount
sched.mcount++
checkmcount()
mpreinit(mp)
if mp.gsignal != nil {
mp.gsignal.stackguard1 = mp.gsignal.stack.lo + _StackGuard
}
// Add to allm so garbage collector doesn't free g->m
// when it is just in a register or thread-local storage.
mp.alllink = allm
// NumCgoCall() iterates over allm w/o schedlock,
// so we need to publish it safely.
atomicstorep(unsafe.Pointer(&allm), unsafe.Pointer(mp))
unlock(&sched.lock)
}
// Mark gp ready to run.
func ready(gp *g, traceskip int) {
if trace.enabled {
traceGoUnpark(gp, traceskip)
}
status := readgstatus(gp)
// Mark runnable.
_g_ := getg()
_g_.m.locks++ // disable preemption because it can be holding p in a local var
if status&^_Gscan != _Gwaiting {
dumpgstatus(gp)
throw("bad g->status in ready")
}
// status is Gwaiting or Gscanwaiting, make Grunnable and put on runq
casgstatus(gp, _Gwaiting, _Grunnable)
runqput(_g_.m.p.ptr(), gp, true)
if atomic.Load(&sched.npidle) != 0 && atomic.Load(&sched.nmspinning) == 0 { // TODO: fast atomic
wakep()
}
_g_.m.locks--
if _g_.m.locks == 0 && _g_.preempt { // restore the preemption request in Case we've cleared it in newstack
_g_.stackguard0 = stackPreempt
}
}
func gcprocs() int32 {
// Figure out how many CPUs to use during GC.
// Limited by gomaxprocs, number of actual CPUs, and MaxGcproc.
lock(&sched.lock)
n := gomaxprocs
if n > ncpu {
n = ncpu
}
if n > _MaxGcproc {
n = _MaxGcproc
}
if n > sched.nmidle+1 { // one M is currently running
n = sched.nmidle + 1
}
unlock(&sched.lock)
return n
}
func needaddgcproc() bool {
lock(&sched.lock)
n := gomaxprocs
if n > ncpu {
n = ncpu
}
if n > _MaxGcproc {
n = _MaxGcproc
}
n -= sched.nmidle + 1 // one M is currently running
unlock(&sched.lock)
return n > 0
}
func helpgc(nproc int32) {
_g_ := getg()
lock(&sched.lock)
pos := 0
for n := int32(1); n < nproc; n++ { // one M is currently running
if allp[pos].mcache == _g_.m.mcache {
pos++
}
mp := mget()
if mp == nil {
throw("gcprocs inconsistency")
}
mp.helpgc = n
mp.p.set(allp[pos])
mp.mcache = allp[pos].mcache
pos++
notewakeup(&mp.park)
}
unlock(&sched.lock)
}
// freezeStopWait is a large value that freezetheworld sets
// sched.stopwait to in order to request that all Gs permanently stop.
const freezeStopWait = 0x7fffffff
// Similar to stopTheWorld but best-effort and can be called several times.
// There is no reverse operation, used during crashing.
// This function must not lock any mutexes.
func freezetheworld() {
// stopwait and preemption requests can be lost
// due to races with concurrently executing threads,
// so try several times
for i := 0; i < 5; i++ {
// this should tell the scheduler to not start any new goroutines
sched.stopwait = freezeStopWait
atomic.Store(&sched.gcwaiting, 1)
// this should stop running goroutines
if !preemptall() {
break // no running goroutines
}
usleep(1000)
}
// to be sure
usleep(1000)
preemptall()
usleep(1000)
}
func isscanstatus(status uint32) bool {
if status == _Gscan {
throw("isscanstatus: Bad status Gscan")
}
return status&_Gscan == _Gscan
}
// All reads and writes of g's status go through readgstatus, casgstatus
// castogscanstatus, casfrom_Gscanstatus.
//go:nosplit
func readgstatus(gp *g) uint32 {
return atomic.Load(&gp.atomicstatus)
}
// Ownership of gscanvalid:
//
// If gp is running (meaning status == _Grunning or _Grunning|_Gscan),
// then gp owns gp.gscanvalid, and other goroutines must not modify it.
//
// Otherwise, a second goroutine can lock the scan state by setting _Gscan
// in the status bit and then modify gscanvalid, and then unlock the scan state.
//
// Note that the first condition implies an exception to the second:
// if a second goroutine changes gp's status to _Grunning|_Gscan,
// that second goroutine still does not have the right to modify gscanvalid.
// The Gscanstatuses are acting like locks and this releases them.
// If it proves to be a performance hit we should be able to make these
// simple atomic stores but for now we are going to throw if
// we see an inconsistent state.
func casfrom_Gscanstatus(gp *g, oldval, newval uint32) {
success := false
// Check that transition is valid.
switch oldval {
default:
print("runtime: casfrom_Gscanstatus bad oldval gp=", gp, ", oldval=", hex(oldval), ", newval=", hex(newval), "\n")
dumpgstatus(gp)
throw("casfrom_Gscanstatus:top gp->status is not in scan state")
case _Gscanrunnable,
_Gscanwaiting,
_Gscanrunning,
_Gscansyscall:
if newval == oldval&^_Gscan {
success = atomic.Cas(&gp.atomicstatus, oldval, newval)
}
case _Gscanenqueue:
if newval == _Gwaiting {
success = atomic.Cas(&gp.atomicstatus, oldval, newval)
}
}
if !success {
print("runtime: casfrom_Gscanstatus failed gp=", gp, ", oldval=", hex(oldval), ", newval=", hex(newval), "\n")
dumpgstatus(gp)
throw("casfrom_Gscanstatus: gp->status is not in scan state")
}
if newval == _Grunning {
gp.gcscanvalid = false
}
}
// This will return false if the gp is not in the expected status and the cas fails.
// This acts like a lock acquire while the casfromgstatus acts like a lock release.
func castogscanstatus(gp *g, oldval, newval uint32) bool {
switch oldval {
case _Grunnable,
_Gwaiting,
_Gsyscall:
if newval == oldval|_Gscan {
return atomic.Cas(&gp.atomicstatus, oldval, newval)
}
case _Grunning:
if newval == _Gscanrunning || newval == _Gscanenqueue {
return atomic.Cas(&gp.atomicstatus, oldval, newval)
}
}
print("runtime: castogscanstatus oldval=", hex(oldval), " newval=", hex(newval), "\n")
throw("castogscanstatus")
panic("not reached")
}
// If asked to move to or from a Gscanstatus this will throw. Use the castogscanstatus
// and casfrom_Gscanstatus instead.
// casgstatus will loop if the g->atomicstatus is in a Gscan status until the routine that
// put it in the Gscan state is finished.
//go:nosplit
func casgstatus(gp *g, oldval, newval uint32) {
if (oldval&_Gscan != 0) || (newval&_Gscan != 0) || oldval == newval {
systemstack(func() {
print("runtime: casgstatus: oldval=", hex(oldval), " newval=", hex(newval), "\n")
throw("casgstatus: bad incoming values")
})
}
if oldval == _Grunning && gp.gcscanvalid {
// If oldvall == _Grunning, then the actual status must be
// _Grunning or _Grunning|_Gscan; either way,
// we own gp.gcscanvalid, so it's safe to read.
// gp.gcscanvalid must not be true when we are running.
print("runtime: casgstatus ", hex(oldval), "->", hex(newval), " gp.status=", hex(gp.atomicstatus), " gp.gcscanvalid=true\n")
throw("casgstatus")
}
// loop if gp->atomicstatus is in a scan state giving
// GC time to finish and change the state to oldval.
for !atomic.Cas(&gp.atomicstatus, oldval, newval) {
if oldval == _Gwaiting && gp.atomicstatus == _Grunnable {
systemstack(func() {
throw("casgstatus: waiting for Gwaiting but is Grunnable")
})
}
// Help GC if needed.
// if gp.preemptscan && !gp.gcworkdone && (oldval == _Grunning || oldval == _Gsyscall) {
// gp.preemptscan = false
// systemstack(func() {
// gcphasework(gp)
// })
// }
}
if newval == _Grunning {
gp.gcscanvalid = false
}
}
// casgstatus(gp, oldstatus, Gcopystack), assuming oldstatus is Gwaiting or Grunnable.
// Returns old status. Cannot call casgstatus directly, because we are racing with an
// async wakeup that might come in from netpoll. If we see Gwaiting from the readgstatus,
// it might have become Grunnable by the time we get to the cas. If we called casgstatus,
// it would loop waiting for the status to go back to Gwaiting, which it never will.
//go:nosplit
func casgcopystack(gp *g) uint32 {
for {
oldstatus := readgstatus(gp) &^ _Gscan
if oldstatus != _Gwaiting && oldstatus != _Grunnable {
throw("copystack: bad status, not Gwaiting or Grunnable")
}
if atomic.Cas(&gp.atomicstatus, oldstatus, _Gcopystack) {
return oldstatus
}
}
}
// scang blocks until gp's stack has been scanned.
// It might be scanned by scang or it might be scanned by the goroutine itself.
// Either way, the stack scan has completed when scang returns.
func scang(gp *g) {
// Invariant; we (the caller, markroot for a specific goroutine) own gp.gcscandone.
// Nothing is racing with us now, but gcscandone might be set to true left over
// from an earlier round of stack scanning (we scan twice per GC).
// We use gcscandone to record whether the scan has been done during this round.
// It is important that the scan happens exactly once: if called twice,
// the installation of stack barriers will detect the double scan and die.
gp.gcscandone = false
// Endeavor to get gcscandone set to true,
// either by doing the stack scan ourselves or by coercing gp to scan itself.
// gp.gcscandone can transition from false to true when we're not looking
// (if we asked for preemption), so any time we lock the status using
// castogscanstatus we have to double-check that the scan is still not done.
for !gp.gcscandone {
switch s := readgstatus(gp); s {
default:
dumpgstatus(gp)
throw("stopg: invalid status")
case _Gdead:
// No stack.
gp.gcscandone = true
case _Gcopystack:
// Stack being switched. Go around again.
case _Grunnable, _Gsyscall, _Gwaiting:
// Claim goroutine by setting scan bit.
// Racing with execution or readying of gp.
// The scan bit keeps them from running
// the goroutine until we're done.
if castogscanstatus(gp, s, s|_Gscan) {
if !gp.gcscandone {
scanstack(gp)
gp.gcscandone = true
}
restartg(gp)
}
case _Gscanwaiting:
// newstack is doing a scan for us right now. Wait.
case _Grunning:
// Goroutine running. Try to preempt execution so it can scan itself.
// The preemption handler (in newstack) does the actual scan.
// Optimization: if there is already a pending preemption request
// (from the previous loop iteration), don't bother with the atomics.
if gp.preemptscan && gp.preempt && gp.stackguard0 == stackPreempt {
break
}
// Ask for preemption and self scan.
if castogscanstatus(gp, _Grunning, _Gscanrunning) {
if !gp.gcscandone {
gp.preemptscan = true
gp.preempt = true
gp.stackguard0 = stackPreempt
}
casfrom_Gscanstatus(gp, _Gscanrunning, _Grunning)
}
}
}
gp.preemptscan = false // cancel scan request if no longer needed
}
// The GC requests that this routine be moved from a scanmumble state to a mumble state.
func restartg(gp *g) {
s := readgstatus(gp)
switch s {
default:
dumpgstatus(gp)
throw("restartg: unexpected status")
case _Gdead:
// ok
case _Gscanrunnable,
_Gscanwaiting,
_Gscansyscall:
casfrom_Gscanstatus(gp, s, s&^_Gscan)
// Scan is now completed.
// Goroutine now needs to be made runnable.
// We put it on the global run queue; ready blocks on the global scheduler lock.
case _Gscanenqueue:
casfrom_Gscanstatus(gp, _Gscanenqueue, _Gwaiting)
if gp != getg().m.curg {
throw("processing Gscanenqueue on wrong m")
}
dropg()
ready(gp, 0)
}
}
// stopTheWorld stops all P's from executing goroutines, interrupting
// all goroutines at GC safe points and records reason as the reason
// for the stop. On return, only the current goroutine's P is running.
// stopTheWorld must not be called from a system stack and the caller
// must not hold worldsema. The caller must call startTheWorld when
// other P's should resume execution.
//
// stopTheWorld is safe for multiple goroutines to call at the
// same time. Each will execute its own stop, and the stops will
// be serialized.
//
// This is also used by routines that do stack dumps. If the system is
// in panic or being exited, this may not reliably stop all
// goroutines.
func stopTheWorld(reason string) {
semacquire(&worldsema, false)
getg().m.preemptoff = reason
systemstack(stopTheWorldWithSema)
}
// startTheWorld undoes the effects of stopTheWorld.
func startTheWorld() {
systemstack(startTheWorldWithSema)
// worldsema must be held over startTheWorldWithSema to ensure
// gomaxprocs cannot change while worldsema is held.
semrelease(&worldsema)
getg().m.preemptoff = ""
}
// Holding worldsema grants an M the right to try to stop the world
// and prevents gomaxprocs from changing concurrently.
var worldsema uint32 = 1
// stopTheWorldWithSema is the core implementation of stopTheWorld.
// The caller is responsible for acquiring worldsema and disabling
// preemption first and then should stopTheWorldWithSema on the system
// stack:
//
// semacquire(&worldsema, false)
// m.preemptoff = "reason"
// systemstack(stopTheWorldWithSema)
//
// When finished, the caller must either call startTheWorld or undo
// these three operations separately:
//
// m.preemptoff = ""
// systemstack(startTheWorldWithSema)
// semrelease(&worldsema)
//
// It is allowed to acquire worldsema once and then execute multiple
// startTheWorldWithSema/stopTheWorldWithSema pairs.
// Other P's are able to execute between successive calls to
// startTheWorldWithSema and stopTheWorldWithSema.
// Holding worldsema causes any other goroutines invoking
// stopTheWorld to block.
func stopTheWorldWithSema() {
_g_ := getg()
// If we hold a lock, then we won't be able to stop another M
// that is blocked trying to acquire the lock.
if _g_.m.locks > 0 {
throw("stopTheWorld: holding locks")
}
lock(&sched.lock)
sched.stopwait = gomaxprocs
atomic.Store(&sched.gcwaiting, 1)
preemptall()
// stop current P
_g_.m.p.ptr().status = _Pgcstop // Pgcstop is only diagnostic.
sched.stopwait--
// try to retake all P's in Psyscall status
for i := 0; i < int(gomaxprocs); i++ {
p := allp[i]
s := p.status
if s == _Psyscall && atomic.Cas(&p.status, s, _Pgcstop) {
if trace.enabled {
traceGoSysBlock(p)
traceProcStop(p)
}
p.syscalltick++
sched.stopwait--
}
}
// stop idle P's
for {
p := pidleget()
if p == nil {
break
}
p.status = _Pgcstop
sched.stopwait--
}
wait := sched.stopwait > 0
unlock(&sched.lock)
// wait for remaining P's to stop voluntarily
if wait {
for {
// wait for 100us, then try to re-preempt in case of any races
if notetsleep(&sched.stopnote, 100*1000) {
noteclear(&sched.stopnote)
break
}
preemptall()
}
}
if sched.stopwait != 0 {
throw("stopTheWorld: not stopped")
}
for i := 0; i < int(gomaxprocs); i++ {
p := allp[i]
if p.status != _Pgcstop {
throw("stopTheWorld: not stopped")
}
}
}
func mhelpgc() {
_g_ := getg()
_g_.m.helpgc = -1
}
func startTheWorldWithSema() {
_g_ := getg()
_g_.m.locks++ // disable preemption because it can be holding p in a local var
gp := netpoll(false) // non-blocking
injectglist(gp)
add := needaddgcproc()
lock(&sched.lock)
procs := gomaxprocs
if newprocs != 0 {
procs = newprocs
newprocs = 0
}
p1 := procresize(procs)
sched.gcwaiting = 0
if sched.sysmonwait != 0 {
sched.sysmonwait = 0
notewakeup(&sched.sysmonnote)
}
unlock(&sched.lock)
for p1 != nil {
p := p1
p1 = p1.link.ptr()
if p.m != 0 {
mp := p.m.ptr()
p.m = 0
if mp.nextp != 0 {
throw("startTheWorld: inconsistent mp->nextp")
}
mp.nextp.set(p)
notewakeup(&mp.park)
} else {
// Start M to run P. Do not start another M below.
newm(nil, p)
add = false
}
}
// Wakeup an additional proc in case we have excessive runnable goroutines
// in local queues or in the global queue. If we don't, the proc will park itself.
// If we have lots of excessive work, resetspinning will unpark additional procs as necessary.
if atomic.Load(&sched.npidle) != 0 && atomic.Load(&sched.nmspinning) == 0 {
wakep()
}
if add {
// If GC could have used another helper proc, start one now,
// in the hope that it will be available next time.
// It would have been even better to start it before the collection,
// but doing so requires allocating memory, so it's tricky to
// coordinate. This lazy approach works out in practice:
// we don't mind if the first couple gc rounds don't have quite
// the maximum number of procs.
newm(mhelpgc, nil)
}
_g_.m.locks--
if _g_.m.locks == 0 && _g_.preempt { // restore the preemption request in case we've cleared it in newstack
_g_.stackguard0 = stackPreempt
}
}
// Called to start an M.
//go:nosplit
func mstart() {
_g_ := getg()
if _g_.stack.lo == 0 {
// Initialize stack bounds from system stack.
// Cgo may have left stack size in stack.hi.
size := _g_.stack.hi
if size == 0 {
size = 8192 * sys.StackGuardMultiplier
}
_g_.stack.hi = uintptr(noescape(unsafe.Pointer(&size)))
_g_.stack.lo = _g_.stack.hi - size + 1024
}
// Initialize stack guards so that we can start calling
// both Go and C functions with stack growth prologues.
_g_.stackguard0 = _g_.stack.lo + _StackGuard
_g_.stackguard1 = _g_.stackguard0
mstart1()
}
func mstart1() {
_g_ := getg()
if _g_ != _g_.m.g0 {
throw("bad runtime·mstart")
}
// Record top of stack for use by mcall.
// Once we call schedule we're never coming back,
// so other calls can reuse this stack space.
gosave(&_g_.m.g0.sched)
_g_.m.g0.sched.pc = ^uintptr(0) // make sure it is never used
asminit()
minit()
// Install signal handlers; after minit so that minit can
// prepare the thread to be able to handle the signals.
if _g_.m == &m0 {
// Create an extra M for callbacks on threads not created by Go.
if iscgo && !cgoHasExtraM {
cgoHasExtraM = true
newextram()
}
initsig(false)
}
if fn := _g_.m.mstartfn; fn != nil {
fn()
}
if _g_.m.helpgc != 0 {
_g_.m.helpgc = 0
stopm()
} else if _g_.m != &m0 {
acquirep(_g_.m.nextp.ptr())
_g_.m.nextp = 0
}
schedule()
}
// forEachP calls fn(p) for every P p when p reaches a GC safe point.
// If a P is currently executing code, this will bring the P to a GC
// safe point and execute fn on that P. If the P is not executing code
// (it is idle or in a syscall), this will call fn(p) directly while
// preventing the P from exiting its state. This does not ensure that
// fn will run on every CPU executing Go code, but it acts as a global
// memory barrier. GC uses this as a "ragged barrier."
//
// The caller must hold worldsema.
//
//go:systemstack
func forEachP(fn func(*p)) {
mp := acquirem()
_p_ := getg().m.p.ptr()
lock(&sched.lock)
if sched.safePointWait != 0 {
throw("forEachP: sched.safePointWait != 0")
}
sched.safePointWait = gomaxprocs - 1
sched.safePointFn = fn
// Ask all Ps to run the safe point function.
for _, p := range allp[:gomaxprocs] {
if p != _p_ {
atomic.Store(&p.runSafePointFn, 1)
}
}
preemptall()
// Any P entering _Pidle or _Psyscall from now on will observe
// p.runSafePointFn == 1 and will call runSafePointFn when
// changing its status to _Pidle/_Psyscall.
// Run safe point function for all idle Ps. sched.pidle will
// not change because we hold sched.lock.
for p := sched.pidle.ptr(); p != nil; p = p.link.ptr() {
if atomic.Cas(&p.runSafePointFn, 1, 0) {
fn(p)
sched.safePointWait--
}
}
wait := sched.safePointWait > 0
unlock(&sched.lock)
// Run fn for the current P.
fn(_p_)
// Force Ps currently in _Psyscall into _Pidle and hand them
// off to induce safe point function execution.
for i := 0; i < int(gomaxprocs); i++ {
p := allp[i]
s := p.status
if s == _Psyscall && p.runSafePointFn == 1 && atomic.Cas(&p.status, s, _Pidle) {
if trace.enabled {
traceGoSysBlock(p)
traceProcStop(p)
}
p.syscalltick++
handoffp(p)
}
}
// Wait for remaining Ps to run fn.
if wait {
for {
// Wait for 100us, then try to re-preempt in
// case of any races.
//
// Requires system stack.
if notetsleep(&sched.safePointNote, 100*1000) {
noteclear(&sched.safePointNote)
break
}
preemptall()
}
}
if sched.safePointWait != 0 {
throw("forEachP: not done")
}
for i := 0; i < int(gomaxprocs); i++ {
p := allp[i]
if p.runSafePointFn != 0 {
throw("forEachP: P did not run fn")
}
}
lock(&sched.lock)
sched.safePointFn = nil
unlock(&sched.lock)
releasem(mp)
}
// runSafePointFn runs the safe point function, if any, for this P.
// This should be called like
//
// if getg().m.p.runSafePointFn != 0 {
// runSafePointFn()
// }
//
// runSafePointFn must be checked on any transition in to _Pidle or
// _Psyscall to avoid a race where forEachP sees that the P is running
// just before the P goes into _Pidle/_Psyscall and neither forEachP
// nor the P run the safe-point function.
func runSafePointFn() {
p := getg().m.p.ptr()
// Resolve the race between forEachP running the safe-point
// function on this P's behalf and this P running the
// safe-point function directly.
if !atomic.Cas(&p.runSafePointFn, 1, 0) {
return
}
sched.safePointFn(p)
lock(&sched.lock)
sched.safePointWait--
if sched.safePointWait == 0 {
notewakeup(&sched.safePointNote)
}
unlock(&sched.lock)
}
// When running with cgo, we call _cgo_thread_start
// to start threads for us so that we can play nicely with
// foreign code.
var cgoThreadStart unsafe.Pointer
type cgothreadstart struct {
g guintptr
tls *uint64
fn unsafe.Pointer
}
// Allocate a new m unassociated with any thread.
// Can use p for allocation context if needed.
// fn is recorded as the new m's m.mstartfn.
//
// This function it known to the compiler to inhibit the
// go:nowritebarrierrec annotation because it uses P for allocation.
func allocm(_p_ *p, fn func()) *m {
_g_ := getg()
_g_.m.locks++ // disable GC because it can be called from sysmon
if _g_.m.p == 0 {
acquirep(_p_) // temporarily borrow p for mallocs in this function
}
mp := new(m)
mp.mstartfn = fn
mcommoninit(mp)
// In case of cgo or Solaris, pthread_create will make us a stack.
// Windows and Plan 9 will layout sched stack on OS stack.
if iscgo || GOOS == "solaris" || GOOS == "windows" || GOOS == "plan9" {
mp.g0 = malg(-1)
} else {
mp.g0 = malg(8192 * sys.StackGuardMultiplier)
}
mp.g0.m = mp
if _p_ == _g_.m.p.ptr() {
releasep()
}
_g_.m.locks--
if _g_.m.locks == 0 && _g_.preempt { // restore the preemption request in case we've cleared it in newstack
_g_.stackguard0 = stackPreempt
}
return mp
}
// needm is called when a cgo callback happens on a
// thread without an m (a thread not created by Go).
// In this case, needm is expected to find an m to use
// and return with m, g initialized correctly.
// Since m and g are not set now (likely nil, but see below)
// needm is limited in what routines it can call. In particular
// it can only call nosplit functions (textflag 7) and cannot
// do any scheduling that requires an m.
//
// In order to avoid needing heavy lifting here, we adopt
// the following strategy: there is a stack of available m's
// that can be stolen. Using compare-and-swap
// to pop from the stack has ABA races, so we simulate
// a lock by doing an exchange (via casp) to steal the stack
// head and replace the top pointer with MLOCKED (1).
// This serves as a simple spin lock that we can use even
// without an m. The thread that locks the stack in this way
// unlocks the stack by storing a valid stack head pointer.
//
// In order to make sure that there is always an m structure
// available to be stolen, we maintain the invariant that there
// is always one more than needed. At the beginning of the
// program (if cgo is in use) the list is seeded with a single m.
// If needm finds that it has taken the last m off the list, its job
// is - once it has installed its own m so that it can do things like
// allocate memory - to create a spare m and put it on the list.
//
// Each of these extra m's also has a g0 and a curg that are
// pressed into service as the scheduling stack and current
// goroutine for the duration of the cgo callback.
//
// When the callback is done with the m, it calls dropm to
// put the m back on the list.
//go:nosplit
func needm(x byte) {
if iscgo && !cgoHasExtraM {
// Can happen if C/C++ code calls Go from a global ctor.
// Can not throw, because scheduler is not initialized yet.
write(2, unsafe.Pointer(&earlycgocallback[0]), int32(len(earlycgocallback)))
exit(1)
}
// Lock extra list, take head, unlock popped list.
// nilokay=false is safe here because of the invariant above,
// that the extra list always contains or will soon contain
// at least one m.
mp := lockextra(false)
// Set needextram when we've just emptied the list,
// so that the eventual call into cgocallbackg will
// allocate a new m for the extra list. We delay the
// allocation until then so that it can be done
// after exitsyscall makes sure it is okay to be
// running at all (that is, there's no garbage collection
// running right now).
mp.needextram = mp.schedlink == 0
unlockextra(mp.schedlink.ptr())
// Save and block signals before installing g.
// Once g is installed, any incoming signals will try to execute,
// but we won't have the sigaltstack settings and other data
// set up appropriately until the end of minit, which will
// unblock the signals. This is the same dance as when
// starting a new m to run Go code via newosproc.
msigsave(mp)
sigblock()
// Install g (= m->g0) and set the stack bounds
// to match the current stack. We don't actually know
// how big the stack is, like we don't know how big any
// scheduling stack is, but we assume there's at least 32 kB,
// which is more than enough for us.
setg(mp.g0)
_g_ := getg()
_g_.stack.hi = uintptr(noescape(unsafe.Pointer(&x))) + 1024
_g_.stack.lo = uintptr(noescape(unsafe.Pointer(&x))) - 32*1024
_g_.stackguard0 = _g_.stack.lo + _StackGuard
// Initialize this thread to use the m.
asminit()
minit()
}
var earlycgocallback = []byte("fatal error: cgo callback before cgo call\n")
// newextram allocates an m and puts it on the extra list.
// It is called with a working local m, so that it can do things
// like call schedlock and allocate.
func newextram() {
// Create extra goroutine locked to extra m.
// The goroutine is the context in which the cgo callback will run.
// The sched.pc will never be returned to, but setting it to
// goexit makes clear to the traceback routines where
// the goroutine stack ends.
mp := allocm(nil, nil)
gp := malg(4096)
gp.sched.pc = funcPC(goexit) + sys.PCQuantum
gp.sched.sp = gp.stack.hi
gp.sched.sp -= 4 * sys.RegSize // extra space in case of reads slightly beyond frame
gp.sched.lr = 0
gp.sched.g = guintptr(unsafe.Pointer(gp))
gp.syscallpc = gp.sched.pc
gp.syscallsp = gp.sched.sp
gp.stktopsp = gp.sched.sp
// malg returns status as Gidle, change to Gsyscall before adding to allg
// where GC will see it.
casgstatus(gp, _Gidle, _Gsyscall)
gp.m = mp
mp.curg = gp
mp.locked = _LockInternal
mp.lockedg = gp
gp.lockedm = mp
gp.goid = int64(atomic.Xadd64(&sched.goidgen, 1))
if raceenabled {
gp.racectx = racegostart(funcPC(newextram))
}
// put on allg for garbage collector
allgadd(gp)
// Add m to the extra list.
mnext := lockextra(true)
mp.schedlink.set(mnext)
unlockextra(mp)
}
// dropm is called when a cgo callback has called needm but is now
// done with the callback and returning back into the non-Go thread.
// It puts the current m back onto the extra list.
//
// The main expense here is the call to signalstack to release the
// m's signal stack, and then the call to needm on the next callback
// from this thread. It is tempting to try to save the m for next time,
// which would eliminate both these costs, but there might not be
// a next time: the current thread (which Go does not control) might exit.
// If we saved the m for that thread, there would be an m leak each time
// such a thread exited. Instead, we acquire and release an m on each
// call. These should typically not be scheduling operations, just a few
// atomics, so the cost should be small.
//
// TODO(rsc): An alternative would be to allocate a dummy pthread per-thread
// variable using pthread_key_create. Unlike the pthread keys we already use
// on OS X, this dummy key would never be read by Go code. It would exist
// only so that we could register at thread-exit-time destructor.
// That destructor would put the m back onto the extra list.
// This is purely a performance optimization. The current version,
// in which dropm happens on each cgo call, is still correct too.
// We may have to keep the current version on systems with cgo
// but without pthreads, like Windows.
func dropm() {
// Clear m and g, and return m to the extra list.
// After the call to setg we can only call nosplit functions
// with no pointer manipulation.
mp := getg().m
// Block signals before unminit.
// Unminit unregisters the signal handling stack (but needs g on some systems).
// Setg(nil) clears g, which is the signal handler's cue not to run Go handlers.
// It's important not to try to handle a signal between those two steps.
sigmask := mp.sigmask
sigblock()
unminit()
mnext := lockextra(true)
mp.schedlink.set(mnext)
setg(nil)
// Commit the release of mp.
unlockextra(mp)
msigrestore(sigmask)
}
// A helper function for EnsureDropM.
func getm() uintptr {
return uintptr(unsafe.Pointer(getg().m))
}
var extram uintptr
// lockextra locks the extra list and returns the list head.
// The caller must unlock the list by storing a new list head
// to extram. If nilokay is true, then lockextra will
// return a nil list head if that's what it finds. If nilokay is false,
// lockextra will keep waiting until the list head is no longer nil.
//go:nosplit
func lockextra(nilokay bool) *m {
const locked = 1
for {
old := atomic.Loaduintptr(&extram)
if old == locked {
yield := osyield
yield()
continue
}
if old == 0 && !nilokay {
usleep(1)
continue
}
if atomic.Casuintptr(&extram, old, locked) {
return (*m)(unsafe.Pointer(old))
}
yield := osyield
yield()
continue
}
}
//go:nosplit
func unlockextra(mp *m) {
atomic.Storeuintptr(&extram, uintptr(unsafe.Pointer(mp)))
}
// Create a new m. It will start off with a call to fn, or else the scheduler.
// fn needs to be static and not a heap allocated closure.
// May run with m.p==nil, so write barriers are not allowed.
//go:nowritebarrier
func newm(fn func(), _p_ *p) {
mp := allocm(_p_, fn)
mp.nextp.set(_p_)
mp.sigmask = initSigmask
if iscgo {
var ts cgothreadstart
if _cgo_thread_start == nil {
throw("_cgo_thread_start missing")
}
ts.g.set(mp.g0)
ts.tls = (*uint64)(unsafe.Pointer(&mp.tls[0]))
ts.fn = unsafe.Pointer(funcPC(mstart))
if msanenabled {
msanwrite(unsafe.Pointer(&ts), unsafe.Sizeof(ts))
}
asmcgocall(_cgo_thread_start, unsafe.Pointer(&ts))
return
}
newosproc(mp, unsafe.Pointer(mp.g0.stack.hi))
}
// Stops execution of the current m until new work is available.
// Returns with acquired P.
func stopm() {
_g_ := getg()
if _g_.m.locks != 0 {
throw("stopm holding locks")
}
if _g_.m.p != 0 {
throw("stopm holding p")
}
if _g_.m.spinning {
throw("stopm spinning")
}
retry:
lock(&sched.lock)
mput(_g_.m)
unlock(&sched.lock)
notesleep(&_g_.m.park)
noteclear(&_g_.m.park)
if _g_.m.helpgc != 0 {
gchelper()
_g_.m.helpgc = 0
_g_.m.mcache = nil
_g_.m.p = 0
goto retry
}
acquirep(_g_.m.nextp.ptr())
_g_.m.nextp = 0
}
func mspinning() {
// startm's caller incremented nmspinning. Set the new M's spinning.
getg().m.spinning = true
}
// Schedules some M to run the p (creates an M if necessary).
// If p==nil, tries to get an idle P, if no idle P's does nothing.
// May run with m.p==nil, so write barriers are not allowed.
// If spinning is set, the caller has incremented nmspinning and startm will
// either decrement nmspinning or set m.spinning in the newly started M.
//go:nowritebarrier
func startm(_p_ *p, spinning bool) {
lock(&sched.lock)
if _p_ == nil {
_p_ = pidleget()
if _p_ == nil {
unlock(&sched.lock)
if spinning {
// The caller incremented nmspinning, but there are no idle Ps,
// so it's okay to just undo the increment and give up.
if int32(atomic.Xadd(&sched.nmspinning, -1)) < 0 {
throw("startm: negative nmspinning")
}
}
return
}
}
mp := mget()
unlock(&sched.lock)
if mp == nil {
var fn func()
if spinning {
// The caller incremented nmspinning, so set m.spinning in the new M.
fn = mspinning
}
newm(fn, _p_)
return
}
if mp.spinning {
throw("startm: m is spinning")
}
if mp.nextp != 0 {
throw("startm: m has p")
}
if spinning && !runqempty(_p_) {
throw("startm: p has runnable gs")
}
// The caller incremented nmspinning, so set m.spinning in the new M.
mp.spinning = spinning
mp.nextp.set(_p_)
notewakeup(&mp.park)
}
// Hands off P from syscall or locked M.
// Always runs without a P, so write barriers are not allowed.
//go:nowritebarrier
func handoffp(_p_ *p) {
// handoffp must start an M in any situation where
// findrunnable would return a G to run on _p_.
// if it has local work, start it straight away
if !runqempty(_p_) || sched.runqsize != 0 {
startm(_p_, false)
return
}
// if it has GC work, start it straight away
if gcBlackenEnabled != 0 && gcMarkWorkAvailable(_p_) {
startm(_p_, false)
return
}
// no local work, check that there are no spinning/idle M's,
// otherwise our help is not required
if atomic.Load(&sched.nmspinning)+atomic.Load(&sched.npidle) == 0 && atomic.Cas(&sched.nmspinning, 0, 1) { // TODO: fast atomic
startm(_p_, true)
return
}
lock(&sched.lock)
if sched.gcwaiting != 0 {
_p_.status = _Pgcstop
sched.stopwait--
if sched.stopwait == 0 {
notewakeup(&sched.stopnote)
}
unlock(&sched.lock)
return
}
if _p_.runSafePointFn != 0 && atomic.Cas(&_p_.runSafePointFn, 1, 0) {
sched.safePointFn(_p_)
sched.safePointWait--
if sched.safePointWait == 0 {
notewakeup(&sched.safePointNote)
}
}
if sched.runqsize != 0 {
unlock(&sched.lock)
startm(_p_, false)
return
}
// If this is the last running P and nobody is polling network,
// need to wakeup another M to poll network.
if sched.npidle == uint32(gomaxprocs-1) && atomic.Load64(&sched.lastpoll) != 0 {
unlock(&sched.lock)
startm(_p_, false)
return
}
pidleput(_p_)
unlock(&sched.lock)
}
// Tries to add one more P to execute G's.
// Called when a G is made runnable (newproc, ready).
func wakep() {
// be conservative about spinning threads
if !atomic.Cas(&sched.nmspinning, 0, 1) {
return
}
startm(nil, true)
}
// Stops execution of the current m that is locked to a g until the g is runnable again.
// Returns with acquired P.
func stoplockedm() {
_g_ := getg()
if _g_.m.lockedg == nil || _g_.m.lockedg.lockedm != _g_.m {
throw("stoplockedm: inconsistent locking")
}
if _g_.m.p != 0 {
// Schedule another M to run this p.
_p_ := releasep()
handoffp(_p_)
}
incidlelocked(1)
// Wait until another thread schedules lockedg again.
notesleep(&_g_.m.park)
noteclear(&_g_.m.park)
status := readgstatus(_g_.m.lockedg)
if status&^_Gscan != _Grunnable {
print("runtime:stoplockedm: g is not Grunnable or Gscanrunnable\n")
dumpgstatus(_g_)
throw("stoplockedm: not runnable")
}
acquirep(_g_.m.nextp.ptr())
_g_.m.nextp = 0
}
// Schedules the locked m to run the locked gp.
// May run during STW, so write barriers are not allowed.
//go:nowritebarrier
func startlockedm(gp *g) {
_g_ := getg()
mp := gp.lockedm
if mp == _g_.m {
throw("startlockedm: locked to me")
}
if mp.nextp != 0 {
throw("startlockedm: m has p")
}
// directly handoff current P to the locked m
incidlelocked(-1)
_p_ := releasep()
mp.nextp.set(_p_)
notewakeup(&mp.park)
stopm()
}
// Stops the current m for stopTheWorld.
// Returns when the world is restarted.
func gcstopm() {
_g_ := getg()
if sched.gcwaiting == 0 {
throw("gcstopm: not waiting for gc")
}
if _g_.m.spinning {
_g_.m.spinning = false
// OK to just drop nmspinning here,
// startTheWorld will unpark threads as necessary.
if int32(atomic.Xadd(&sched.nmspinning, -1)) < 0 {
throw("gcstopm: negative nmspinning")
}
}
_p_ := releasep()
lock(&sched.lock)
_p_.status = _Pgcstop
sched.stopwait--
if sched.stopwait == 0 {
notewakeup(&sched.stopnote)
}
unlock(&sched.lock)
stopm()
}
// Schedules gp to run on the current M.
// If inheritTime is true, gp inherits the remaining time in the
// current time slice. Otherwise, it starts a new time slice.
// Never returns.
func execute(gp *g, inheritTime bool) {
_g_ := getg()
casgstatus(gp, _Grunnable, _Grunning)
gp.waitsince = 0
gp.preempt = false
gp.stackguard0 = gp.stack.lo + _StackGuard
if !inheritTime {
_g_.m.p.ptr().schedtick++
}
_g_.m.curg = gp
gp.m = _g_.m
// Check whether the profiler needs to be turned on or off.
hz := sched.profilehz
if _g_.m.profilehz != hz {
resetcpuprofiler(hz)
}
if trace.enabled {
// GoSysExit has to happen when we have a P, but before GoStart.
// So we emit it here.
if gp.syscallsp != 0 && gp.sysblocktraced {
// Since gp.sysblocktraced is true, we must emit an event.
// There is a race between the code that initializes sysexitseq
// and sysexitticks (in exitsyscall, which runs without a P,
// and therefore is not stopped with the rest of the world)
// and the code that initializes a new trace.
// The recorded sysexitseq and sysexitticks must therefore
// be treated as "best effort". If they are valid for this trace,
// then great, use them for greater accuracy.
// But if they're not valid for this trace, assume that the
// trace was started after the actual syscall exit (but before
// we actually managed to start the goroutine, aka right now),
// and assign a fresh time stamp to keep the log consistent.
seq, ts := gp.sysexitseq, gp.sysexitticks
if seq == 0 || int64(seq)-int64(trace.seqStart) < 0 {
seq, ts = tracestamp()
}
traceGoSysExit(seq, ts)
}
traceGoStart()
}
gogo(&gp.sched)
}
// Finds a runnable goroutine to execute.
// Tries to steal from other P's, get g from global queue, poll network.
func findrunnable() (gp *g, inheritTime bool) {
_g_ := getg()
// The conditions here and in handoffp must agree: if
// findrunnable would return a G to run, handoffp must start
// an M.
top:
if sched.gcwaiting != 0 {
gcstopm()
goto top
}
if _g_.m.p.ptr().runSafePointFn != 0 {
runSafePointFn()
}
if fingwait && fingwake {
if gp := wakefing(); gp != nil {
ready(gp, 0)
}
}
// local runq
if gp, inheritTime := runqget(_g_.m.p.ptr()); gp != nil {
return gp, inheritTime
}
// global runq
if sched.runqsize != 0 {
lock(&sched.lock)
gp := globrunqget(_g_.m.p.ptr(), 0)
unlock(&sched.lock)
if gp != nil {
return gp, false
}
}
// Poll network.
// This netpoll is only an optimization before we resort to stealing.
// We can safely skip it if there a thread blocked in netpoll already.
// If there is any kind of logical race with that blocked thread
// (e.g. it has already returned from netpoll, but does not set lastpoll yet),
// this thread will do blocking netpoll below anyway.
if netpollinited() && sched.lastpoll != 0 {
if gp := netpoll(false); gp != nil { // non-blocking
// netpoll returns list of goroutines linked by schedlink.
injectglist(gp.schedlink.ptr())
casgstatus(gp, _Gwaiting, _Grunnable)
if trace.enabled {
traceGoUnpark(gp, 0)
}
return gp, false
}
}
// If number of spinning M's >= number of busy P's, block.
// This is necessary to prevent excessive CPU consumption
// when GOMAXPROCS>>1 but the program parallelism is low.
if !_g_.m.spinning && 2*atomic.Load(&sched.nmspinning) >= uint32(gomaxprocs)-atomic.Load(&sched.npidle) { // TODO: fast atomic
goto stop
}
if !_g_.m.spinning {
_g_.m.spinning = true
atomic.Xadd(&sched.nmspinning, 1)
}
// random steal from other P's
for i := 0; i < int(4*gomaxprocs); i++ {
if sched.gcwaiting != 0 {
goto top
}
_p_ := allp[fastrand1()%uint32(gomaxprocs)]
var gp *g
if _p_ == _g_.m.p.ptr() {
gp, _ = runqget(_p_)
} else {
stealRunNextG := i > 2*int(gomaxprocs) // first look for ready queues with more than 1 g
gp = runqsteal(_g_.m.p.ptr(), _p_, stealRunNextG)
}
if gp != nil {
return gp, false
}
}
stop:
// We have nothing to do. If we're in the GC mark phase, can
// safely scan and blacken objects, and have work to do, run
// idle-time marking rather than give up the P.
if _p_ := _g_.m.p.ptr(); gcBlackenEnabled != 0 && _p_.gcBgMarkWorker != 0 && gcMarkWorkAvailable(_p_) {
_p_.gcMarkWorkerMode = gcMarkWorkerIdleMode
gp := _p_.gcBgMarkWorker.ptr()
casgstatus(gp, _Gwaiting, _Grunnable)
if trace.enabled {
traceGoUnpark(gp, 0)
}
return gp, false
}
// return P and block
lock(&sched.lock)
if sched.gcwaiting != 0 || _g_.m.p.ptr().runSafePointFn != 0 {
unlock(&sched.lock)
goto top
}
if sched.runqsize != 0 {
gp := globrunqget(_g_.m.p.ptr(), 0)
unlock(&sched.lock)
return gp, false
}
_p_ := releasep()
pidleput(_p_)
unlock(&sched.lock)
// Delicate dance: thread transitions from spinning to non-spinning state,
// potentially concurrently with submission of new goroutines. We must
// drop nmspinning first and then check all per-P queues again (with
// #StoreLoad memory barrier in between). If we do it the other way around,
// another thread can submit a goroutine after we've checked all run queues
// but before we drop nmspinning; as the result nobody will unpark a thread
// to run the goroutine.
// If we discover new work below, we need to restore m.spinning as a signal
// for resetspinning to unpark a new worker thread (because there can be more
// than one starving goroutine). However, if after discovering new work
// we also observe no idle Ps, it is OK to just park the current thread:
// the system is fully loaded so no spinning threads are required.
// Also see "Worker thread parking/unparking" comment at the top of the file.
wasSpinning := _g_.m.spinning
if _g_.m.spinning {
_g_.m.spinning = false
if int32(atomic.Xadd(&sched.nmspinning, -1)) < 0 {
throw("findrunnable: negative nmspinning")
}
}
// check all runqueues once again
for i := 0; i < int(gomaxprocs); i++ {
_p_ := allp[i]
if _p_ != nil && !runqempty(_p_) {
lock(&sched.lock)
_p_ = pidleget()
unlock(&sched.lock)
if _p_ != nil {
acquirep(_p_)
if wasSpinning {
_g_.m.spinning = true
atomic.Xadd(&sched.nmspinning, 1)
}
goto top
}
break
}
}
// poll network
if netpollinited() && atomic.Xchg64(&sched.lastpoll, 0) != 0 {
if _g_.m.p != 0 {
throw("findrunnable: netpoll with p")
}
if _g_.m.spinning {
throw("findrunnable: netpoll with spinning")
}
gp := netpoll(true) // block until new work is available
atomic.Store64(&sched.lastpoll, uint64(nanotime()))
if gp != nil {
lock(&sched.lock)
_p_ = pidleget()
unlock(&sched.lock)
if _p_ != nil {
acquirep(_p_)
injectglist(gp.schedlink.ptr())
casgstatus(gp, _Gwaiting, _Grunnable)
if trace.enabled {
traceGoUnpark(gp, 0)
}
return gp, false
}
injectglist(gp)
}
}
stopm()
goto top
}
func resetspinning() {
_g_ := getg()
if !_g_.m.spinning {
throw("resetspinning: not a spinning m")
}
_g_.m.spinning = false
nmspinning := atomic.Xadd(&sched.nmspinning, -1)
if int32(nmspinning) < 0 {
throw("findrunnable: negative nmspinning")
}
// M wakeup policy is deliberately somewhat conservative, so check if we
// need to wakeup another P here. See "Worker thread parking/unparking"
// comment at the top of the file for details.
if nmspinning == 0 && atomic.Load(&sched.npidle) > 0 {
wakep()
}
}
// Injects the list of runnable G's into the scheduler.
// Can run concurrently with GC.
func injectglist(glist *g) {
if glist == nil {
return
}
if trace.enabled {
for gp := glist; gp != nil; gp = gp.schedlink.ptr() {
traceGoUnpark(gp, 0)
}
}
lock(&sched.lock)
var n int
for n = 0; glist != nil; n++ {
gp := glist
glist = gp.schedlink.ptr()
casgstatus(gp, _Gwaiting, _Grunnable)
globrunqput(gp)
}
unlock(&sched.lock)
for ; n != 0 && sched.npidle != 0; n-- {
startm(nil, false)
}
}
// One round of scheduler: find a runnable goroutine and execute it.
// Never returns.
func schedule() {
_g_ := getg()
if _g_.m.locks != 0 {
throw("schedule: holding locks")
}
if _g_.m.lockedg != nil {
stoplockedm()
execute(_g_.m.lockedg, false) // Never returns.
}
top:
if sched.gcwaiting != 0 {
gcstopm()
goto top
}
if _g_.m.p.ptr().runSafePointFn != 0 {
runSafePointFn()
}
var gp *g
var inheritTime bool
if trace.enabled || trace.shutdown {
gp = traceReader()
if gp != nil {
casgstatus(gp, _Gwaiting, _Grunnable)
traceGoUnpark(gp, 0)
}
}
if gp == nil && gcBlackenEnabled != 0 {
gp = gcController.findRunnableGCWorker(_g_.m.p.ptr())
}
if gp == nil {
// Check the global runnable queue once in a while to ensure fairness.
// Otherwise two goroutines can completely occupy the local runqueue
// by constantly respawning each other.
if _g_.m.p.ptr().schedtick%61 == 0 && sched.runqsize > 0 {
lock(&sched.lock)
gp = globrunqget(_g_.m.p.ptr(), 1)
unlock(&sched.lock)
}
}
if gp == nil {
gp, inheritTime = runqget(_g_.m.p.ptr())
if gp != nil && _g_.m.spinning {
throw("schedule: spinning with local work")
}
}
if gp == nil {
gp, inheritTime = findrunnable() // blocks until work is available
}
// This thread is going to run a goroutine and is not spinning anymore,
// so if it was marked as spinning we need to reset it now and potentially
// start a new spinning M.
if _g_.m.spinning {
resetspinning()
}
if gp.lockedm != nil {
// Hands off own p to the locked m,
// then blocks waiting for a new p.
startlockedm(gp)
goto top
}
execute(gp, inheritTime)
}
// dropg removes the association between m and the current goroutine m->curg (gp for short).
// Typically a caller sets gp's status away from Grunning and then
// immediately calls dropg to finish the job. The caller is also responsible
// for arranging that gp will be restarted using ready at an
// appropriate time. After calling dropg and arranging for gp to be
// readied later, the caller can do other work but eventually should
// call schedule to restart the scheduling of goroutines on this m.
func dropg() {
_g_ := getg()
if _g_.m.lockedg == nil {
_g_.m.curg.m = nil
_g_.m.curg = nil
}
}
func parkunlock_c(gp *g, lock unsafe.Pointer) bool {
unlock((*mutex)(lock))
return true
}
// park continuation on g0.
func park_m(gp *g) {
_g_ := getg()
if trace.enabled {
traceGoPark(_g_.m.waittraceev, _g_.m.waittraceskip, gp)
}
casgstatus(gp, _Grunning, _Gwaiting)
dropg()
if _g_.m.waitunlockf != nil {
fn := *(*func(*g, unsafe.Pointer) bool)(unsafe.Pointer(&_g_.m.waitunlockf))
ok := fn(gp, _g_.m.waitlock)
_g_.m.waitunlockf = nil
_g_.m.waitlock = nil
if !ok {
if trace.enabled {
traceGoUnpark(gp, 2)
}
casgstatus(gp, _Gwaiting, _Grunnable)
execute(gp, true) // Schedule it back, never returns.
}
}
schedule()
}
func goschedImpl(gp *g) {
status := readgstatus(gp)
if status&^_Gscan != _Grunning {
dumpgstatus(gp)
throw("bad g status")
}
casgstatus(gp, _Grunning, _Grunnable)
dropg()
lock(&sched.lock)
globrunqput(gp)
unlock(&sched.lock)
schedule()
}
// Gosched continuation on g0.
func gosched_m(gp *g) {
if trace.enabled {
traceGoSched()
}
goschedImpl(gp)
}
func gopreempt_m(gp *g) {
if trace.enabled {
traceGoPreempt()
}
goschedImpl(gp)
}
// Finishes execution of the current goroutine.
func goexit1() {
if raceenabled {
racegoend()
}
if trace.enabled {
traceGoEnd()
}
mcall(goexit0)
}
// goexit continuation on g0.
func goexit0(gp *g) {
_g_ := getg()
casgstatus(gp, _Grunning, _Gdead)
if isSystemGoroutine(gp) {
atomic.Xadd(&sched.ngsys, -1)
}
gp.m = nil
gp.lockedm = nil
_g_.m.lockedg = nil
gp.paniconfault = false
gp._defer = nil // should be true already but just in case.
gp._panic = nil // non-nil for Goexit during panic. points at stack-allocated data.
gp.writebuf = nil
gp.waitreason = ""
gp.param = nil
dropg()
if _g_.m.locked&^_LockExternal != 0 {
print("invalid m->locked = ", _g_.m.locked, "\n")
throw("internal lockOSThread error")
}
_g_.m.locked = 0
gfput(_g_.m.p.ptr(), gp)
schedule()
}
//go:nosplit
//go:nowritebarrier
func save(pc, sp uintptr) {
_g_ := getg()
_g_.sched.pc = pc
_g_.sched.sp = sp
_g_.sched.lr = 0
_g_.sched.ret = 0
_g_.sched.ctxt = nil
_g_.sched.g = guintptr(unsafe.Pointer(_g_))
}
// The goroutine g is about to enter a system call.
// Record that it's not using the cpu anymore.
// This is called only from the go syscall library and cgocall,
// not from the low-level system calls used by the runtime.
//
// Entersyscall cannot split the stack: the gosave must
// make g->sched refer to the caller's stack segment, because
// entersyscall is going to return immediately after.
//
// Nothing entersyscall calls can split the stack either.
// We cannot safely move the stack during an active call to syscall,
// because we do not know which of the uintptr arguments are
// really pointers (back into the stack).
// In practice, this means that we make the fast path run through
// entersyscall doing no-split things, and the slow path has to use systemstack
// to run bigger things on the system stack.
//
// reentersyscall is the entry point used by cgo callbacks, where explicitly
// saved SP and PC are restored. This is needed when exitsyscall will be called
// from a function further up in the call stack than the parent, as g->syscallsp
// must always point to a valid stack frame. entersyscall below is the normal
// entry point for syscalls, which obtains the SP and PC from the caller.
//
// Syscall tracing:
// At the start of a syscall we emit traceGoSysCall to capture the stack trace.
// If the syscall does not block, that is it, we do not emit any other events.
// If the syscall blocks (that is, P is retaken), retaker emits traceGoSysBlock;
// when syscall returns we emit traceGoSysExit and when the goroutine starts running
// (potentially instantly, if exitsyscallfast returns true) we emit traceGoStart.
// To ensure that traceGoSysExit is emitted strictly after traceGoSysBlock,
// we remember current value of syscalltick in m (_g_.m.syscalltick = _g_.m.p.ptr().syscalltick),
// whoever emits traceGoSysBlock increments p.syscalltick afterwards;
// and we wait for the increment before emitting traceGoSysExit.
// Note that the increment is done even if tracing is not enabled,
// because tracing can be enabled in the middle of syscall. We don't want the wait to hang.
//
//go:nosplit
func reentersyscall(pc, sp uintptr) {
_g_ := getg()
// Disable preemption because during this function g is in Gsyscall status,
// but can have inconsistent g->sched, do not let GC observe it.
_g_.m.locks++
// Entersyscall must not call any function that might split/grow the stack.
// (See details in comment above.)
// Catch calls that might, by replacing the stack guard with something that
// will trip any stack check and leaving a flag to tell newstack to die.
_g_.stackguard0 = stackPreempt
_g_.throwsplit = true
// Leave SP around for GC and traceback.
save(pc, sp)
_g_.syscallsp = sp
_g_.syscallpc = pc
casgstatus(_g_, _Grunning, _Gsyscall)
if _g_.syscallsp < _g_.stack.lo || _g_.stack.hi < _g_.syscallsp {
systemstack(func() {
print("entersyscall inconsistent ", hex(_g_.syscallsp), " [", hex(_g_.stack.lo), ",", hex(_g_.stack.hi), "]\n")
throw("entersyscall")
})
}
if trace.enabled {
systemstack(traceGoSysCall)
// systemstack itself clobbers g.sched.{pc,sp} and we might
// need them later when the G is genuinely blocked in a
// syscall
save(pc, sp)
}
if atomic.Load(&sched.sysmonwait) != 0 { // TODO: fast atomic
systemstack(entersyscall_sysmon)
save(pc, sp)
}
if _g_.m.p.ptr().runSafePointFn != 0 {
// runSafePointFn may stack split if run on this stack
systemstack(runSafePointFn)
save(pc, sp)
}
_g_.m.syscalltick = _g_.m.p.ptr().syscalltick
_g_.sysblocktraced = true
_g_.m.mcache = nil
_g_.m.p.ptr().m = 0
atomic.Store(&_g_.m.p.ptr().status, _Psyscall)
if sched.gcwaiting != 0 {
systemstack(entersyscall_gcwait)
save(pc, sp)
}
// Goroutines must not split stacks in Gsyscall status (it would corrupt g->sched).
// We set _StackGuard to StackPreempt so that first split stack check calls morestack.
// Morestack detects this case and throws.
_g_.stackguard0 = stackPreempt
_g_.m.locks--
}
// Standard syscall entry used by the go syscall library and normal cgo calls.
//go:nosplit
func entersyscall(dummy int32) {
reentersyscall(getcallerpc(unsafe.Pointer(&dummy)), getcallersp(unsafe.Pointer(&dummy)))
}
func entersyscall_sysmon() {
lock(&sched.lock)
if atomic.Load(&sched.sysmonwait) != 0 {
atomic.Store(&sched.sysmonwait, 0)
notewakeup(&sched.sysmonnote)
}
unlock(&sched.lock)
}
func entersyscall_gcwait() {
_g_ := getg()
_p_ := _g_.m.p.ptr()
lock(&sched.lock)
if sched.stopwait > 0 && atomic.Cas(&_p_.status, _Psyscall, _Pgcstop) {
if trace.enabled {
traceGoSysBlock(_p_)
traceProcStop(_p_)
}
_p_.syscalltick++
if sched.stopwait--; sched.stopwait == 0 {
notewakeup(&sched.stopnote)
}
}
unlock(&sched.lock)
}
// The same as entersyscall(), but with a hint that the syscall is blocking.
//go:nosplit
func entersyscallblock(dummy int32) {
_g_ := getg()
_g_.m.locks++ // see comment in entersyscall
_g_.throwsplit = true
_g_.stackguard0 = stackPreempt // see comment in entersyscall
_g_.m.syscalltick = _g_.m.p.ptr().syscalltick
_g_.sysblocktraced = true
_g_.m.p.ptr().syscalltick++
// Leave SP around for GC and traceback.
pc := getcallerpc(unsafe.Pointer(&dummy))
sp := getcallersp(unsafe.Pointer(&dummy))
save(pc, sp)
_g_.syscallsp = _g_.sched.sp
_g_.syscallpc = _g_.sched.pc
if _g_.syscallsp < _g_.stack.lo || _g_.stack.hi < _g_.syscallsp {
sp1 := sp
sp2 := _g_.sched.sp
sp3 := _g_.syscallsp
systemstack(func() {
print("entersyscallblock inconsistent ", hex(sp1), " ", hex(sp2), " ", hex(sp3), " [", hex(_g_.stack.lo), ",", hex(_g_.stack.hi), "]\n")
throw("entersyscallblock")
})
}
casgstatus(_g_, _Grunning, _Gsyscall)
if _g_.syscallsp < _g_.stack.lo || _g_.stack.hi < _g_.syscallsp {
systemstack(func() {
print("entersyscallblock inconsistent ", hex(sp), " ", hex(_g_.sched.sp), " ", hex(_g_.syscallsp), " [", hex(_g_.stack.lo), ",", hex(_g_.stack.hi), "]\n")
throw("entersyscallblock")
})
}
systemstack(entersyscallblock_handoff)
// Resave for traceback during blocked call.
save(getcallerpc(unsafe.Pointer(&dummy)), getcallersp(unsafe.Pointer(&dummy)))
_g_.m.locks--
}
func entersyscallblock_handoff() {
if trace.enabled {
traceGoSysCall()
traceGoSysBlock(getg().m.p.ptr())
}
handoffp(releasep())
}
// The goroutine g exited its system call.
// Arrange for it to run on a cpu again.
// This is called only from the go syscall library, not
// from the low-level system calls used by the
//go:nosplit
func exitsyscall(dummy int32) {
_g_ := getg()
_g_.m.locks++ // see comment in entersyscall
if getcallersp(unsafe.Pointer(&dummy)) > _g_.syscallsp {
throw("exitsyscall: syscall frame is no longer valid")
}
_g_.waitsince = 0
oldp := _g_.m.p.ptr()
if exitsyscallfast() {
if _g_.m.mcache == nil {
throw("lost mcache")
}
if trace.enabled {
if oldp != _g_.m.p.ptr() || _g_.m.syscalltick != _g_.m.p.ptr().syscalltick {
systemstack(traceGoStart)
}
}
// There's a cpu for us, so we can run.
_g_.m.p.ptr().syscalltick++
// We need to cas the status and scan before resuming...
casgstatus(_g_, _Gsyscall, _Grunning)
// Garbage collector isn't running (since we are),
// so okay to clear syscallsp.
_g_.syscallsp = 0
_g_.m.locks--
if _g_.preempt {
// restore the preemption request in case we've cleared it in newstack
_g_.stackguard0 = stackPreempt
} else {
// otherwise restore the real _StackGuard, we've spoiled it in entersyscall/entersyscallblock
_g_.stackguard0 = _g_.stack.lo + _StackGuard
}
_g_.throwsplit = false
return
}
_g_.sysexitticks = 0
_g_.sysexitseq = 0
if trace.enabled {
// Wait till traceGoSysBlock event is emitted.
// This ensures consistency of the trace (the goroutine is started after it is blocked).
for oldp != nil && oldp.syscalltick == _g_.m.syscalltick {
osyield()
}
// We can't trace syscall exit right now because we don't have a P.
// Tracing code can invoke write barriers that cannot run without a P.
// So instead we remember the syscall exit time and emit the event
// in execute when we have a P.
_g_.sysexitseq, _g_.sysexitticks = tracestamp()
}
_g_.m.locks--
// Call the scheduler.
mcall(exitsyscall0)
if _g_.m.mcache == nil {
throw("lost mcache")
}
// Scheduler returned, so we're allowed to run now.
// Delete the syscallsp information that we left for
// the garbage collector during the system call.
// Must wait until now because until gosched returns
// we don't know for sure that the garbage collector
// is not running.
_g_.syscallsp = 0
_g_.m.p.ptr().syscalltick++
_g_.throwsplit = false
}
//go:nosplit
func exitsyscallfast() bool {
_g_ := getg()
// Freezetheworld sets stopwait but does not retake P's.
if sched.stopwait == freezeStopWait {
_g_.m.mcache = nil
_g_.m.p = 0
return false
}
// Try to re-acquire the last P.
if _g_.m.p != 0 && _g_.m.p.ptr().status == _Psyscall && atomic.Cas(&_g_.m.p.ptr().status, _Psyscall, _Prunning) {
// There's a cpu for us, so we can run.
_g_.m.mcache = _g_.m.p.ptr().mcache
_g_.m.p.ptr().m.set(_g_.m)
if _g_.m.syscalltick != _g_.m.p.ptr().syscalltick {
if trace.enabled {
// The p was retaken and then enter into syscall again (since _g_.m.syscalltick has changed).
// traceGoSysBlock for this syscall was already emitted,
// but here we effectively retake the p from the new syscall running on the same p.
systemstack(func() {
// Denote blocking of the new syscall.
traceGoSysBlock(_g_.m.p.ptr())
// Denote completion of the current syscall.
traceGoSysExit(tracestamp())
})
}
_g_.m.p.ptr().syscalltick++
}
return true
}
// Try to get any other idle P.
oldp := _g_.m.p.ptr()
_g_.m.mcache = nil
_g_.m.p = 0
if sched.pidle != 0 {
var ok bool
systemstack(func() {
ok = exitsyscallfast_pidle()
if ok && trace.enabled {
if oldp != nil {
// Wait till traceGoSysBlock event is emitted.
// This ensures consistency of the trace (the goroutine is started after it is blocked).
for oldp.syscalltick == _g_.m.syscalltick {
osyield()
}
}
traceGoSysExit(tracestamp())
}
})
if ok {
return true
}
}
return false
}
func exitsyscallfast_pidle() bool {
lock(&sched.lock)
_p_ := pidleget()
if _p_ != nil && atomic.Load(&sched.sysmonwait) != 0 {
atomic.Store(&sched.sysmonwait, 0)
notewakeup(&sched.sysmonnote)
}
unlock(&sched.lock)
if _p_ != nil {
acquirep(_p_)
return true
}
return false
}
// exitsyscall slow path on g0.
// Failed to acquire P, enqueue gp as runnable.
func exitsyscall0(gp *g) {
_g_ := getg()
casgstatus(gp, _Gsyscall, _Grunnable)
dropg()
lock(&sched.lock)
_p_ := pidleget()
if _p_ == nil {
globrunqput(gp)
} else if atomic.Load(&sched.sysmonwait) != 0 {
atomic.Store(&sched.sysmonwait, 0)
notewakeup(&sched.sysmonnote)
}
unlock(&sched.lock)
if _p_ != nil {
acquirep(_p_)
execute(gp, false) // Never returns.
}
if _g_.m.lockedg != nil {
// Wait until another thread schedules gp and so m again.
stoplockedm()
execute(gp, false) // Never returns.
}
stopm()
schedule() // Never returns.
}
func beforefork() {
gp := getg().m.curg
// Fork can hang if preempted with signals frequently enough (see issue 5517).
// Ensure that we stay on the same M where we disable profiling.
gp.m.locks++
if gp.m.profilehz != 0 {
resetcpuprofiler(0)
}
// This function is called before fork in syscall package.
// Code between fork and exec must not allocate memory nor even try to grow stack.
// Here we spoil g->_StackGuard to reliably detect any attempts to grow stack.
// runtime_AfterFork will undo this in parent process, but not in child.
gp.stackguard0 = stackFork
}
// Called from syscall package before fork.
//go:linkname syscall_runtime_BeforeFork syscall.runtime_BeforeFork
//go:nosplit
func syscall_runtime_BeforeFork() {
systemstack(beforefork)
}
func afterfork() {
gp := getg().m.curg
// See the comment in beforefork.
gp.stackguard0 = gp.stack.lo + _StackGuard
hz := sched.profilehz
if hz != 0 {
resetcpuprofiler(hz)
}
gp.m.locks--
}
// Called from syscall package after fork in parent.
//go:linkname syscall_runtime_AfterFork syscall.runtime_AfterFork
//go:nosplit
func syscall_runtime_AfterFork() {
systemstack(afterfork)
}
// Allocate a new g, with a stack big enough for stacksize bytes.
func malg(stacksize int32) *g {
newg := new(g)
if stacksize >= 0 {
stacksize = round2(_StackSystem + stacksize)
systemstack(func() {
newg.stack, newg.stkbar = stackalloc(uint32(stacksize))
})
newg.stackguard0 = newg.stack.lo + _StackGuard
newg.stackguard1 = ^uintptr(0)
newg.stackAlloc = uintptr(stacksize)
}
return newg
}
// Create a new g running fn with siz bytes of arguments.
// Put it on the queue of g's waiting to run.
// The compiler turns a go statement into a call to this.
// Cannot split the stack because it assumes that the arguments
// are available sequentially after &fn; they would not be
// copied if a stack split occurred.
//go:nosplit
func newproc(siz int32, fn *funcval) {
argp := add(unsafe.Pointer(&fn), sys.PtrSize)
pc := getcallerpc(unsafe.Pointer(&siz))
systemstack(func() {
newproc1(fn, (*uint8)(argp), siz, 0, pc)
})
}
// Create a new g running fn with narg bytes of arguments starting
// at argp and returning nret bytes of results. callerpc is the
// address of the go statement that created this. The new g is put
// on the queue of g's waiting to run.
func newproc1(fn *funcval, argp *uint8, narg int32, nret int32, callerpc uintptr) *g {
_g_ := getg()
if fn == nil {
_g_.m.throwing = -1 // do not dump full stacks
throw("go of nil func value")
}
_g_.m.locks++ // disable preemption because it can be holding p in a local var
siz := narg + nret
siz = (siz + 7) &^ 7
// We could allocate a larger initial stack if necessary.
// Not worth it: this is almost always an error.
// 4*sizeof(uintreg): extra space added below
// sizeof(uintreg): caller's LR (arm) or return address (x86, in gostartcall).
if siz >= _StackMin-4*sys.RegSize-sys.RegSize {
throw("newproc: function arguments too large for new goroutine")
}
_p_ := _g_.m.p.ptr()
newg := gfget(_p_)
if newg == nil {
newg = malg(_StackMin)
casgstatus(newg, _Gidle, _Gdead)
allgadd(newg) // publishes with a g->status of Gdead so GC scanner doesn't look at uninitialized stack.
}
if newg.stack.hi == 0 {
throw("newproc1: newg missing stack")
}
if readgstatus(newg) != _Gdead {
throw("newproc1: new g is not Gdead")
}
totalSize := 4*sys.RegSize + uintptr(siz) + sys.MinFrameSize // extra space in case of reads slightly beyond frame
totalSize += -totalSize & (sys.SpAlign - 1) // align to spAlign
sp := newg.stack.hi - totalSize
spArg := sp
if usesLR {
// caller's LR
*(*unsafe.Pointer)(unsafe.Pointer(sp)) = nil
prepGoExitFrame(sp)
spArg += sys.MinFrameSize
}
memmove(unsafe.Pointer(spArg), unsafe.Pointer(argp), uintptr(narg))
memclr(unsafe.Pointer(&newg.sched), unsafe.Sizeof(newg.sched))
newg.sched.sp = sp
newg.stktopsp = sp
newg.sched.pc = funcPC(goexit) + sys.PCQuantum // +PCQuantum so that previous instruction is in same function
newg.sched.g = guintptr(unsafe.Pointer(newg))
gostartcallfn(&newg.sched, fn)
newg.gopc = callerpc
newg.startpc = fn.fn
if isSystemGoroutine(newg) {
atomic.Xadd(&sched.ngsys, +1)
}
casgstatus(newg, _Gdead, _Grunnable)
if _p_.goidcache == _p_.goidcacheend {
// Sched.goidgen is the last allocated id,
// this batch must be [sched.goidgen+1, sched.goidgen+GoidCacheBatch].
// At startup sched.goidgen=0, so main goroutine receives goid=1.
_p_.goidcache = atomic.Xadd64(&sched.goidgen, _GoidCacheBatch)
_p_.goidcache -= _GoidCacheBatch - 1
_p_.goidcacheend = _p_.goidcache + _GoidCacheBatch
}
newg.goid = int64(_p_.goidcache)
_p_.goidcache++
if raceenabled {
newg.racectx = racegostart(callerpc)
}
if trace.enabled {
traceGoCreate(newg, newg.startpc)
}
runqput(_p_, newg, true)
if atomic.Load(&sched.npidle) != 0 && atomic.Load(&sched.nmspinning) == 0 && unsafe.Pointer(fn.fn) != unsafe.Pointer(funcPC(main)) { // TODO: fast atomic
wakep()
}
_g_.m.locks--
if _g_.m.locks == 0 && _g_.preempt { // restore the preemption request in case we've cleared it in newstack
_g_.stackguard0 = stackPreempt
}
return newg
}
// Put on gfree list.
// If local list is too long, transfer a batch to the global list.
func gfput(_p_ *p, gp *g) {
if readgstatus(gp) != _Gdead {
throw("gfput: bad status (not Gdead)")
}
stksize := gp.stackAlloc
if stksize != _FixedStack {
// non-standard stack size - free it.
stackfree(gp.stack, gp.stackAlloc)
gp.stack.lo = 0
gp.stack.hi = 0
gp.stackguard0 = 0
gp.stkbar = nil
gp.stkbarPos = 0
} else {
// Reset stack barriers.
gp.stkbar = gp.stkbar[:0]
gp.stkbarPos = 0
}
gp.schedlink.set(_p_.gfree)
_p_.gfree = gp
_p_.gfreecnt++
if _p_.gfreecnt >= 64 {
lock(&sched.gflock)
for _p_.gfreecnt >= 32 {
_p_.gfreecnt--
gp = _p_.gfree
_p_.gfree = gp.schedlink.ptr()
gp.schedlink.set(sched.gfree)
sched.gfree = gp
sched.ngfree++
}
unlock(&sched.gflock)
}
}
// Get from gfree list.
// If local list is empty, grab a batch from global list.
func gfget(_p_ *p) *g {
retry:
gp := _p_.gfree
if gp == nil && sched.gfree != nil {
lock(&sched.gflock)
for _p_.gfreecnt < 32 && sched.gfree != nil {
_p_.gfreecnt++
gp = sched.gfree
sched.gfree = gp.schedlink.ptr()
sched.ngfree--
gp.schedlink.set(_p_.gfree)
_p_.gfree = gp
}
unlock(&sched.gflock)
goto retry
}
if gp != nil {
_p_.gfree = gp.schedlink.ptr()
_p_.gfreecnt--
if gp.stack.lo == 0 {
// Stack was deallocated in gfput. Allocate a new one.
systemstack(func() {
gp.stack, gp.stkbar = stackalloc(_FixedStack)
})
gp.stackguard0 = gp.stack.lo + _StackGuard
gp.stackAlloc = _FixedStack
} else {
if raceenabled {
racemalloc(unsafe.Pointer(gp.stack.lo), gp.stackAlloc)
}
if msanenabled {
msanmalloc(unsafe.Pointer(gp.stack.lo), gp.stackAlloc)
}
}
}
return gp
}
// Purge all cached G's from gfree list to the global list.
func gfpurge(_p_ *p) {
lock(&sched.gflock)
for _p_.gfreecnt != 0 {
_p_.gfreecnt--
gp := _p_.gfree
_p_.gfree = gp.schedlink.ptr()
gp.schedlink.set(sched.gfree)
sched.gfree = gp
sched.ngfree++
}
unlock(&sched.gflock)
}
// Breakpoint executes a breakpoint trap.
func Breakpoint() {
breakpoint()
}
// dolockOSThread is called by LockOSThread and lockOSThread below
// after they modify m.locked. Do not allow preemption during this call,
// or else the m might be different in this function than in the caller.
//go:nosplit
func dolockOSThread() {
_g_ := getg()
_g_.m.lockedg = _g_
_g_.lockedm = _g_.m
}
//go:nosplit
// LockOSThread wires the calling goroutine to its current operating system thread.
// Until the calling goroutine exits or calls UnlockOSThread, it will always
// execute in that thread, and no other goroutine can.
func LockOSThread() {
getg().m.locked |= _LockExternal
dolockOSThread()
}
//go:nosplit
func lockOSThread() {
getg().m.locked += _LockInternal
dolockOSThread()
}
// dounlockOSThread is called by UnlockOSThread and unlockOSThread below
// after they update m->locked. Do not allow preemption during this call,
// or else the m might be in different in this function than in the caller.
//go:nosplit
func dounlockOSThread() {
_g_ := getg()
if _g_.m.locked != 0 {
return
}
_g_.m.lockedg = nil
_g_.lockedm = nil
}
//go:nosplit
// UnlockOSThread unwires the calling goroutine from its fixed operating system thread.
// If the calling goroutine has not called LockOSThread, UnlockOSThread is a no-op.
func UnlockOSThread() {
getg().m.locked &^= _LockExternal
dounlockOSThread()
}
//go:nosplit
func unlockOSThread() {
_g_ := getg()
if _g_.m.locked < _LockInternal {
systemstack(badunlockosthread)
}
_g_.m.locked -= _LockInternal
dounlockOSThread()
}
func badunlockosthread() {
throw("runtime: internal error: misuse of lockOSThread/unlockOSThread")
}
func gcount() int32 {
n := int32(allglen) - sched.ngfree - int32(atomic.Load(&sched.ngsys))
for i := 0; ; i++ {
_p_ := allp[i]
if _p_ == nil {
break
}
n -= _p_.gfreecnt
}
// All these variables can be changed concurrently, so the result can be inconsistent.
// But at least the current goroutine is running.
if n < 1 {
n = 1
}
return n
}
func mcount() int32 {
return sched.mcount
}
var prof struct {
lock uint32
hz int32
}
func _System() { _System() }
func _ExternalCode() { _ExternalCode() }
func _GC() { _GC() }
// Called if we receive a SIGPROF signal.
func sigprof(pc, sp, lr uintptr, gp *g, mp *m) {
if prof.hz == 0 {
return
}
// Profiling runs concurrently with GC, so it must not allocate.
mp.mallocing++
// Define that a "user g" is a user-created goroutine, and a "system g"
// is one that is m->g0 or m->gsignal.
//
// We might be interrupted for profiling halfway through a
// goroutine switch. The switch involves updating three (or four) values:
// g, PC, SP, and (on arm) LR. The PC must be the last to be updated,
// because once it gets updated the new g is running.
//
// When switching from a user g to a system g, LR is not considered live,
// so the update only affects g, SP, and PC. Since PC must be last, there
// the possible partial transitions in ordinary execution are (1) g alone is updated,
// (2) both g and SP are updated, and (3) SP alone is updated.
// If SP or g alone is updated, we can detect the partial transition by checking
// whether the SP is within g's stack bounds. (We could also require that SP
// be changed only after g, but the stack bounds check is needed by other
// cases, so there is no need to impose an additional requirement.)
//
// There is one exceptional transition to a system g, not in ordinary execution.
// When a signal arrives, the operating system starts the signal handler running
// with an updated PC and SP. The g is updated last, at the beginning of the
// handler. There are two reasons this is okay. First, until g is updated the
// g and SP do not match, so the stack bounds check detects the partial transition.
// Second, signal handlers currently run with signals disabled, so a profiling
// signal cannot arrive during the handler.
//
// When switching from a system g to a user g, there are three possibilities.
//
// First, it may be that the g switch has no PC update, because the SP
// either corresponds to a user g throughout (as in asmcgocall)
// or because it has been arranged to look like a user g frame
// (as in cgocallback_gofunc). In this case, since the entire
// transition is a g+SP update, a partial transition updating just one of
// those will be detected by the stack bounds check.
//
// Second, when returning from a signal handler, the PC and SP updates
// are performed by the operating system in an atomic update, so the g
// update must be done before them. The stack bounds check detects
// the partial transition here, and (again) signal handlers run with signals
// disabled, so a profiling signal cannot arrive then anyway.
//
// Third, the common case: it may be that the switch updates g, SP, and PC
// separately. If the PC is within any of the functions that does this,
// we don't ask for a traceback. C.F. the function setsSP for more about this.
//
// There is another apparently viable approach, recorded here in case
// the "PC within setsSP function" check turns out not to be usable.
// It would be possible to delay the update of either g or SP until immediately
// before the PC update instruction. Then, because of the stack bounds check,
// the only problematic interrupt point is just before that PC update instruction,
// and the sigprof handler can detect that instruction and simulate stepping past
// it in order to reach a consistent state. On ARM, the update of g must be made
// in two places (in R10 and also in a TLS slot), so the delayed update would
// need to be the SP update. The sigprof handler must read the instruction at
// the current PC and if it was the known instruction (for example, JMP BX or
// MOV R2, PC), use that other register in place of the PC value.
// The biggest drawback to this solution is that it requires that we can tell
// whether it's safe to read from the memory pointed at by PC.
// In a correct program, we can test PC == nil and otherwise read,
// but if a profiling signal happens at the instant that a program executes
// a bad jump (before the program manages to handle the resulting fault)
// the profiling handler could fault trying to read nonexistent memory.
//
// To recap, there are no constraints on the assembly being used for the
// transition. We simply require that g and SP match and that the PC is not
// in gogo.
traceback := true
if gp == nil || sp < gp.stack.lo || gp.stack.hi < sp || setsSP(pc) {
traceback = false
}
var stk [maxCPUProfStack]uintptr
var haveStackLock *g
n := 0
if mp.ncgo > 0 && mp.curg != nil && mp.curg.syscallpc != 0 && mp.curg.syscallsp != 0 {
// Cgo, we can't unwind and symbolize arbitrary C code,
// so instead collect Go stack that leads to the cgo call.
// This is especially important on windows, since all syscalls are cgo calls.
if gcTryLockStackBarriers(mp.curg) {
haveStackLock = mp.curg
n = gentraceback(mp.curg.syscallpc, mp.curg.syscallsp, 0, mp.curg, 0, &stk[0], len(stk), nil, nil, 0)
}
} else if traceback {
var flags uint = _TraceTrap
if gp.m.curg != nil && gcTryLockStackBarriers(gp.m.curg) {
// It's safe to traceback the user stack.
haveStackLock = gp.m.curg
flags |= _TraceJumpStack
}
// Traceback is safe if we're on the system stack (if
// necessary, flags will stop it before switching to
// the user stack), or if we locked the user stack.
if gp != gp.m.curg || haveStackLock != nil {
n = gentraceback(pc, sp, lr, gp, 0, &stk[0], len(stk), nil, nil, flags)
}
}
if haveStackLock != nil {
gcUnlockStackBarriers(haveStackLock)
}
if n <= 0 {
// Normal traceback is impossible or has failed.
// See if it falls into several common cases.
n = 0
if GOOS == "windows" && mp.libcallg != 0 && mp.libcallpc != 0 && mp.libcallsp != 0 {
// Libcall, i.e. runtime syscall on windows.
// Collect Go stack that leads to the call.
if gcTryLockStackBarriers(mp.libcallg.ptr()) {
n = gentraceback(mp.libcallpc, mp.libcallsp, 0, mp.libcallg.ptr(), 0, &stk[0], len(stk), nil, nil, 0)
gcUnlockStackBarriers(mp.libcallg.ptr())
}
}
if n == 0 {
// If all of the above has failed, account it against abstract "System" or "GC".
n = 2
// "ExternalCode" is better than "etext".
if pc > firstmoduledata.etext {
pc = funcPC(_ExternalCode) + sys.PCQuantum
}
stk[0] = pc
if mp.preemptoff != "" || mp.helpgc != 0 {
stk[1] = funcPC(_GC) + sys.PCQuantum
} else {
stk[1] = funcPC(_System) + sys.PCQuantum
}
}
}
if prof.hz != 0 {
// Simple cas-lock to coordinate with setcpuprofilerate.
for !atomic.Cas(&prof.lock, 0, 1) {
osyield()
}
if prof.hz != 0 {
cpuprof.add(stk[:n])
}
atomic.Store(&prof.lock, 0)
}
mp.mallocing--
}
// Reports whether a function will set the SP
// to an absolute value. Important that
// we don't traceback when these are at the bottom
// of the stack since we can't be sure that we will
// find the caller.
//
// If the function is not on the bottom of the stack
// we assume that it will have set it up so that traceback will be consistent,
// either by being a traceback terminating function
// or putting one on the stack at the right offset.
func setsSP(pc uintptr) bool {
f := findfunc(pc)
if f == nil {
// couldn't find the function for this PC,
// so assume the worst and stop traceback
return true
}
switch f.entry {
case gogoPC, systemstackPC, mcallPC, morestackPC:
return true
}
return false
}
// Arrange to call fn with a traceback hz times a second.
func setcpuprofilerate_m(hz int32) {
// Force sane arguments.
if hz < 0 {
hz = 0
}
// Disable preemption, otherwise we can be rescheduled to another thread
// that has profiling enabled.
_g_ := getg()
_g_.m.locks++
// Stop profiler on this thread so that it is safe to lock prof.
// if a profiling signal came in while we had prof locked,
// it would deadlock.
resetcpuprofiler(0)
for !atomic.Cas(&prof.lock, 0, 1) {
osyield()
}
prof.hz = hz
atomic.Store(&prof.lock, 0)
lock(&sched.lock)
sched.profilehz = hz
unlock(&sched.lock)
if hz != 0 {
resetcpuprofiler(hz)
}
_g_.m.locks--
}
// Change number of processors. The world is stopped, sched is locked.
// gcworkbufs are not being modified by either the GC or
// the write barrier code.
// Returns list of Ps with local work, they need to be scheduled by the caller.
func procresize(nprocs int32) *p {
old := gomaxprocs
if old < 0 || old > _MaxGomaxprocs || nprocs <= 0 || nprocs > _MaxGomaxprocs {
throw("procresize: invalid arg")
}
if trace.enabled {
traceGomaxprocs(nprocs)
}
// update statistics
now := nanotime()
if sched.procresizetime != 0 {
sched.totaltime += int64(old) * (now - sched.procresizetime)
}
sched.procresizetime = now
// initialize new P's
for i := int32(0); i < nprocs; i++ {
pp := allp[i]
if pp == nil {
pp = new(p)
pp.id = i
pp.status = _Pgcstop
pp.sudogcache = pp.sudogbuf[:0]
for i := range pp.deferpool {
pp.deferpool[i] = pp.deferpoolbuf[i][:0]
}
atomicstorep(unsafe.Pointer(&allp[i]), unsafe.Pointer(pp))
}
if pp.mcache == nil {
if old == 0 && i == 0 {
if getg().m.mcache == nil {
throw("missing mcache?")
}
pp.mcache = getg().m.mcache // bootstrap
} else {
pp.mcache = allocmcache()
}
}
}
// free unused P's
for i := nprocs; i < old; i++ {
p := allp[i]
if trace.enabled {
if p == getg().m.p.ptr() {
// moving to p[0], pretend that we were descheduled
// and then scheduled again to keep the trace sane.
traceGoSched()
traceProcStop(p)
}
}
// move all runnable goroutines to the global queue
for p.runqhead != p.runqtail {
// pop from tail of local queue
p.runqtail--
gp := p.runq[p.runqtail%uint32(len(p.runq))].ptr()
// push onto head of global queue
globrunqputhead(gp)
}
if p.runnext != 0 {
globrunqputhead(p.runnext.ptr())
p.runnext = 0
}
// if there's a background worker, make it runnable and put
// it on the global queue so it can clean itself up
if gp := p.gcBgMarkWorker.ptr(); gp != nil {
casgstatus(gp, _Gwaiting, _Grunnable)
if trace.enabled {
traceGoUnpark(gp, 0)
}
globrunqput(gp)
// This assignment doesn't race because the
// world is stopped.
p.gcBgMarkWorker.set(nil)
}
for i := range p.sudogbuf {
p.sudogbuf[i] = nil
}
p.sudogcache = p.sudogbuf[:0]
for i := range p.deferpool {
for j := range p.deferpoolbuf[i] {
p.deferpoolbuf[i][j] = nil
}
p.deferpool[i] = p.deferpoolbuf[i][:0]
}
freemcache(p.mcache)
p.mcache = nil
gfpurge(p)
traceProcFree(p)
p.status = _Pdead
// can't free P itself because it can be referenced by an M in syscall
}
_g_ := getg()
if _g_.m.p != 0 && _g_.m.p.ptr().id < nprocs {
// continue to use the current P
_g_.m.p.ptr().status = _Prunning
} else {
// release the current P and acquire allp[0]
if _g_.m.p != 0 {
_g_.m.p.ptr().m = 0
}
_g_.m.p = 0
_g_.m.mcache = nil
p := allp[0]
p.m = 0
p.status = _Pidle
acquirep(p)
if trace.enabled {
traceGoStart()
}
}
var runnablePs *p
for i := nprocs - 1; i >= 0; i-- {
p := allp[i]
if _g_.m.p.ptr() == p {
continue
}
p.status = _Pidle
if runqempty(p) {
pidleput(p)
} else {
p.m.set(mget())
p.link.set(runnablePs)
runnablePs = p
}
}
var int32p *int32 = &gomaxprocs // make compiler check that gomaxprocs is an int32
atomic.Store((*uint32)(unsafe.Pointer(int32p)), uint32(nprocs))
return runnablePs
}
// Associate p and the current m.
func acquirep(_p_ *p) {
acquirep1(_p_)
// have p; write barriers now allowed
_g_ := getg()
_g_.m.mcache = _p_.mcache
if trace.enabled {
traceProcStart()
}
}
// May run during STW, so write barriers are not allowed.
//go:nowritebarrier
func acquirep1(_p_ *p) {
_g_ := getg()
if _g_.m.p != 0 || _g_.m.mcache != nil {
throw("acquirep: already in go")
}
if _p_.m != 0 || _p_.status != _Pidle {
id := int32(0)
if _p_.m != 0 {
id = _p_.m.ptr().id
}
print("acquirep: p->m=", _p_.m, "(", id, ") p->status=", _p_.status, "\n")
throw("acquirep: invalid p state")
}
_g_.m.p.set(_p_)
_p_.m.set(_g_.m)
_p_.status = _Prunning
}
// Disassociate p and the current m.
func releasep() *p {
_g_ := getg()
if _g_.m.p == 0 || _g_.m.mcache == nil {
throw("releasep: invalid arg")
}
_p_ := _g_.m.p.ptr()
if _p_.m.ptr() != _g_.m || _p_.mcache != _g_.m.mcache || _p_.status != _Prunning {
print("releasep: m=", _g_.m, " m->p=", _g_.m.p.ptr(), " p->m=", _p_.m, " m->mcache=", _g_.m.mcache, " p->mcache=", _p_.mcache, " p->status=", _p_.status, "\n")
throw("releasep: invalid p state")
}
if trace.enabled {
traceProcStop(_g_.m.p.ptr())
}
_g_.m.p = 0
_g_.m.mcache = nil
_p_.m = 0
_p_.status = _Pidle
return _p_
}
func incidlelocked(v int32) {
lock(&sched.lock)
sched.nmidlelocked += v
if v > 0 {
checkdead()
}
unlock(&sched.lock)
}
// Check for deadlock situation.
// The check is based on number of running M's, if 0 -> deadlock.
func checkdead() {
// For -buildmode=c-shared or -buildmode=c-archive it's OK if
// there are no running goroutines. The calling program is
// assumed to be running.
if islibrary || isarchive {
return
}
// If we are dying because of a signal caught on an already idle thread,
// freezetheworld will cause all running threads to block.
// And runtime will essentially enter into deadlock state,
// except that there is a thread that will call exit soon.
if panicking > 0 {
return
}
// -1 for sysmon
run := sched.mcount - sched.nmidle - sched.nmidlelocked - 1
if run > 0 {
return
}
if run < 0 {
print("runtime: checkdead: nmidle=", sched.nmidle, " nmidlelocked=", sched.nmidlelocked, " mcount=", sched.mcount, "\n")
throw("checkdead: inconsistent counts")
}
grunning := 0
lock(&allglock)
for i := 0; i < len(allgs); i++ {
gp := allgs[i]
if isSystemGoroutine(gp) {
continue
}
s := readgstatus(gp)
switch s &^ _Gscan {
case _Gwaiting:
grunning++
case _Grunnable,
_Grunning,
_Gsyscall:
unlock(&allglock)
print("runtime: checkdead: find g ", gp.goid, " in status ", s, "\n")
throw("checkdead: runnable g")
}
}
unlock(&allglock)
if grunning == 0 { // possible if main goroutine calls runtime·Goexit()
throw("no goroutines (main called runtime.Goexit) - deadlock!")
}
// Maybe jump time forward for playground.
gp := timejump()
if gp != nil {
casgstatus(gp, _Gwaiting, _Grunnable)
globrunqput(gp)
_p_ := pidleget()
if _p_ == nil {
throw("checkdead: no p for timer")
}
mp := mget()
if mp == nil {
// There should always be a free M since
// nothing is running.
throw("checkdead: no m for timer")
}
mp.nextp.set(_p_)
notewakeup(&mp.park)
return
}
getg().m.throwing = -1 // do not dump full stacks
throw("all goroutines are asleep - deadlock!")
}
// forcegcperiod is the maximum time in nanoseconds between garbage
// collections. If we go this long without a garbage collection, one
// is forced to run.
//
// This is a variable for testing purposes. It normally doesn't change.
var forcegcperiod int64 = 2 * 60 * 1e9
// Always runs without a P, so write barriers are not allowed.
//
//go:nowritebarrierrec
func sysmon() {
// If a heap span goes unused for 5 minutes after a garbage collection,
// we hand it back to the operating system.
scavengelimit := int64(5 * 60 * 1e9)
if debug.scavenge > 0 {
// Scavenge-a-lot for testing.
forcegcperiod = 10 * 1e6
scavengelimit = 20 * 1e6
}
lastscavenge := nanotime()
nscavenge := 0
lasttrace := int64(0)
idle := 0 // how many cycles in succession we had not wokeup somebody
delay := uint32(0)
for {
if idle == 0 { // start with 20us sleep...
delay = 20
} else if idle > 50 { // start doubling the sleep after 1ms...
delay *= 2
}
if delay > 10*1000 { // up to 10ms
delay = 10 * 1000
}
usleep(delay)
if debug.schedtrace <= 0 && (sched.gcwaiting != 0 || atomic.Load(&sched.npidle) == uint32(gomaxprocs)) { // TODO: fast atomic
lock(&sched.lock)
if atomic.Load(&sched.gcwaiting) != 0 || atomic.Load(&sched.npidle) == uint32(gomaxprocs) {
atomic.Store(&sched.sysmonwait, 1)
unlock(&sched.lock)
// Make wake-up period small enough
// for the sampling to be correct.
maxsleep := forcegcperiod / 2
if scavengelimit < forcegcperiod {
maxsleep = scavengelimit / 2
}
notetsleep(&sched.sysmonnote, maxsleep)
lock(&sched.lock)
atomic.Store(&sched.sysmonwait, 0)
noteclear(&sched.sysmonnote)
idle = 0
delay = 20
}
unlock(&sched.lock)
}
// poll network if not polled for more than 10ms
lastpoll := int64(atomic.Load64(&sched.lastpoll))
now := nanotime()
unixnow := unixnanotime()
if lastpoll != 0 && lastpoll+10*1000*1000 < now {
atomic.Cas64(&sched.lastpoll, uint64(lastpoll), uint64(now))
gp := netpoll(false) // non-blocking - returns list of goroutines
if gp != nil {
// Need to decrement number of idle locked M's
// (pretending that one more is running) before injectglist.
// Otherwise it can lead to the following situation:
// injectglist grabs all P's but before it starts M's to run the P's,
// another M returns from syscall, finishes running its G,
// observes that there is no work to do and no other running M's
// and reports deadlock.
incidlelocked(-1)
injectglist(gp)
incidlelocked(1)
}
}
// retake P's blocked in syscalls
// and preempt long running G's
if retake(now) != 0 {
idle = 0
} else {
idle++
}
// check if we need to force a GC
lastgc := int64(atomic.Load64(&memstats.last_gc))
if gcphase == _GCoff && lastgc != 0 && unixnow-lastgc > forcegcperiod && atomic.Load(&forcegc.idle) != 0 {
lock(&forcegc.lock)
forcegc.idle = 0
forcegc.g.schedlink = 0
injectglist(forcegc.g)
unlock(&forcegc.lock)
}
// scavenge heap once in a while
if lastscavenge+scavengelimit/2 < now {
mheap_.scavenge(int32(nscavenge), uint64(now), uint64(scavengelimit))
lastscavenge = now
nscavenge++
}
if debug.schedtrace > 0 && lasttrace+int64(debug.schedtrace)*1000000 <= now {
lasttrace = now
schedtrace(debug.scheddetail > 0)
}
}
}
var pdesc [_MaxGomaxprocs]struct {
schedtick uint32
schedwhen int64
syscalltick uint32
syscallwhen int64
}
// forcePreemptNS is the time slice given to a G before it is
// preempted.
const forcePreemptNS = 10 * 1000 * 1000 // 10ms
func retake(now int64) uint32 {
n := 0
for i := int32(0); i < gomaxprocs; i++ {
_p_ := allp[i]
if _p_ == nil {
continue
}
pd := &pdesc[i]
s := _p_.status
if s == _Psyscall {
// Retake P from syscall if it's there for more than 1 sysmon tick (at least 20us).
t := int64(_p_.syscalltick)
if int64(pd.syscalltick) != t {
pd.syscalltick = uint32(t)
pd.syscallwhen = now
continue
}
// On the one hand we don't want to retake Ps if there is no other work to do,
// but on the other hand we want to retake them eventually
// because they can prevent the sysmon thread from deep sleep.
if runqempty(_p_) && atomic.Load(&sched.nmspinning)+atomic.Load(&sched.npidle) > 0 && pd.syscallwhen+10*1000*1000 > now {
continue
}
// Need to decrement number of idle locked M's
// (pretending that one more is running) before the CAS.
// Otherwise the M from which we retake can exit the syscall,
// increment nmidle and report deadlock.
incidlelocked(-1)
if atomic.Cas(&_p_.status, s, _Pidle) {
if trace.enabled {
traceGoSysBlock(_p_)
traceProcStop(_p_)
}
n++
_p_.syscalltick++
handoffp(_p_)
}
incidlelocked(1)
} else if s == _Prunning {
// Preempt G if it's running for too long.
t := int64(_p_.schedtick)
if int64(pd.schedtick) != t {
pd.schedtick = uint32(t)
pd.schedwhen = now
continue
}
if pd.schedwhen+forcePreemptNS > now {
continue
}
preemptone(_p_)
}
}
return uint32(n)
}
// Tell all goroutines that they have been preempted and they should stop.
// This function is purely best-effort. It can fail to inform a goroutine if a
// processor just started running it.
// No locks need to be held.
// Returns true if preemption request was issued to at least one goroutine.
func preemptall() bool {
res := false
for i := int32(0); i < gomaxprocs; i++ {
_p_ := allp[i]
if _p_ == nil || _p_.status != _Prunning {
continue
}
if preemptone(_p_) {
res = true
}
}
return res
}
// Tell the goroutine running on processor P to stop.
// This function is purely best-effort. It can incorrectly fail to inform the
// goroutine. It can send inform the wrong goroutine. Even if it informs the
// correct goroutine, that goroutine might ignore the request if it is
// simultaneously executing newstack.
// No lock needs to be held.
// Returns true if preemption request was issued.
// The actual preemption will happen at some point in the future
// and will be indicated by the gp->status no longer being
// Grunning
func preemptone(_p_ *p) bool {
mp := _p_.m.ptr()
if mp == nil || mp == getg().m {
return false
}
gp := mp.curg
if gp == nil || gp == mp.g0 {
return false
}
gp.preempt = true
// Every call in a go routine checks for stack overflow by
// comparing the current stack pointer to gp->stackguard0.
// Setting gp->stackguard0 to StackPreempt folds
// preemption into the normal stack overflow check.
gp.stackguard0 = stackPreempt
return true
}
var starttime int64
func schedtrace(detailed bool) {
now := nanotime()
if starttime == 0 {
starttime = now
}
lock(&sched.lock)
print("SCHED ", (now-starttime)/1e6, "ms: gomaxprocs=", gomaxprocs, " idleprocs=", sched.npidle, " threads=", sched.mcount, " spinningthreads=", sched.nmspinning, " idlethreads=", sched.nmidle, " runqueue=", sched.runqsize)
if detailed {
print(" gcwaiting=", sched.gcwaiting, " nmidlelocked=", sched.nmidlelocked, " stopwait=", sched.stopwait, " sysmonwait=", sched.sysmonwait, "\n")
}
// We must be careful while reading data from P's, M's and G's.
// Even if we hold schedlock, most data can be changed concurrently.
// E.g. (p->m ? p->m->id : -1) can crash if p->m changes from non-nil to nil.
for i := int32(0); i < gomaxprocs; i++ {
_p_ := allp[i]
if _p_ == nil {
continue
}
mp := _p_.m.ptr()
h := atomic.Load(&_p_.runqhead)
t := atomic.Load(&_p_.runqtail)
if detailed {
id := int32(-1)
if mp != nil {
id = mp.id
}
print(" P", i, ": status=", _p_.status, " schedtick=", _p_.schedtick, " syscalltick=", _p_.syscalltick, " m=", id, " runqsize=", t-h, " gfreecnt=", _p_.gfreecnt, "\n")
} else {
// In non-detailed mode format lengths of per-P run queues as:
// [len1 len2 len3 len4]
print(" ")
if i == 0 {
print("[")
}
print(t - h)
if i == gomaxprocs-1 {
print("]\n")
}
}
}
if !detailed {
unlock(&sched.lock)
return
}
for mp := allm; mp != nil; mp = mp.alllink {
_p_ := mp.p.ptr()
gp := mp.curg
lockedg := mp.lockedg
id1 := int32(-1)
if _p_ != nil {
id1 = _p_.id
}
id2 := int64(-1)
if gp != nil {
id2 = gp.goid
}
id3 := int64(-1)
if lockedg != nil {
id3 = lockedg.goid
}
print(" M", mp.id, ": p=", id1, " curg=", id2, " mallocing=", mp.mallocing, " throwing=", mp.throwing, " preemptoff=", mp.preemptoff, ""+" locks=", mp.locks, " dying=", mp.dying, " helpgc=", mp.helpgc, " spinning=", mp.spinning, " blocked=", getg().m.blocked, " lockedg=", id3, "\n")
}
lock(&allglock)
for gi := 0; gi < len(allgs); gi++ {
gp := allgs[gi]
mp := gp.m
lockedm := gp.lockedm
id1 := int32(-1)
if mp != nil {
id1 = mp.id
}
id2 := int32(-1)
if lockedm != nil {
id2 = lockedm.id
}
print(" G", gp.goid, ": status=", readgstatus(gp), "(", gp.waitreason, ") m=", id1, " lockedm=", id2, "\n")
}
unlock(&allglock)
unlock(&sched.lock)
}
// Put mp on midle list.
// Sched must be locked.
// May run during STW, so write barriers are not allowed.
//go:nowritebarrier
func mput(mp *m) {
mp.schedlink = sched.midle
sched.midle.set(mp)
sched.nmidle++
checkdead()
}
// Try to get an m from midle list.
// Sched must be locked.
// May run during STW, so write barriers are not allowed.
//go:nowritebarrier
func mget() *m {
mp := sched.midle.ptr()
if mp != nil {
sched.midle = mp.schedlink
sched.nmidle--
}
return mp
}
// Put gp on the global runnable queue.
// Sched must be locked.
// May run during STW, so write barriers are not allowed.
//go:nowritebarrier
func globrunqput(gp *g) {
gp.schedlink = 0
if sched.runqtail != 0 {
sched.runqtail.ptr().schedlink.set(gp)
} else {
sched.runqhead.set(gp)
}
sched.runqtail.set(gp)
sched.runqsize++
}
// Put gp at the head of the global runnable queue.
// Sched must be locked.
// May run during STW, so write barriers are not allowed.
//go:nowritebarrier
func globrunqputhead(gp *g) {
gp.schedlink = sched.runqhead
sched.runqhead.set(gp)
if sched.runqtail == 0 {
sched.runqtail.set(gp)
}
sched.runqsize++
}
// Put a batch of runnable goroutines on the global runnable queue.
// Sched must be locked.
func globrunqputbatch(ghead *g, gtail *g, n int32) {
gtail.schedlink = 0
if sched.runqtail != 0 {
sched.runqtail.ptr().schedlink.set(ghead)
} else {
sched.runqhead.set(ghead)
}
sched.runqtail.set(gtail)
sched.runqsize += n
}
// Try get a batch of G's from the global runnable queue.
// Sched must be locked.
func globrunqget(_p_ *p, max int32) *g {
if sched.runqsize == 0 {
return nil
}
n := sched.runqsize/gomaxprocs + 1
if n > sched.runqsize {
n = sched.runqsize
}
if max > 0 && n > max {
n = max
}
if n > int32(len(_p_.runq))/2 {
n = int32(len(_p_.runq)) / 2
}
sched.runqsize -= n
if sched.runqsize == 0 {
sched.runqtail = 0
}
gp := sched.runqhead.ptr()
sched.runqhead = gp.schedlink
n--
for ; n > 0; n-- {
gp1 := sched.runqhead.ptr()
sched.runqhead = gp1.schedlink
runqput(_p_, gp1, false)
}
return gp
}
// Put p to on _Pidle list.
// Sched must be locked.
// May run during STW, so write barriers are not allowed.
//go:nowritebarrier
func pidleput(_p_ *p) {
if !runqempty(_p_) {
throw("pidleput: P has non-empty run queue")
}
_p_.link = sched.pidle
sched.pidle.set(_p_)
atomic.Xadd(&sched.npidle, 1) // TODO: fast atomic
}
// Try get a p from _Pidle list.
// Sched must be locked.
// May run during STW, so write barriers are not allowed.
//go:nowritebarrier
func pidleget() *p {
_p_ := sched.pidle.ptr()
if _p_ != nil {
sched.pidle = _p_.link
atomic.Xadd(&sched.npidle, -1) // TODO: fast atomic
}
return _p_
}
// runqempty returns true if _p_ has no Gs on its local run queue.
// Note that this test is generally racy.
func runqempty(_p_ *p) bool {
return _p_.runqhead == _p_.runqtail && _p_.runnext == 0
}
// To shake out latent assumptions about scheduling order,
// we introduce some randomness into scheduling decisions
// when running with the race detector.
// The need for this was made obvious by changing the
// (deterministic) scheduling order in Go 1.5 and breaking
// many poorly-written tests.
// With the randomness here, as long as the tests pass
// consistently with -race, they shouldn't have latent scheduling
// assumptions.
const randomizeScheduler = raceenabled
// runqput tries to put g on the local runnable queue.
// If next if false, runqput adds g to the tail of the runnable queue.
// If next is true, runqput puts g in the _p_.runnext slot.
// If the run queue is full, runnext puts g on the global queue.
// Executed only by the owner P.
func runqput(_p_ *p, gp *g, next bool) {
if randomizeScheduler && next && fastrand1()%2 == 0 {
next = false
}
if next {
retryNext:
oldnext := _p_.runnext
if !_p_.runnext.cas(oldnext, guintptr(unsafe.Pointer(gp))) {
goto retryNext
}
if oldnext == 0 {
return
}
// Kick the old runnext out to the regular run queue.
gp = oldnext.ptr()
}
retry:
h := atomic.Load(&_p_.runqhead) // load-acquire, synchronize with consumers
t := _p_.runqtail
if t-h < uint32(len(_p_.runq)) {
_p_.runq[t%uint32(len(_p_.runq))].set(gp)
atomic.Store(&_p_.runqtail, t+1) // store-release, makes the item available for consumption
return
}
if runqputslow(_p_, gp, h, t) {
return
}
// the queue is not full, now the put above must suceed
goto retry
}
// Put g and a batch of work from local runnable queue on global queue.
// Executed only by the owner P.
func runqputslow(_p_ *p, gp *g, h, t uint32) bool {
var batch [len(_p_.runq)/2 + 1]*g
// First, grab a batch from local queue.
n := t - h
n = n / 2
if n != uint32(len(_p_.runq)/2) {
throw("runqputslow: queue is not full")
}
for i := uint32(0); i < n; i++ {
batch[i] = _p_.runq[(h+i)%uint32(len(_p_.runq))].ptr()
}
if !atomic.Cas(&_p_.runqhead, h, h+n) { // cas-release, commits consume
return false
}
batch[n] = gp
if randomizeScheduler {
for i := uint32(1); i <= n; i++ {
j := fastrand1() % (i + 1)
batch[i], batch[j] = batch[j], batch[i]
}
}
// Link the goroutines.
for i := uint32(0); i < n; i++ {
batch[i].schedlink.set(batch[i+1])
}
// Now put the batch on global queue.
lock(&sched.lock)
globrunqputbatch(batch[0], batch[n], int32(n+1))
unlock(&sched.lock)
return true
}
// Get g from local runnable queue.
// If inheritTime is true, gp should inherit the remaining time in the
// current time slice. Otherwise, it should start a new time slice.
// Executed only by the owner P.
func runqget(_p_ *p) (gp *g, inheritTime bool) {
// If there's a runnext, it's the next G to run.
for {
next := _p_.runnext
if next == 0 {
break
}
if _p_.runnext.cas(next, 0) {
return next.ptr(), true
}
}
for {
h := atomic.Load(&_p_.runqhead) // load-acquire, synchronize with other consumers
t := _p_.runqtail
if t == h {
return nil, false
}
gp := _p_.runq[h%uint32(len(_p_.runq))].ptr()
if atomic.Cas(&_p_.runqhead, h, h+1) { // cas-release, commits consume
return gp, false
}
}
}
// Grabs a batch of goroutines from _p_'s runnable queue into batch.
// Batch is a ring buffer starting at batchHead.
// Returns number of grabbed goroutines.
// Can be executed by any P.
func runqgrab(_p_ *p, batch *[256]guintptr, batchHead uint32, stealRunNextG bool) uint32 {
for {
h := atomic.Load(&_p_.runqhead) // load-acquire, synchronize with other consumers
t := atomic.Load(&_p_.runqtail) // load-acquire, synchronize with the producer
n := t - h
n = n - n/2
if n == 0 {
if stealRunNextG {
// Try to steal from _p_.runnext.
if next := _p_.runnext; next != 0 {
// Sleep to ensure that _p_ isn't about to run the g we
// are about to steal.
// The important use case here is when the g running on _p_
// ready()s another g and then almost immediately blocks.
// Instead of stealing runnext in this window, back off
// to give _p_ a chance to schedule runnext. This will avoid
// thrashing gs between different Ps.
usleep(100)
if !_p_.runnext.cas(next, 0) {
continue
}
batch[batchHead%uint32(len(batch))] = next
return 1
}
}
return 0
}
if n > uint32(len(_p_.runq)/2) { // read inconsistent h and t
continue
}
for i := uint32(0); i < n; i++ {
g := _p_.runq[(h+i)%uint32(len(_p_.runq))]
batch[(batchHead+i)%uint32(len(batch))] = g
}
if atomic.Cas(&_p_.runqhead, h, h+n) { // cas-release, commits consume
return n
}
}
}
// Steal half of elements from local runnable queue of p2
// and put onto local runnable queue of p.
// Returns one of the stolen elements (or nil if failed).
func runqsteal(_p_, p2 *p, stealRunNextG bool) *g {
t := _p_.runqtail
n := runqgrab(p2, &_p_.runq, t, stealRunNextG)
if n == 0 {
return nil
}
n--
gp := _p_.runq[(t+n)%uint32(len(_p_.runq))].ptr()
if n == 0 {
return gp
}
h := atomic.Load(&_p_.runqhead) // load-acquire, synchronize with consumers
if t-h+n >= uint32(len(_p_.runq)) {
throw("runqsteal: runq overflow")
}
atomic.Store(&_p_.runqtail, t+n) // store-release, makes the item available for consumption
return gp
}
func testSchedLocalQueue() {
_p_ := new(p)
gs := make([]g, len(_p_.runq))
for i := 0; i < len(_p_.runq); i++ {
if g, _ := runqget(_p_); g != nil {
throw("runq is not empty initially")
}
for j := 0; j < i; j++ {
runqput(_p_, &gs[i], false)
}
for j := 0; j < i; j++ {
if g, _ := runqget(_p_); g != &gs[i] {
print("bad element at iter ", i, "/", j, "\n")
throw("bad element")
}
}
if g, _ := runqget(_p_); g != nil {
throw("runq is not empty afterwards")
}
}
}
func testSchedLocalQueueSteal() {
p1 := new(p)
p2 := new(p)
gs := make([]g, len(p1.runq))
for i := 0; i < len(p1.runq); i++ {
for j := 0; j < i; j++ {
gs[j].sig = 0
runqput(p1, &gs[j], false)
}
gp := runqsteal(p2, p1, true)
s := 0
if gp != nil {
s++
gp.sig++
}
for {
gp, _ = runqget(p2)
if gp == nil {
break
}
s++
gp.sig++
}
for {
gp, _ = runqget(p1)
if gp == nil {
break
}
gp.sig++
}
for j := 0; j < i; j++ {
if gs[j].sig != 1 {
print("bad element ", j, "(", gs[j].sig, ") at iter ", i, "\n")
throw("bad element")
}
}
if s != i/2 && s != i/2+1 {
print("bad steal ", s, ", want ", i/2, " or ", i/2+1, ", iter ", i, "\n")
throw("bad steal")
}
}
}
//go:linkname setMaxThreads runtime/debug.setMaxThreads
func setMaxThreads(in int) (out int) {
lock(&sched.lock)
out = int(sched.maxmcount)
sched.maxmcount = int32(in)
checkmcount()
unlock(&sched.lock)
return
}
func haveexperiment(name string) bool {
x := sys.Goexperiment
for x != "" {
xname := ""
i := index(x, ",")
if i < 0 {
xname, x = x, ""
} else {
xname, x = x[:i], x[i+1:]
}
if xname == name {
return true
}
}
return false
}
//go:nosplit
func procPin() int {
_g_ := getg()
mp := _g_.m
mp.locks++
return int(mp.p.ptr().id)
}
//go:nosplit
func procUnpin() {
_g_ := getg()
_g_.m.locks--
}
//go:linkname sync_runtime_procPin sync.runtime_procPin
//go:nosplit
func sync_runtime_procPin() int {
return procPin()
}
//go:linkname sync_runtime_procUnpin sync.runtime_procUnpin
//go:nosplit
func sync_runtime_procUnpin() {
procUnpin()
}
//go:linkname sync_atomic_runtime_procPin sync/atomic.runtime_procPin
//go:nosplit
func sync_atomic_runtime_procPin() int {
return procPin()
}
//go:linkname sync_atomic_runtime_procUnpin sync/atomic.runtime_procUnpin
//go:nosplit
func sync_atomic_runtime_procUnpin() {
procUnpin()
}
// Active spinning for sync.Mutex.
//go:linkname sync_runtime_canSpin sync.runtime_canSpin
//go:nosplit
func sync_runtime_canSpin(i int) bool {
// sync.Mutex is cooperative, so we are conservative with spinning.
// Spin only few times and only if running on a multicore machine and
// GOMAXPROCS>1 and there is at least one other running P and local runq is empty.
// As opposed to runtime mutex we don't do passive spinning here,
// because there can be work on global runq on on other Ps.
if i >= active_spin || ncpu <= 1 || gomaxprocs <= int32(sched.npidle+sched.nmspinning)+1 {
return false
}
if p := getg().m.p.ptr(); !runqempty(p) {
return false
}
return true
}
//go:linkname sync_runtime_doSpin sync.runtime_doSpin
//go:nosplit
func sync_runtime_doSpin() {
procyield(active_spin_cnt)
}
|