/usr/share/go-1.6/src/runtime/mgcmark.go is in golang-1.6-src 1.6.1-0ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 | // Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Garbage collector: marking and scanning
package runtime
import (
"runtime/internal/atomic"
"runtime/internal/sys"
"unsafe"
)
const (
fixedRootFinalizers = iota
fixedRootFlushCaches
fixedRootCount
// rootBlockBytes is the number of bytes to scan per data or
// BSS root.
rootBlockBytes = 256 << 10
// rootBlockSpans is the number of spans to scan per span
// root.
rootBlockSpans = 8 * 1024 // 64MB worth of spans
)
// gcMarkRootPrepare queues root scanning jobs (stacks, globals, and
// some miscellany) and initializes scanning-related state.
//
// The caller must have call gcCopySpans().
//
//go:nowritebarrier
func gcMarkRootPrepare() {
// Compute how many data and BSS root blocks there are.
nBlocks := func(bytes uintptr) int {
return int((bytes + rootBlockBytes - 1) / rootBlockBytes)
}
work.nDataRoots = 0
for datap := &firstmoduledata; datap != nil; datap = datap.next {
nDataRoots := nBlocks(datap.edata - datap.data)
if nDataRoots > work.nDataRoots {
work.nDataRoots = nDataRoots
}
}
work.nBSSRoots = 0
for datap := &firstmoduledata; datap != nil; datap = datap.next {
nBSSRoots := nBlocks(datap.ebss - datap.bss)
if nBSSRoots > work.nBSSRoots {
work.nBSSRoots = nBSSRoots
}
}
// Compute number of span roots.
work.nSpanRoots = (len(work.spans) + rootBlockSpans - 1) / rootBlockSpans
// Snapshot of allglen. During concurrent scan, we just need
// to be consistent about how many markroot jobs we create and
// how many Gs we check. Gs may be created after this point,
// but it's okay that we ignore them because they begin life
// without any roots, so there's nothing to scan, and any
// roots they create during the concurrent phase will be
// scanned during mark termination. During mark termination,
// allglen isn't changing, so we'll scan all Gs.
work.nStackRoots = int(atomic.Loaduintptr(&allglen))
work.markrootNext = 0
work.markrootJobs = uint32(fixedRootCount + work.nDataRoots + work.nBSSRoots + work.nSpanRoots + work.nStackRoots)
}
// gcMarkRootCheck checks that all roots have been scanned. It is
// purely for debugging.
func gcMarkRootCheck() {
if work.markrootNext < work.markrootJobs {
print(work.markrootNext, " of ", work.markrootJobs, " markroot jobs done\n")
throw("left over markroot jobs")
}
lock(&allglock)
// Check that gc work is done.
for i := 0; i < work.nStackRoots; i++ {
gp := allgs[i]
if !gp.gcscandone {
throw("scan missed a g")
}
}
unlock(&allglock)
}
// ptrmask for an allocation containing a single pointer.
var oneptrmask = [...]uint8{1}
// markroot scans the i'th root.
//
// Preemption must be disabled (because this uses a gcWork).
//
//go:nowritebarrier
func markroot(i uint32) {
// TODO: Consider using getg().m.p.ptr().gcw.
var gcw gcWork
baseData := uint32(fixedRootCount)
baseBSS := baseData + uint32(work.nDataRoots)
baseSpans := baseBSS + uint32(work.nBSSRoots)
baseStacks := baseSpans + uint32(work.nSpanRoots)
// Note: if you add a case here, please also update heapdump.go:dumproots.
switch {
case baseData <= i && i < baseBSS:
for datap := &firstmoduledata; datap != nil; datap = datap.next {
markrootBlock(datap.data, datap.edata-datap.data, datap.gcdatamask.bytedata, &gcw, int(i-baseData))
}
case baseBSS <= i && i < baseSpans:
for datap := &firstmoduledata; datap != nil; datap = datap.next {
markrootBlock(datap.bss, datap.ebss-datap.bss, datap.gcbssmask.bytedata, &gcw, int(i-baseBSS))
}
case i == fixedRootFinalizers:
for fb := allfin; fb != nil; fb = fb.alllink {
scanblock(uintptr(unsafe.Pointer(&fb.fin[0])), uintptr(fb.cnt)*unsafe.Sizeof(fb.fin[0]), &finptrmask[0], &gcw)
}
case i == fixedRootFlushCaches:
if gcphase == _GCmarktermination { // Do not flush mcaches during concurrent phase.
flushallmcaches()
}
case baseSpans <= i && i < baseStacks:
// mark MSpan.specials
markrootSpans(&gcw, int(i-baseSpans))
default:
// the rest is scanning goroutine stacks
if uintptr(i-baseStacks) >= allglen {
throw("markroot: bad index")
}
gp := allgs[i-baseStacks]
// remember when we've first observed the G blocked
// needed only to output in traceback
status := readgstatus(gp) // We are not in a scan state
if (status == _Gwaiting || status == _Gsyscall) && gp.waitsince == 0 {
gp.waitsince = work.tstart
}
// Shrink a stack if not much of it is being used but not in the scan phase.
if gcphase == _GCmarktermination {
// Shrink during STW GCmarktermination phase thus avoiding
// complications introduced by shrinking during
// non-STW phases.
shrinkstack(gp)
}
if gcphase != _GCmarktermination && gp.startpc == gcBgMarkWorkerPC {
// GC background workers may be
// non-preemptible, so we may deadlock if we
// try to scan them during a concurrent phase.
// They also have tiny stacks, so just ignore
// them until mark termination.
gp.gcscandone = true
break
}
// scang must be done on the system stack in case
// we're trying to scan our own stack.
systemstack(func() {
// If this is a self-scan, put the user G in
// _Gwaiting to prevent self-deadlock. It may
// already be in _Gwaiting if this is mark
// termination.
userG := getg().m.curg
selfScan := gp == userG && readgstatus(userG) == _Grunning
if selfScan {
casgstatus(userG, _Grunning, _Gwaiting)
userG.waitreason = "garbage collection scan"
}
// TODO: scang blocks until gp's stack has
// been scanned, which may take a while for
// running goroutines. Consider doing this in
// two phases where the first is non-blocking:
// we scan the stacks we can and ask running
// goroutines to scan themselves; and the
// second blocks.
scang(gp)
if selfScan {
casgstatus(userG, _Gwaiting, _Grunning)
}
})
}
gcw.dispose()
}
// markrootBlock scans the shard'th shard of the block of memory [b0,
// b0+n0), with the given pointer mask.
//
//go:nowritebarrier
func markrootBlock(b0, n0 uintptr, ptrmask0 *uint8, gcw *gcWork, shard int) {
if rootBlockBytes%(8*sys.PtrSize) != 0 {
// This is necessary to pick byte offsets in ptrmask0.
throw("rootBlockBytes must be a multiple of 8*ptrSize")
}
b := b0 + uintptr(shard)*rootBlockBytes
if b >= b0+n0 {
return
}
ptrmask := (*uint8)(add(unsafe.Pointer(ptrmask0), uintptr(shard)*(rootBlockBytes/(8*sys.PtrSize))))
n := uintptr(rootBlockBytes)
if b+n > b0+n0 {
n = b0 + n0 - b
}
// Scan this shard.
scanblock(b, n, ptrmask, gcw)
}
// markrootSpans marks roots for one shard of work.spans.
//
//go:nowritebarrier
func markrootSpans(gcw *gcWork, shard int) {
// Objects with finalizers have two GC-related invariants:
//
// 1) Everything reachable from the object must be marked.
// This ensures that when we pass the object to its finalizer,
// everything the finalizer can reach will be retained.
//
// 2) Finalizer specials (which are not in the garbage
// collected heap) are roots. In practice, this means the fn
// field must be scanned.
//
// TODO(austin): There are several ideas for making this more
// efficient in issue #11485.
// We process objects with finalizers only during the first
// markroot pass. In concurrent GC, this happens during
// concurrent scan and we depend on addfinalizer to ensure the
// above invariants for objects that get finalizers after
// concurrent scan. In STW GC, this will happen during mark
// termination.
if work.finalizersDone {
return
}
sg := mheap_.sweepgen
startSpan := shard * rootBlockSpans
endSpan := (shard + 1) * rootBlockSpans
if endSpan > len(work.spans) {
endSpan = len(work.spans)
}
// Note that work.spans may not include spans that were
// allocated between entering the scan phase and now. This is
// okay because any objects with finalizers in those spans
// must have been allocated and given finalizers after we
// entered the scan phase, so addfinalizer will have ensured
// the above invariants for them.
for _, s := range work.spans[startSpan:endSpan] {
if s.state != mSpanInUse {
continue
}
if !useCheckmark && s.sweepgen != sg {
// sweepgen was updated (+2) during non-checkmark GC pass
print("sweep ", s.sweepgen, " ", sg, "\n")
throw("gc: unswept span")
}
// Speculatively check if there are any specials
// without acquiring the span lock. This may race with
// adding the first special to a span, but in that
// case addfinalizer will observe that the GC is
// active (which is globally synchronized) and ensure
// the above invariants. We may also ensure the
// invariants, but it's okay to scan an object twice.
if s.specials == nil {
continue
}
// Lock the specials to prevent a special from being
// removed from the list while we're traversing it.
lock(&s.speciallock)
for sp := s.specials; sp != nil; sp = sp.next {
if sp.kind != _KindSpecialFinalizer {
continue
}
// don't mark finalized object, but scan it so we
// retain everything it points to.
spf := (*specialfinalizer)(unsafe.Pointer(sp))
// A finalizer can be set for an inner byte of an object, find object beginning.
p := uintptr(s.start<<_PageShift) + uintptr(spf.special.offset)/s.elemsize*s.elemsize
// Mark everything that can be reached from
// the object (but *not* the object itself or
// we'll never collect it).
scanobject(p, gcw)
// The special itself is a root.
scanblock(uintptr(unsafe.Pointer(&spf.fn)), sys.PtrSize, &oneptrmask[0], gcw)
}
unlock(&s.speciallock)
}
}
// gcAssistAlloc performs GC work to make gp's assist debt positive.
// gp must be the calling user gorountine.
//
// This must be called with preemption enabled.
//go:nowritebarrier
func gcAssistAlloc(gp *g) {
// Don't assist in non-preemptible contexts. These are
// generally fragile and won't allow the assist to block.
if getg() == gp.m.g0 {
return
}
if mp := getg().m; mp.locks > 0 || mp.preemptoff != "" {
return
}
// Compute the amount of scan work we need to do to make the
// balance positive. We over-assist to build up credit for
// future allocations and amortize the cost of assisting.
debtBytes := -gp.gcAssistBytes + gcOverAssistBytes
scanWork := int64(gcController.assistWorkPerByte * float64(debtBytes))
retry:
// Steal as much credit as we can from the background GC's
// scan credit. This is racy and may drop the background
// credit below 0 if two mutators steal at the same time. This
// will just cause steals to fail until credit is accumulated
// again, so in the long run it doesn't really matter, but we
// do have to handle the negative credit case.
bgScanCredit := atomic.Loadint64(&gcController.bgScanCredit)
stolen := int64(0)
if bgScanCredit > 0 {
if bgScanCredit < scanWork {
stolen = bgScanCredit
gp.gcAssistBytes += 1 + int64(gcController.assistBytesPerWork*float64(stolen))
} else {
stolen = scanWork
gp.gcAssistBytes += debtBytes
}
atomic.Xaddint64(&gcController.bgScanCredit, -stolen)
scanWork -= stolen
if scanWork == 0 {
// We were able to steal all of the credit we
// needed.
return
}
}
// Perform assist work
completed := false
systemstack(func() {
if atomic.Load(&gcBlackenEnabled) == 0 {
// The gcBlackenEnabled check in malloc races with the
// store that clears it but an atomic check in every malloc
// would be a performance hit.
// Instead we recheck it here on the non-preemptable system
// stack to determine if we should preform an assist.
// GC is done, so ignore any remaining debt.
gp.gcAssistBytes = 0
return
}
// Track time spent in this assist. Since we're on the
// system stack, this is non-preemptible, so we can
// just measure start and end time.
startTime := nanotime()
decnwait := atomic.Xadd(&work.nwait, -1)
if decnwait == work.nproc {
println("runtime: work.nwait =", decnwait, "work.nproc=", work.nproc)
throw("nwait > work.nprocs")
}
// drain own cached work first in the hopes that it
// will be more cache friendly.
gcw := &getg().m.p.ptr().gcw
workDone := gcDrainN(gcw, scanWork)
// If we are near the end of the mark phase
// dispose of the gcw.
if gcBlackenPromptly {
gcw.dispose()
}
// Record that we did this much scan work.
//
// Back out the number of bytes of assist credit that
// this scan work counts for. The "1+" is a poor man's
// round-up, to ensure this adds credit even if
// assistBytesPerWork is very low.
gp.gcAssistBytes += 1 + int64(gcController.assistBytesPerWork*float64(workDone))
// If this is the last worker and we ran out of work,
// signal a completion point.
incnwait := atomic.Xadd(&work.nwait, +1)
if incnwait > work.nproc {
println("runtime: work.nwait=", incnwait,
"work.nproc=", work.nproc,
"gcBlackenPromptly=", gcBlackenPromptly)
throw("work.nwait > work.nproc")
}
if incnwait == work.nproc && !gcMarkWorkAvailable(nil) {
// This has reached a background completion
// point.
completed = true
}
duration := nanotime() - startTime
_p_ := gp.m.p.ptr()
_p_.gcAssistTime += duration
if _p_.gcAssistTime > gcAssistTimeSlack {
atomic.Xaddint64(&gcController.assistTime, _p_.gcAssistTime)
_p_.gcAssistTime = 0
}
})
if completed {
gcMarkDone()
}
if gp.gcAssistBytes < 0 {
// We were unable steal enough credit or perform
// enough work to pay off the assist debt. We need to
// do one of these before letting the mutator allocate
// more to prevent over-allocation.
//
// If this is because we were preempted, reschedule
// and try some more.
if gp.preempt {
Gosched()
goto retry
}
// Add this G to an assist queue and park. When the GC
// has more background credit, it will satisfy queued
// assists before flushing to the global credit pool.
//
// Note that this does *not* get woken up when more
// work is added to the work list. The theory is that
// there wasn't enough work to do anyway, so we might
// as well let background marking take care of the
// work that is available.
lock(&work.assistQueue.lock)
// If the GC cycle is over, just return. This is the
// likely path if we completed above. We do this
// under the lock to prevent a GC cycle from ending
// between this check and queuing the assist.
if atomic.Load(&gcBlackenEnabled) == 0 {
unlock(&work.assistQueue.lock)
return
}
oldHead, oldTail := work.assistQueue.head, work.assistQueue.tail
if oldHead == 0 {
work.assistQueue.head.set(gp)
} else {
oldTail.ptr().schedlink.set(gp)
}
work.assistQueue.tail.set(gp)
gp.schedlink.set(nil)
// Recheck for background credit now that this G is in
// the queue, but can still back out. This avoids a
// race in case background marking has flushed more
// credit since we checked above.
if atomic.Loadint64(&gcController.bgScanCredit) > 0 {
work.assistQueue.head = oldHead
work.assistQueue.tail = oldTail
if oldTail != 0 {
oldTail.ptr().schedlink.set(nil)
}
unlock(&work.assistQueue.lock)
goto retry
}
// Park for real.
goparkunlock(&work.assistQueue.lock, "GC assist wait", traceEvGoBlock, 2)
// At this point either background GC has satisfied
// this G's assist debt, or the GC cycle is over.
}
}
// gcWakeAllAssists wakes all currently blocked assists. This is used
// at the end of a GC cycle. gcBlackenEnabled must be false to prevent
// new assists from going to sleep after this point.
func gcWakeAllAssists() {
lock(&work.assistQueue.lock)
injectglist(work.assistQueue.head.ptr())
work.assistQueue.head.set(nil)
work.assistQueue.tail.set(nil)
unlock(&work.assistQueue.lock)
}
// gcFlushBgCredit flushes scanWork units of background scan work
// credit. This first satisfies blocked assists on the
// work.assistQueue and then flushes any remaining credit to
// gcController.bgScanCredit.
//
// Write barriers are disallowed because this is used by gcDrain after
// it has ensured that all work is drained and this must preserve that
// condition.
//
//go:nowritebarrierrec
func gcFlushBgCredit(scanWork int64) {
if work.assistQueue.head == 0 {
// Fast path; there are no blocked assists. There's a
// small window here where an assist may add itself to
// the blocked queue and park. If that happens, we'll
// just get it on the next flush.
atomic.Xaddint64(&gcController.bgScanCredit, scanWork)
return
}
scanBytes := int64(float64(scanWork) * gcController.assistBytesPerWork)
lock(&work.assistQueue.lock)
gp := work.assistQueue.head.ptr()
for gp != nil && scanBytes > 0 {
// Note that gp.gcAssistBytes is negative because gp
// is in debt. Think carefully about the signs below.
if scanBytes+gp.gcAssistBytes >= 0 {
// Satisfy this entire assist debt.
scanBytes += gp.gcAssistBytes
gp.gcAssistBytes = 0
xgp := gp
gp = gp.schedlink.ptr()
ready(xgp, 0)
} else {
// Partially satisfy this assist.
gp.gcAssistBytes += scanBytes
scanBytes = 0
// As a heuristic, we move this assist to the
// back of the queue so that large assists
// can't clog up the assist queue and
// substantially delay small assists.
xgp := gp
gp = gp.schedlink.ptr()
if gp == nil {
// gp is the only assist in the queue.
gp = xgp
} else {
xgp.schedlink = 0
work.assistQueue.tail.ptr().schedlink.set(xgp)
work.assistQueue.tail.set(xgp)
}
break
}
}
work.assistQueue.head.set(gp)
if gp == nil {
work.assistQueue.tail.set(nil)
}
if scanBytes > 0 {
// Convert from scan bytes back to work.
scanWork = int64(float64(scanBytes) * gcController.assistWorkPerByte)
atomic.Xaddint64(&gcController.bgScanCredit, scanWork)
}
unlock(&work.assistQueue.lock)
}
//go:nowritebarrier
func scanstack(gp *g) {
if gp.gcscanvalid {
if gcphase == _GCmarktermination {
gcRemoveStackBarriers(gp)
}
return
}
if readgstatus(gp)&_Gscan == 0 {
print("runtime:scanstack: gp=", gp, ", goid=", gp.goid, ", gp->atomicstatus=", hex(readgstatus(gp)), "\n")
throw("scanstack - bad status")
}
switch readgstatus(gp) &^ _Gscan {
default:
print("runtime: gp=", gp, ", goid=", gp.goid, ", gp->atomicstatus=", readgstatus(gp), "\n")
throw("mark - bad status")
case _Gdead:
return
case _Grunning:
print("runtime: gp=", gp, ", goid=", gp.goid, ", gp->atomicstatus=", readgstatus(gp), "\n")
throw("scanstack: goroutine not stopped")
case _Grunnable, _Gsyscall, _Gwaiting:
// ok
}
if gp == getg() {
throw("can't scan our own stack")
}
mp := gp.m
if mp != nil && mp.helpgc != 0 {
throw("can't scan gchelper stack")
}
var sp, barrierOffset, nextBarrier uintptr
if gp.syscallsp != 0 {
sp = gp.syscallsp
} else {
sp = gp.sched.sp
}
switch gcphase {
case _GCmark:
// Install stack barriers during stack scan.
barrierOffset = uintptr(firstStackBarrierOffset)
nextBarrier = sp + barrierOffset
if debug.gcstackbarrieroff > 0 {
nextBarrier = ^uintptr(0)
}
if gp.stkbarPos != 0 || len(gp.stkbar) != 0 {
// If this happens, it's probably because we
// scanned a stack twice in the same phase.
print("stkbarPos=", gp.stkbarPos, " len(stkbar)=", len(gp.stkbar), " goid=", gp.goid, " gcphase=", gcphase, "\n")
throw("g already has stack barriers")
}
gcLockStackBarriers(gp)
case _GCmarktermination:
if int(gp.stkbarPos) == len(gp.stkbar) {
// gp hit all of the stack barriers (or there
// were none). Re-scan the whole stack.
nextBarrier = ^uintptr(0)
} else {
// Only re-scan up to the lowest un-hit
// barrier. Any frames above this have not
// executed since the concurrent scan of gp and
// any writes through up-pointers to above
// this barrier had write barriers.
nextBarrier = gp.stkbar[gp.stkbarPos].savedLRPtr
if debugStackBarrier {
print("rescan below ", hex(nextBarrier), " in [", hex(sp), ",", hex(gp.stack.hi), ") goid=", gp.goid, "\n")
}
}
gcRemoveStackBarriers(gp)
default:
throw("scanstack in wrong phase")
}
var cache pcvalueCache
gcw := &getg().m.p.ptr().gcw
n := 0
scanframe := func(frame *stkframe, unused unsafe.Pointer) bool {
scanframeworker(frame, &cache, gcw)
if frame.fp > nextBarrier {
// We skip installing a barrier on bottom-most
// frame because on LR machines this LR is not
// on the stack.
if gcphase == _GCmark && n != 0 {
if gcInstallStackBarrier(gp, frame) {
barrierOffset *= 2
nextBarrier = sp + barrierOffset
}
} else if gcphase == _GCmarktermination {
// We just scanned a frame containing
// a return to a stack barrier. Since
// this frame never returned, we can
// stop scanning.
return false
}
}
n++
return true
}
gentraceback(^uintptr(0), ^uintptr(0), 0, gp, 0, nil, 0x7fffffff, scanframe, nil, 0)
tracebackdefers(gp, scanframe, nil)
if gcphase == _GCmarktermination {
gcw.dispose()
}
if gcphase == _GCmark {
gcUnlockStackBarriers(gp)
}
gp.gcscanvalid = true
}
// Scan a stack frame: local variables and function arguments/results.
//go:nowritebarrier
func scanframeworker(frame *stkframe, cache *pcvalueCache, gcw *gcWork) {
f := frame.fn
targetpc := frame.continpc
if targetpc == 0 {
// Frame is dead.
return
}
if _DebugGC > 1 {
print("scanframe ", funcname(f), "\n")
}
if targetpc != f.entry {
targetpc--
}
pcdata := pcdatavalue(f, _PCDATA_StackMapIndex, targetpc, cache)
if pcdata == -1 {
// We do not have a valid pcdata value but there might be a
// stackmap for this function. It is likely that we are looking
// at the function prologue, assume so and hope for the best.
pcdata = 0
}
// Scan local variables if stack frame has been allocated.
size := frame.varp - frame.sp
var minsize uintptr
switch sys.TheChar {
case '7':
minsize = sys.SpAlign
default:
minsize = sys.MinFrameSize
}
if size > minsize {
stkmap := (*stackmap)(funcdata(f, _FUNCDATA_LocalsPointerMaps))
if stkmap == nil || stkmap.n <= 0 {
print("runtime: frame ", funcname(f), " untyped locals ", hex(frame.varp-size), "+", hex(size), "\n")
throw("missing stackmap")
}
// Locals bitmap information, scan just the pointers in locals.
if pcdata < 0 || pcdata >= stkmap.n {
// don't know where we are
print("runtime: pcdata is ", pcdata, " and ", stkmap.n, " locals stack map entries for ", funcname(f), " (targetpc=", targetpc, ")\n")
throw("scanframe: bad symbol table")
}
bv := stackmapdata(stkmap, pcdata)
size = uintptr(bv.n) * sys.PtrSize
scanblock(frame.varp-size, size, bv.bytedata, gcw)
}
// Scan arguments.
if frame.arglen > 0 {
var bv bitvector
if frame.argmap != nil {
bv = *frame.argmap
} else {
stkmap := (*stackmap)(funcdata(f, _FUNCDATA_ArgsPointerMaps))
if stkmap == nil || stkmap.n <= 0 {
print("runtime: frame ", funcname(f), " untyped args ", hex(frame.argp), "+", hex(frame.arglen), "\n")
throw("missing stackmap")
}
if pcdata < 0 || pcdata >= stkmap.n {
// don't know where we are
print("runtime: pcdata is ", pcdata, " and ", stkmap.n, " args stack map entries for ", funcname(f), " (targetpc=", targetpc, ")\n")
throw("scanframe: bad symbol table")
}
bv = stackmapdata(stkmap, pcdata)
}
scanblock(frame.argp, uintptr(bv.n)*sys.PtrSize, bv.bytedata, gcw)
}
}
type gcDrainFlags int
const (
gcDrainUntilPreempt gcDrainFlags = 1 << iota
gcDrainNoBlock
gcDrainFlushBgCredit
// gcDrainBlock means neither gcDrainUntilPreempt or
// gcDrainNoBlock. It is the default, but callers should use
// the constant for documentation purposes.
gcDrainBlock gcDrainFlags = 0
)
// gcDrain scans roots and objects in work buffers, blackening grey
// objects until all roots and work buffers have been drained.
//
// If flags&gcDrainUntilPreempt != 0, gcDrain returns when g.preempt
// is set. This implies gcDrainNoBlock.
//
// If flags&gcDrainNoBlock != 0, gcDrain returns as soon as it is
// unable to get more work. Otherwise, it will block until all
// blocking calls are blocked in gcDrain.
//
// If flags&gcDrainFlushBgCredit != 0, gcDrain flushes scan work
// credit to gcController.bgScanCredit every gcCreditSlack units of
// scan work.
//
//go:nowritebarrier
func gcDrain(gcw *gcWork, flags gcDrainFlags) {
if !writeBarrier.needed {
throw("gcDrain phase incorrect")
}
gp := getg()
preemptible := flags&gcDrainUntilPreempt != 0
blocking := flags&(gcDrainUntilPreempt|gcDrainNoBlock) == 0
flushBgCredit := flags&gcDrainFlushBgCredit != 0
// Drain root marking jobs.
if work.markrootNext < work.markrootJobs {
for blocking || !gp.preempt {
job := atomic.Xadd(&work.markrootNext, +1) - 1
if job >= work.markrootJobs {
break
}
// TODO: Pass in gcw.
markroot(job)
}
}
initScanWork := gcw.scanWork
// Drain heap marking jobs.
for !(preemptible && gp.preempt) {
// Try to keep work available on the global queue. We used to
// check if there were waiting workers, but it's better to
// just keep work available than to make workers wait. In the
// worst case, we'll do O(log(_WorkbufSize)) unnecessary
// balances.
if work.full == 0 {
gcw.balance()
}
var b uintptr
if blocking {
b = gcw.get()
} else {
b = gcw.tryGet()
}
if b == 0 {
// work barrier reached or tryGet failed.
break
}
scanobject(b, gcw)
// Flush background scan work credit to the global
// account if we've accumulated enough locally so
// mutator assists can draw on it.
if gcw.scanWork >= gcCreditSlack {
atomic.Xaddint64(&gcController.scanWork, gcw.scanWork)
if flushBgCredit {
gcFlushBgCredit(gcw.scanWork - initScanWork)
initScanWork = 0
}
gcw.scanWork = 0
}
}
// In blocking mode, write barriers are not allowed after this
// point because we must preserve the condition that the work
// buffers are empty.
// Flush remaining scan work credit.
if gcw.scanWork > 0 {
atomic.Xaddint64(&gcController.scanWork, gcw.scanWork)
if flushBgCredit {
gcFlushBgCredit(gcw.scanWork - initScanWork)
}
gcw.scanWork = 0
}
}
// gcDrainN blackens grey objects until it has performed roughly
// scanWork units of scan work or the G is preempted. This is
// best-effort, so it may perform less work if it fails to get a work
// buffer. Otherwise, it will perform at least n units of work, but
// may perform more because scanning is always done in whole object
// increments. It returns the amount of scan work performed.
//go:nowritebarrier
func gcDrainN(gcw *gcWork, scanWork int64) int64 {
if !writeBarrier.needed {
throw("gcDrainN phase incorrect")
}
// There may already be scan work on the gcw, which we don't
// want to claim was done by this call.
workFlushed := -gcw.scanWork
gp := getg().m.curg
for !gp.preempt && workFlushed+gcw.scanWork < scanWork {
// See gcDrain comment.
if work.full == 0 {
gcw.balance()
}
// This might be a good place to add prefetch code...
// if(wbuf.nobj > 4) {
// PREFETCH(wbuf->obj[wbuf.nobj - 3];
// }
//
b := gcw.tryGet()
if b == 0 {
break
}
scanobject(b, gcw)
// Flush background scan work credit.
if gcw.scanWork >= gcCreditSlack {
atomic.Xaddint64(&gcController.scanWork, gcw.scanWork)
workFlushed += gcw.scanWork
gcw.scanWork = 0
}
}
// Unlike gcDrain, there's no need to flush remaining work
// here because this never flushes to bgScanCredit and
// gcw.dispose will flush any remaining work to scanWork.
return workFlushed + gcw.scanWork
}
// scanblock scans b as scanobject would, but using an explicit
// pointer bitmap instead of the heap bitmap.
//
// This is used to scan non-heap roots, so it does not update
// gcw.bytesMarked or gcw.scanWork.
//
//go:nowritebarrier
func scanblock(b0, n0 uintptr, ptrmask *uint8, gcw *gcWork) {
// Use local copies of original parameters, so that a stack trace
// due to one of the throws below shows the original block
// base and extent.
b := b0
n := n0
arena_start := mheap_.arena_start
arena_used := mheap_.arena_used
for i := uintptr(0); i < n; {
// Find bits for the next word.
bits := uint32(*addb(ptrmask, i/(sys.PtrSize*8)))
if bits == 0 {
i += sys.PtrSize * 8
continue
}
for j := 0; j < 8 && i < n; j++ {
if bits&1 != 0 {
// Same work as in scanobject; see comments there.
obj := *(*uintptr)(unsafe.Pointer(b + i))
if obj != 0 && arena_start <= obj && obj < arena_used {
if obj, hbits, span := heapBitsForObject(obj, b, i); obj != 0 {
greyobject(obj, b, i, hbits, span, gcw)
}
}
}
bits >>= 1
i += sys.PtrSize
}
}
}
// scanobject scans the object starting at b, adding pointers to gcw.
// b must point to the beginning of a heap object; scanobject consults
// the GC bitmap for the pointer mask and the spans for the size of the
// object (it ignores n).
//go:nowritebarrier
func scanobject(b uintptr, gcw *gcWork) {
// Note that arena_used may change concurrently during
// scanobject and hence scanobject may encounter a pointer to
// a newly allocated heap object that is *not* in
// [start,used). It will not mark this object; however, we
// know that it was just installed by a mutator, which means
// that mutator will execute a write barrier and take care of
// marking it. This is even more pronounced on relaxed memory
// architectures since we access arena_used without barriers
// or synchronization, but the same logic applies.
arena_start := mheap_.arena_start
arena_used := mheap_.arena_used
// Find bits of the beginning of the object.
// b must point to the beginning of a heap object, so
// we can get its bits and span directly.
hbits := heapBitsForAddr(b)
s := spanOfUnchecked(b)
n := s.elemsize
if n == 0 {
throw("scanobject n == 0")
}
var i uintptr
for i = 0; i < n; i += sys.PtrSize {
// Find bits for this word.
if i != 0 {
// Avoid needless hbits.next() on last iteration.
hbits = hbits.next()
}
// During checkmarking, 1-word objects store the checkmark
// in the type bit for the one word. The only one-word objects
// are pointers, or else they'd be merged with other non-pointer
// data into larger allocations.
bits := hbits.bits()
if i >= 2*sys.PtrSize && bits&bitMarked == 0 {
break // no more pointers in this object
}
if bits&bitPointer == 0 {
continue // not a pointer
}
// Work here is duplicated in scanblock and above.
// If you make changes here, make changes there too.
obj := *(*uintptr)(unsafe.Pointer(b + i))
// At this point we have extracted the next potential pointer.
// Check if it points into heap and not back at the current object.
if obj != 0 && arena_start <= obj && obj < arena_used && obj-b >= n {
// Mark the object.
if obj, hbits, span := heapBitsForObject(obj, b, i); obj != 0 {
greyobject(obj, b, i, hbits, span, gcw)
}
}
}
gcw.bytesMarked += uint64(n)
gcw.scanWork += int64(i)
}
// Shade the object if it isn't already.
// The object is not nil and known to be in the heap.
// Preemption must be disabled.
//go:nowritebarrier
func shade(b uintptr) {
if obj, hbits, span := heapBitsForObject(b, 0, 0); obj != 0 {
gcw := &getg().m.p.ptr().gcw
greyobject(obj, 0, 0, hbits, span, gcw)
if gcphase == _GCmarktermination || gcBlackenPromptly {
// Ps aren't allowed to cache work during mark
// termination.
gcw.dispose()
}
}
}
// obj is the start of an object with mark mbits.
// If it isn't already marked, mark it and enqueue into gcw.
// base and off are for debugging only and could be removed.
//go:nowritebarrierrec
func greyobject(obj, base, off uintptr, hbits heapBits, span *mspan, gcw *gcWork) {
// obj should be start of allocation, and so must be at least pointer-aligned.
if obj&(sys.PtrSize-1) != 0 {
throw("greyobject: obj not pointer-aligned")
}
if useCheckmark {
if !hbits.isMarked() {
printlock()
print("runtime:greyobject: checkmarks finds unexpected unmarked object obj=", hex(obj), "\n")
print("runtime: found obj at *(", hex(base), "+", hex(off), ")\n")
// Dump the source (base) object
gcDumpObject("base", base, off)
// Dump the object
gcDumpObject("obj", obj, ^uintptr(0))
throw("checkmark found unmarked object")
}
if hbits.isCheckmarked(span.elemsize) {
return
}
hbits.setCheckmarked(span.elemsize)
if !hbits.isCheckmarked(span.elemsize) {
throw("setCheckmarked and isCheckmarked disagree")
}
} else {
// If marked we have nothing to do.
if hbits.isMarked() {
return
}
hbits.setMarked()
// If this is a noscan object, fast-track it to black
// instead of greying it.
if !hbits.hasPointers(span.elemsize) {
gcw.bytesMarked += uint64(span.elemsize)
return
}
}
// Queue the obj for scanning. The PREFETCH(obj) logic has been removed but
// seems like a nice optimization that can be added back in.
// There needs to be time between the PREFETCH and the use.
// Previously we put the obj in an 8 element buffer that is drained at a rate
// to give the PREFETCH time to do its work.
// Use of PREFETCHNTA might be more appropriate than PREFETCH
gcw.put(obj)
}
// gcDumpObject dumps the contents of obj for debugging and marks the
// field at byte offset off in obj.
func gcDumpObject(label string, obj, off uintptr) {
if obj < mheap_.arena_start || obj >= mheap_.arena_used {
print(label, "=", hex(obj), " is not in the Go heap\n")
return
}
k := obj >> _PageShift
x := k
x -= mheap_.arena_start >> _PageShift
s := h_spans[x]
print(label, "=", hex(obj), " k=", hex(k))
if s == nil {
print(" s=nil\n")
return
}
print(" s.start*_PageSize=", hex(s.start*_PageSize), " s.limit=", hex(s.limit), " s.sizeclass=", s.sizeclass, " s.elemsize=", s.elemsize, "\n")
skipped := false
for i := uintptr(0); i < s.elemsize; i += sys.PtrSize {
// For big objects, just print the beginning (because
// that usually hints at the object's type) and the
// fields around off.
if !(i < 128*sys.PtrSize || off-16*sys.PtrSize < i && i < off+16*sys.PtrSize) {
skipped = true
continue
}
if skipped {
print(" ...\n")
skipped = false
}
print(" *(", label, "+", i, ") = ", hex(*(*uintptr)(unsafe.Pointer(obj + uintptr(i)))))
if i == off {
print(" <==")
}
print("\n")
}
if skipped {
print(" ...\n")
}
}
// If gcBlackenPromptly is true we are in the second mark phase phase so we allocate black.
//go:nowritebarrier
func gcmarknewobject_m(obj, size uintptr) {
if useCheckmark && !gcBlackenPromptly { // The world should be stopped so this should not happen.
throw("gcmarknewobject called while doing checkmark")
}
heapBitsForAddr(obj).setMarked()
atomic.Xadd64(&work.bytesMarked, int64(size))
}
// Checkmarking
// To help debug the concurrent GC we remark with the world
// stopped ensuring that any object encountered has their normal
// mark bit set. To do this we use an orthogonal bit
// pattern to indicate the object is marked. The following pattern
// uses the upper two bits in the object's boundary nibble.
// 01: scalar not marked
// 10: pointer not marked
// 11: pointer marked
// 00: scalar marked
// Xoring with 01 will flip the pattern from marked to unmarked and vica versa.
// The higher bit is 1 for pointers and 0 for scalars, whether the object
// is marked or not.
// The first nibble no longer holds the typeDead pattern indicating that the
// there are no more pointers in the object. This information is held
// in the second nibble.
// If useCheckmark is true, marking of an object uses the
// checkmark bits (encoding above) instead of the standard
// mark bits.
var useCheckmark = false
//go:nowritebarrier
func initCheckmarks() {
useCheckmark = true
for _, s := range work.spans {
if s.state == _MSpanInUse {
heapBitsForSpan(s.base()).initCheckmarkSpan(s.layout())
}
}
}
func clearCheckmarks() {
useCheckmark = false
for _, s := range work.spans {
if s.state == _MSpanInUse {
heapBitsForSpan(s.base()).clearCheckmarkSpan(s.layout())
}
}
}
|