/usr/share/go-1.6/src/runtime/mgc.go is in golang-1.6-src 1.6.1-0ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 | // Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// TODO(rsc): The code having to do with the heap bitmap needs very serious cleanup.
// It has gotten completely out of control.
// Garbage collector (GC).
//
// The GC runs concurrently with mutator threads, is type accurate (aka precise), allows multiple
// GC thread to run in parallel. It is a concurrent mark and sweep that uses a write barrier. It is
// non-generational and non-compacting. Allocation is done using size segregated per P allocation
// areas to minimize fragmentation while eliminating locks in the common case.
//
// The algorithm decomposes into several steps.
// This is a high level description of the algorithm being used. For an overview of GC a good
// place to start is Richard Jones' gchandbook.org.
//
// The algorithm's intellectual heritage includes Dijkstra's on-the-fly algorithm, see
// Edsger W. Dijkstra, Leslie Lamport, A. J. Martin, C. S. Scholten, and E. F. M. Steffens. 1978.
// On-the-fly garbage collection: an exercise in cooperation. Commun. ACM 21, 11 (November 1978),
// 966-975.
// For journal quality proofs that these steps are complete, correct, and terminate see
// Hudson, R., and Moss, J.E.B. Copying Garbage Collection without stopping the world.
// Concurrency and Computation: Practice and Experience 15(3-5), 2003.
//
// 0. Set phase = GCscan from GCoff.
// 1. Wait for all P's to acknowledge phase change.
// At this point all goroutines have passed through a GC safepoint and
// know we are in the GCscan phase.
// 2. GC scans all goroutine stacks, mark and enqueues all encountered pointers
// (marking avoids most duplicate enqueuing but races may produce benign duplication).
// Preempted goroutines are scanned before P schedules next goroutine.
// 3. Set phase = GCmark.
// 4. Wait for all P's to acknowledge phase change.
// 5. Now write barrier marks and enqueues black, grey, or white to white pointers.
// Malloc still allocates white (non-marked) objects.
// 6. Meanwhile GC transitively walks the heap marking reachable objects.
// 7. When GC finishes marking heap, it preempts P's one-by-one and
// retakes partial wbufs (filled by write barrier or during a stack scan of the goroutine
// currently scheduled on the P).
// 8. Once the GC has exhausted all available marking work it sets phase = marktermination.
// 9. Wait for all P's to acknowledge phase change.
// 10. Malloc now allocates black objects, so number of unmarked reachable objects
// monotonically decreases.
// 11. GC preempts P's one-by-one taking partial wbufs and marks all unmarked yet
// reachable objects.
// 12. When GC completes a full cycle over P's and discovers no new grey
// objects, (which means all reachable objects are marked) set phase = GCoff.
// 13. Wait for all P's to acknowledge phase change.
// 14. Now malloc allocates white (but sweeps spans before use).
// Write barrier becomes nop.
// 15. GC does background sweeping, see description below.
// 16. When sufficient allocation has taken place replay the sequence starting at 0 above,
// see discussion of GC rate below.
// Changing phases.
// Phases are changed by setting the gcphase to the next phase and possibly calling ackgcphase.
// All phase action must be benign in the presence of a change.
// Starting with GCoff
// GCoff to GCscan
// GSscan scans stacks and globals greying them and never marks an object black.
// Once all the P's are aware of the new phase they will scan gs on preemption.
// This means that the scanning of preempted gs can't start until all the Ps
// have acknowledged.
// When a stack is scanned, this phase also installs stack barriers to
// track how much of the stack has been active.
// This transition enables write barriers because stack barriers
// assume that writes to higher frames will be tracked by write
// barriers. Technically this only needs write barriers for writes
// to stack slots, but we enable write barriers in general.
// GCscan to GCmark
// In GCmark, work buffers are drained until there are no more
// pointers to scan.
// No scanning of objects (making them black) can happen until all
// Ps have enabled the write barrier, but that already happened in
// the transition to GCscan.
// GCmark to GCmarktermination
// The only change here is that we start allocating black so the Ps must acknowledge
// the change before we begin the termination algorithm
// GCmarktermination to GSsweep
// Object currently on the freelist must be marked black for this to work.
// Are things on the free lists black or white? How does the sweep phase work?
// Concurrent sweep.
//
// The sweep phase proceeds concurrently with normal program execution.
// The heap is swept span-by-span both lazily (when a goroutine needs another span)
// and concurrently in a background goroutine (this helps programs that are not CPU bound).
// At the end of STW mark termination all spans are marked as "needs sweeping".
//
// The background sweeper goroutine simply sweeps spans one-by-one.
//
// To avoid requesting more OS memory while there are unswept spans, when a
// goroutine needs another span, it first attempts to reclaim that much memory
// by sweeping. When a goroutine needs to allocate a new small-object span, it
// sweeps small-object spans for the same object size until it frees at least
// one object. When a goroutine needs to allocate large-object span from heap,
// it sweeps spans until it frees at least that many pages into heap. There is
// one case where this may not suffice: if a goroutine sweeps and frees two
// nonadjacent one-page spans to the heap, it will allocate a new two-page
// span, but there can still be other one-page unswept spans which could be
// combined into a two-page span.
//
// It's critical to ensure that no operations proceed on unswept spans (that would corrupt
// mark bits in GC bitmap). During GC all mcaches are flushed into the central cache,
// so they are empty. When a goroutine grabs a new span into mcache, it sweeps it.
// When a goroutine explicitly frees an object or sets a finalizer, it ensures that
// the span is swept (either by sweeping it, or by waiting for the concurrent sweep to finish).
// The finalizer goroutine is kicked off only when all spans are swept.
// When the next GC starts, it sweeps all not-yet-swept spans (if any).
// GC rate.
// Next GC is after we've allocated an extra amount of memory proportional to
// the amount already in use. The proportion is controlled by GOGC environment variable
// (100 by default). If GOGC=100 and we're using 4M, we'll GC again when we get to 8M
// (this mark is tracked in next_gc variable). This keeps the GC cost in linear
// proportion to the allocation cost. Adjusting GOGC just changes the linear constant
// (and also the amount of extra memory used).
package runtime
import (
"runtime/internal/atomic"
"runtime/internal/sys"
"unsafe"
)
const (
_DebugGC = 0
_ConcurrentSweep = true
_FinBlockSize = 4 * 1024
// sweepMinHeapDistance is a lower bound on the heap distance
// (in bytes) reserved for concurrent sweeping between GC
// cycles. This will be scaled by gcpercent/100.
sweepMinHeapDistance = 1024 * 1024
)
// heapminimum is the minimum heap size at which to trigger GC.
// For small heaps, this overrides the usual GOGC*live set rule.
//
// When there is a very small live set but a lot of allocation, simply
// collecting when the heap reaches GOGC*live results in many GC
// cycles and high total per-GC overhead. This minimum amortizes this
// per-GC overhead while keeping the heap reasonably small.
//
// During initialization this is set to 4MB*GOGC/100. In the case of
// GOGC==0, this will set heapminimum to 0, resulting in constant
// collection even when the heap size is small, which is useful for
// debugging.
var heapminimum uint64 = defaultHeapMinimum
// defaultHeapMinimum is the value of heapminimum for GOGC==100.
const defaultHeapMinimum = 4 << 20
// Initialized from $GOGC. GOGC=off means no GC.
var gcpercent int32
func gcinit() {
if unsafe.Sizeof(workbuf{}) != _WorkbufSize {
throw("size of Workbuf is suboptimal")
}
_ = setGCPercent(readgogc())
for datap := &firstmoduledata; datap != nil; datap = datap.next {
datap.gcdatamask = progToPointerMask((*byte)(unsafe.Pointer(datap.gcdata)), datap.edata-datap.data)
datap.gcbssmask = progToPointerMask((*byte)(unsafe.Pointer(datap.gcbss)), datap.ebss-datap.bss)
}
memstats.next_gc = heapminimum
work.startSema = 1
work.markDoneSema = 1
}
func readgogc() int32 {
p := gogetenv("GOGC")
if p == "" {
return 100
}
if p == "off" {
return -1
}
return int32(atoi(p))
}
// gcenable is called after the bulk of the runtime initialization,
// just before we're about to start letting user code run.
// It kicks off the background sweeper goroutine and enables GC.
func gcenable() {
c := make(chan int, 1)
go bgsweep(c)
<-c
memstats.enablegc = true // now that runtime is initialized, GC is okay
}
//go:linkname setGCPercent runtime/debug.setGCPercent
func setGCPercent(in int32) (out int32) {
lock(&mheap_.lock)
out = gcpercent
if in < 0 {
in = -1
}
gcpercent = in
heapminimum = defaultHeapMinimum * uint64(gcpercent) / 100
if gcController.triggerRatio > float64(gcpercent)/100 {
gcController.triggerRatio = float64(gcpercent) / 100
}
unlock(&mheap_.lock)
return out
}
// Garbage collector phase.
// Indicates to write barrier and sychronization task to preform.
var gcphase uint32
// The compiler knows about this variable.
// If you change it, you must change the compiler too.
var writeBarrier struct {
enabled bool // compiler emits a check of this before calling write barrier
needed bool // whether we need a write barrier for current GC phase
cgo bool // whether we need a write barrier for a cgo check
}
// gcBlackenEnabled is 1 if mutator assists and background mark
// workers are allowed to blacken objects. This must only be set when
// gcphase == _GCmark.
var gcBlackenEnabled uint32
// gcBlackenPromptly indicates that optimizations that may
// hide work from the global work queue should be disabled.
//
// If gcBlackenPromptly is true, per-P gcWork caches should
// be flushed immediately and new objects should be allocated black.
//
// There is a tension between allocating objects white and
// allocating them black. If white and the objects die before being
// marked they can be collected during this GC cycle. On the other
// hand allocating them black will reduce _GCmarktermination latency
// since more work is done in the mark phase. This tension is resolved
// by allocating white until the mark phase is approaching its end and
// then allocating black for the remainder of the mark phase.
var gcBlackenPromptly bool
const (
_GCoff = iota // GC not running; sweeping in background, write barrier disabled
_GCmark // GC marking roots and workbufs, write barrier ENABLED
_GCmarktermination // GC mark termination: allocate black, P's help GC, write barrier ENABLED
)
//go:nosplit
func setGCPhase(x uint32) {
atomic.Store(&gcphase, x)
writeBarrier.needed = gcphase == _GCmark || gcphase == _GCmarktermination
writeBarrier.enabled = writeBarrier.needed || writeBarrier.cgo
}
// gcMarkWorkerMode represents the mode that a concurrent mark worker
// should operate in.
//
// Concurrent marking happens through four different mechanisms. One
// is mutator assists, which happen in response to allocations and are
// not scheduled. The other three are variations in the per-P mark
// workers and are distinguished by gcMarkWorkerMode.
type gcMarkWorkerMode int
const (
// gcMarkWorkerDedicatedMode indicates that the P of a mark
// worker is dedicated to running that mark worker. The mark
// worker should run without preemption.
gcMarkWorkerDedicatedMode gcMarkWorkerMode = iota
// gcMarkWorkerFractionalMode indicates that a P is currently
// running the "fractional" mark worker. The fractional worker
// is necessary when GOMAXPROCS*gcGoalUtilization is not an
// integer. The fractional worker should run until it is
// preempted and will be scheduled to pick up the fractional
// part of GOMAXPROCS*gcGoalUtilization.
gcMarkWorkerFractionalMode
// gcMarkWorkerIdleMode indicates that a P is running the mark
// worker because it has nothing else to do. The idle worker
// should run until it is preempted and account its time
// against gcController.idleMarkTime.
gcMarkWorkerIdleMode
)
// gcController implements the GC pacing controller that determines
// when to trigger concurrent garbage collection and how much marking
// work to do in mutator assists and background marking.
//
// It uses a feedback control algorithm to adjust the memstats.next_gc
// trigger based on the heap growth and GC CPU utilization each cycle.
// This algorithm optimizes for heap growth to match GOGC and for CPU
// utilization between assist and background marking to be 25% of
// GOMAXPROCS. The high-level design of this algorithm is documented
// at https://golang.org/s/go15gcpacing.
var gcController = gcControllerState{
// Initial trigger ratio guess.
triggerRatio: 7 / 8.0,
}
type gcControllerState struct {
// scanWork is the total scan work performed this cycle. This
// is updated atomically during the cycle. Updates occur in
// bounded batches, since it is both written and read
// throughout the cycle.
//
// Currently this is the bytes of heap scanned. For most uses,
// this is an opaque unit of work, but for estimation the
// definition is important.
scanWork int64
// bgScanCredit is the scan work credit accumulated by the
// concurrent background scan. This credit is accumulated by
// the background scan and stolen by mutator assists. This is
// updated atomically. Updates occur in bounded batches, since
// it is both written and read throughout the cycle.
bgScanCredit int64
// assistTime is the nanoseconds spent in mutator assists
// during this cycle. This is updated atomically. Updates
// occur in bounded batches, since it is both written and read
// throughout the cycle.
assistTime int64
// dedicatedMarkTime is the nanoseconds spent in dedicated
// mark workers during this cycle. This is updated atomically
// at the end of the concurrent mark phase.
dedicatedMarkTime int64
// fractionalMarkTime is the nanoseconds spent in the
// fractional mark worker during this cycle. This is updated
// atomically throughout the cycle and will be up-to-date if
// the fractional mark worker is not currently running.
fractionalMarkTime int64
// idleMarkTime is the nanoseconds spent in idle marking
// during this cycle. This is updated atomically throughout
// the cycle.
idleMarkTime int64
// bgMarkStartTime is the absolute start time in nanoseconds
// that the background mark phase started.
bgMarkStartTime int64
// assistTime is the absolute start time in nanoseconds that
// mutator assists were enabled.
assistStartTime int64
// heapGoal is the goal memstats.heap_live for when this cycle
// ends. This is computed at the beginning of each cycle.
heapGoal uint64
// dedicatedMarkWorkersNeeded is the number of dedicated mark
// workers that need to be started. This is computed at the
// beginning of each cycle and decremented atomically as
// dedicated mark workers get started.
dedicatedMarkWorkersNeeded int64
// assistWorkPerByte is the ratio of scan work to allocated
// bytes that should be performed by mutator assists. This is
// computed at the beginning of each cycle and updated every
// time heap_scan is updated.
assistWorkPerByte float64
// assistBytesPerWork is 1/assistWorkPerByte.
assistBytesPerWork float64
// fractionalUtilizationGoal is the fraction of wall clock
// time that should be spent in the fractional mark worker.
// For example, if the overall mark utilization goal is 25%
// and GOMAXPROCS is 6, one P will be a dedicated mark worker
// and this will be set to 0.5 so that 50% of the time some P
// is in a fractional mark worker. This is computed at the
// beginning of each cycle.
fractionalUtilizationGoal float64
// triggerRatio is the heap growth ratio at which the garbage
// collection cycle should start. E.g., if this is 0.6, then
// GC should start when the live heap has reached 1.6 times
// the heap size marked by the previous cycle. This is updated
// at the end of of each cycle.
triggerRatio float64
_ [sys.CacheLineSize]byte
// fractionalMarkWorkersNeeded is the number of fractional
// mark workers that need to be started. This is either 0 or
// 1. This is potentially updated atomically at every
// scheduling point (hence it gets its own cache line).
fractionalMarkWorkersNeeded int64
_ [sys.CacheLineSize]byte
}
// startCycle resets the GC controller's state and computes estimates
// for a new GC cycle. The caller must hold worldsema.
func (c *gcControllerState) startCycle() {
c.scanWork = 0
c.bgScanCredit = 0
c.assistTime = 0
c.dedicatedMarkTime = 0
c.fractionalMarkTime = 0
c.idleMarkTime = 0
// If this is the first GC cycle or we're operating on a very
// small heap, fake heap_marked so it looks like next_gc is
// the appropriate growth from heap_marked, even though the
// real heap_marked may not have a meaningful value (on the
// first cycle) or may be much smaller (resulting in a large
// error response).
if memstats.next_gc <= heapminimum {
memstats.heap_marked = uint64(float64(memstats.next_gc) / (1 + c.triggerRatio))
memstats.heap_reachable = memstats.heap_marked
}
// Compute the heap goal for this cycle
c.heapGoal = memstats.heap_reachable + memstats.heap_reachable*uint64(gcpercent)/100
// Ensure that the heap goal is at least a little larger than
// the current live heap size. This may not be the case if GC
// start is delayed or if the allocation that pushed heap_live
// over next_gc is large or if the trigger is really close to
// GOGC. Assist is proportional to this distance, so enforce a
// minimum distance, even if it means going over the GOGC goal
// by a tiny bit.
if c.heapGoal < memstats.heap_live+1024*1024 {
c.heapGoal = memstats.heap_live + 1024*1024
}
// Compute the total mark utilization goal and divide it among
// dedicated and fractional workers.
totalUtilizationGoal := float64(gomaxprocs) * gcGoalUtilization
c.dedicatedMarkWorkersNeeded = int64(totalUtilizationGoal)
c.fractionalUtilizationGoal = totalUtilizationGoal - float64(c.dedicatedMarkWorkersNeeded)
if c.fractionalUtilizationGoal > 0 {
c.fractionalMarkWorkersNeeded = 1
} else {
c.fractionalMarkWorkersNeeded = 0
}
// Clear per-P state
for _, p := range &allp {
if p == nil {
break
}
p.gcAssistTime = 0
}
// Compute initial values for controls that are updated
// throughout the cycle.
c.revise()
if debug.gcpacertrace > 0 {
print("pacer: assist ratio=", c.assistWorkPerByte,
" (scan ", memstats.heap_scan>>20, " MB in ",
work.initialHeapLive>>20, "->",
c.heapGoal>>20, " MB)",
" workers=", c.dedicatedMarkWorkersNeeded,
"+", c.fractionalMarkWorkersNeeded, "\n")
}
}
// revise updates the assist ratio during the GC cycle to account for
// improved estimates. This should be called either under STW or
// whenever memstats.heap_scan or memstats.heap_live is updated (with
// mheap_.lock held).
//
// It should only be called when gcBlackenEnabled != 0 (because this
// is when assists are enabled and the necessary statistics are
// available).
func (c *gcControllerState) revise() {
// Compute the expected scan work remaining.
//
// Note that the scannable heap size is likely to increase
// during the GC cycle. This is why it's important to revise
// the assist ratio throughout the cycle: if the scannable
// heap size increases, the assist ratio based on the initial
// scannable heap size may target too little scan work.
//
// This particular estimate is a strict upper bound on the
// possible remaining scan work for the current heap.
// You might consider dividing this by 2 (or by
// (100+GOGC)/100) to counter this over-estimation, but
// benchmarks show that this has almost no effect on mean
// mutator utilization, heap size, or assist time and it
// introduces the danger of under-estimating and letting the
// mutator outpace the garbage collector.
scanWorkExpected := int64(memstats.heap_scan) - c.scanWork
if scanWorkExpected < 1000 {
// We set a somewhat arbitrary lower bound on
// remaining scan work since if we aim a little high,
// we can miss by a little.
//
// We *do* need to enforce that this is at least 1,
// since marking is racy and double-scanning objects
// may legitimately make the expected scan work
// negative.
scanWorkExpected = 1000
}
// Compute the heap distance remaining.
heapDistance := int64(c.heapGoal) - int64(memstats.heap_live)
if heapDistance <= 0 {
// This shouldn't happen, but if it does, avoid
// dividing by zero or setting the assist negative.
heapDistance = 1
}
// Compute the mutator assist ratio so by the time the mutator
// allocates the remaining heap bytes up to next_gc, it will
// have done (or stolen) the remaining amount of scan work.
c.assistWorkPerByte = float64(scanWorkExpected) / float64(heapDistance)
c.assistBytesPerWork = float64(heapDistance) / float64(scanWorkExpected)
}
// endCycle updates the GC controller state at the end of the
// concurrent part of the GC cycle.
func (c *gcControllerState) endCycle() {
h_t := c.triggerRatio // For debugging
// Proportional response gain for the trigger controller. Must
// be in [0, 1]. Lower values smooth out transient effects but
// take longer to respond to phase changes. Higher values
// react to phase changes quickly, but are more affected by
// transient changes. Values near 1 may be unstable.
const triggerGain = 0.5
// Compute next cycle trigger ratio. First, this computes the
// "error" for this cycle; that is, how far off the trigger
// was from what it should have been, accounting for both heap
// growth and GC CPU utilization. We compute the actual heap
// growth during this cycle and scale that by how far off from
// the goal CPU utilization we were (to estimate the heap
// growth if we had the desired CPU utilization). The
// difference between this estimate and the GOGC-based goal
// heap growth is the error.
//
// TODO(austin): next_gc is based on heap_reachable, not
// heap_marked, which means the actual growth ratio
// technically isn't comparable to the trigger ratio.
goalGrowthRatio := float64(gcpercent) / 100
actualGrowthRatio := float64(memstats.heap_live)/float64(memstats.heap_marked) - 1
assistDuration := nanotime() - c.assistStartTime
// Assume background mark hit its utilization goal.
utilization := gcGoalUtilization
// Add assist utilization; avoid divide by zero.
if assistDuration > 0 {
utilization += float64(c.assistTime) / float64(assistDuration*int64(gomaxprocs))
}
triggerError := goalGrowthRatio - c.triggerRatio - utilization/gcGoalUtilization*(actualGrowthRatio-c.triggerRatio)
// Finally, we adjust the trigger for next time by this error,
// damped by the proportional gain.
c.triggerRatio += triggerGain * triggerError
if c.triggerRatio < 0 {
// This can happen if the mutator is allocating very
// quickly or the GC is scanning very slowly.
c.triggerRatio = 0
} else if c.triggerRatio > goalGrowthRatio*0.95 {
// Ensure there's always a little margin so that the
// mutator assist ratio isn't infinity.
c.triggerRatio = goalGrowthRatio * 0.95
}
if debug.gcpacertrace > 0 {
// Print controller state in terms of the design
// document.
H_m_prev := memstats.heap_marked
H_T := memstats.next_gc
h_a := actualGrowthRatio
H_a := memstats.heap_live
h_g := goalGrowthRatio
H_g := int64(float64(H_m_prev) * (1 + h_g))
u_a := utilization
u_g := gcGoalUtilization
W_a := c.scanWork
print("pacer: H_m_prev=", H_m_prev,
" h_t=", h_t, " H_T=", H_T,
" h_a=", h_a, " H_a=", H_a,
" h_g=", h_g, " H_g=", H_g,
" u_a=", u_a, " u_g=", u_g,
" W_a=", W_a,
" goalΔ=", goalGrowthRatio-h_t,
" actualΔ=", h_a-h_t,
" u_a/u_g=", u_a/u_g,
"\n")
}
}
// enlistWorker encourages another dedicated mark worker to start on
// another P if there are spare worker slots. It is used by putfull
// when more work is made available.
//
//go:nowritebarrier
func (c *gcControllerState) enlistWorker() {
if c.dedicatedMarkWorkersNeeded <= 0 {
return
}
// Pick a random other P to preempt.
if gomaxprocs <= 1 {
return
}
gp := getg()
if gp == nil || gp.m == nil || gp.m.p == 0 {
return
}
myID := gp.m.p.ptr().id
for tries := 0; tries < 5; tries++ {
id := int32(fastrand1() % uint32(gomaxprocs-1))
if id >= myID {
id++
}
p := allp[id]
if p.status != _Prunning {
continue
}
if preemptone(p) {
return
}
}
}
// findRunnableGCWorker returns the background mark worker for _p_ if it
// should be run. This must only be called when gcBlackenEnabled != 0.
func (c *gcControllerState) findRunnableGCWorker(_p_ *p) *g {
if gcBlackenEnabled == 0 {
throw("gcControllerState.findRunnable: blackening not enabled")
}
if _p_.gcBgMarkWorker == 0 {
// The mark worker associated with this P is blocked
// performing a mark transition. We can't run it
// because it may be on some other run or wait queue.
return nil
}
if !gcMarkWorkAvailable(_p_) {
// No work to be done right now. This can happen at
// the end of the mark phase when there are still
// assists tapering off. Don't bother running a worker
// now because it'll just return immediately.
return nil
}
decIfPositive := func(ptr *int64) bool {
if *ptr > 0 {
if atomic.Xaddint64(ptr, -1) >= 0 {
return true
}
// We lost a race
atomic.Xaddint64(ptr, +1)
}
return false
}
if decIfPositive(&c.dedicatedMarkWorkersNeeded) {
// This P is now dedicated to marking until the end of
// the concurrent mark phase.
_p_.gcMarkWorkerMode = gcMarkWorkerDedicatedMode
// TODO(austin): This P isn't going to run anything
// else for a while, so kick everything out of its run
// queue.
} else {
if !decIfPositive(&c.fractionalMarkWorkersNeeded) {
// No more workers are need right now.
return nil
}
// This P has picked the token for the fractional worker.
// Is the GC currently under or at the utilization goal?
// If so, do more work.
//
// We used to check whether doing one time slice of work
// would remain under the utilization goal, but that has the
// effect of delaying work until the mutator has run for
// enough time slices to pay for the work. During those time
// slices, write barriers are enabled, so the mutator is running slower.
// Now instead we do the work whenever we're under or at the
// utilization work and pay for it by letting the mutator run later.
// This doesn't change the overall utilization averages, but it
// front loads the GC work so that the GC finishes earlier and
// write barriers can be turned off sooner, effectively giving
// the mutator a faster machine.
//
// The old, slower behavior can be restored by setting
// gcForcePreemptNS = forcePreemptNS.
const gcForcePreemptNS = 0
// TODO(austin): We could fast path this and basically
// eliminate contention on c.fractionalMarkWorkersNeeded by
// precomputing the minimum time at which it's worth
// next scheduling the fractional worker. Then Ps
// don't have to fight in the window where we've
// passed that deadline and no one has started the
// worker yet.
//
// TODO(austin): Shorter preemption interval for mark
// worker to improve fairness and give this
// finer-grained control over schedule?
now := nanotime() - gcController.bgMarkStartTime
then := now + gcForcePreemptNS
timeUsed := c.fractionalMarkTime + gcForcePreemptNS
if then > 0 && float64(timeUsed)/float64(then) > c.fractionalUtilizationGoal {
// Nope, we'd overshoot the utilization goal
atomic.Xaddint64(&c.fractionalMarkWorkersNeeded, +1)
return nil
}
_p_.gcMarkWorkerMode = gcMarkWorkerFractionalMode
}
// Run the background mark worker
gp := _p_.gcBgMarkWorker.ptr()
casgstatus(gp, _Gwaiting, _Grunnable)
if trace.enabled {
traceGoUnpark(gp, 0)
}
return gp
}
// gcGoalUtilization is the goal CPU utilization for background
// marking as a fraction of GOMAXPROCS.
const gcGoalUtilization = 0.25
// gcCreditSlack is the amount of scan work credit that can can
// accumulate locally before updating gcController.scanWork and,
// optionally, gcController.bgScanCredit. Lower values give a more
// accurate assist ratio and make it more likely that assists will
// successfully steal background credit. Higher values reduce memory
// contention.
const gcCreditSlack = 2000
// gcAssistTimeSlack is the nanoseconds of mutator assist time that
// can accumulate on a P before updating gcController.assistTime.
const gcAssistTimeSlack = 5000
// gcOverAssistBytes determines how many extra allocation bytes of
// assist credit a GC assist builds up when an assist happens. This
// amortizes the cost of an assist by pre-paying for this many bytes
// of future allocations.
const gcOverAssistBytes = 1 << 20
var work struct {
full uint64 // lock-free list of full blocks workbuf
empty uint64 // lock-free list of empty blocks workbuf
pad0 [sys.CacheLineSize]uint8 // prevents false-sharing between full/empty and nproc/nwait
markrootNext uint32 // next markroot job
markrootJobs uint32 // number of markroot jobs
nproc uint32
tstart int64
nwait uint32
ndone uint32
alldone note
// Number of roots of various root types. Set by gcMarkRootPrepare.
nDataRoots, nBSSRoots, nSpanRoots, nStackRoots int
// finalizersDone indicates that finalizers and objects with
// finalizers have been scanned by markroot. During concurrent
// GC, this happens during the concurrent scan phase. During
// STW GC, this happens during mark termination.
finalizersDone bool
// Each type of GC state transition is protected by a lock.
// Since multiple threads can simultaneously detect the state
// transition condition, any thread that detects a transition
// condition must acquire the appropriate transition lock,
// re-check the transition condition and return if it no
// longer holds or perform the transition if it does.
// Likewise, any transition must invalidate the transition
// condition before releasing the lock. This ensures that each
// transition is performed by exactly one thread and threads
// that need the transition to happen block until it has
// happened.
//
// startSema protects the transition from "off" to mark or
// mark termination.
startSema uint32
// markDoneSema protects transitions from mark 1 to mark 2 and
// from mark 2 to mark termination.
markDoneSema uint32
bgMarkReady note // signal background mark worker has started
bgMarkDone uint32 // cas to 1 when at a background mark completion point
// Background mark completion signaling
// mode is the concurrency mode of the current GC cycle.
mode gcMode
// Copy of mheap.allspans for marker or sweeper.
spans []*mspan
// totaltime is the CPU nanoseconds spent in GC since the
// program started if debug.gctrace > 0.
totaltime int64
// bytesMarked is the number of bytes marked this cycle. This
// includes bytes blackened in scanned objects, noscan objects
// that go straight to black, and permagrey objects scanned by
// markroot during the concurrent scan phase. This is updated
// atomically during the cycle. Updates may be batched
// arbitrarily, since the value is only read at the end of the
// cycle.
//
// Because of benign races during marking, this number may not
// be the exact number of marked bytes, but it should be very
// close.
bytesMarked uint64
// initialHeapLive is the value of memstats.heap_live at the
// beginning of this GC cycle.
initialHeapLive uint64
// assistQueue is a queue of assists that are blocked because
// there was neither enough credit to steal or enough work to
// do.
assistQueue struct {
lock mutex
head, tail guintptr
}
// Timing/utilization stats for this cycle.
stwprocs, maxprocs int32
tSweepTerm, tMark, tMarkTerm, tEnd int64 // nanotime() of phase start
pauseNS int64 // total STW time this cycle
pauseStart int64 // nanotime() of last STW
// debug.gctrace heap sizes for this cycle.
heap0, heap1, heap2, heapGoal uint64
}
// GC runs a garbage collection and blocks the caller until the
// garbage collection is complete. It may also block the entire
// program.
func GC() {
gcStart(gcForceBlockMode, false)
}
// gcMode indicates how concurrent a GC cycle should be.
type gcMode int
const (
gcBackgroundMode gcMode = iota // concurrent GC and sweep
gcForceMode // stop-the-world GC now, concurrent sweep
gcForceBlockMode // stop-the-world GC now and STW sweep
)
// gcShouldStart returns true if the exit condition for the _GCoff
// phase has been met. The exit condition should be tested when
// allocating.
//
// If forceTrigger is true, it ignores the current heap size, but
// checks all other conditions. In general this should be false.
func gcShouldStart(forceTrigger bool) bool {
return gcphase == _GCoff && (forceTrigger || memstats.heap_live >= memstats.next_gc) && memstats.enablegc && panicking == 0 && gcpercent >= 0
}
// gcStart transitions the GC from _GCoff to _GCmark (if mode ==
// gcBackgroundMode) or _GCmarktermination (if mode !=
// gcBackgroundMode) by performing sweep termination and GC
// initialization.
//
// This may return without performing this transition in some cases,
// such as when called on a system stack or with locks held.
func gcStart(mode gcMode, forceTrigger bool) {
// Since this is called from malloc and malloc is called in
// the guts of a number of libraries that might be holding
// locks, don't attempt to start GC in non-preemptible or
// potentially unstable situations.
mp := acquirem()
if gp := getg(); gp == mp.g0 || mp.locks > 1 || mp.preemptoff != "" {
releasem(mp)
return
}
releasem(mp)
mp = nil
// Pick up the remaining unswept/not being swept spans concurrently
//
// This shouldn't happen if we're being invoked in background
// mode since proportional sweep should have just finished
// sweeping everything, but rounding errors, etc, may leave a
// few spans unswept. In forced mode, this is necessary since
// GC can be forced at any point in the sweeping cycle.
//
// We check the transition condition continuously here in case
// this G gets delayed in to the next GC cycle.
for (mode != gcBackgroundMode || gcShouldStart(forceTrigger)) && gosweepone() != ^uintptr(0) {
sweep.nbgsweep++
}
// Perform GC initialization and the sweep termination
// transition.
//
// If this is a forced GC, don't acquire the transition lock
// or re-check the transition condition because we
// specifically *don't* want to share the transition with
// another thread.
useStartSema := mode == gcBackgroundMode
if useStartSema {
semacquire(&work.startSema, false)
// Re-check transition condition under transition lock.
if !gcShouldStart(forceTrigger) {
semrelease(&work.startSema)
return
}
}
// In gcstoptheworld debug mode, upgrade the mode accordingly.
// We do this after re-checking the transition condition so
// that multiple goroutines that detect the heap trigger don't
// start multiple STW GCs.
if mode == gcBackgroundMode {
if debug.gcstoptheworld == 1 {
mode = gcForceMode
} else if debug.gcstoptheworld == 2 {
mode = gcForceBlockMode
}
}
// Ok, we're doing it! Stop everybody else
semacquire(&worldsema, false)
if trace.enabled {
traceGCStart()
}
if mode == gcBackgroundMode {
gcBgMarkStartWorkers()
}
now := nanotime()
work.stwprocs, work.maxprocs = gcprocs(), gomaxprocs
work.tSweepTerm = now
work.heap0 = memstats.heap_live
work.pauseNS = 0
work.mode = mode
work.pauseStart = now
systemstack(stopTheWorldWithSema)
// Finish sweep before we start concurrent scan.
systemstack(func() {
finishsweep_m(true)
})
// clearpools before we start the GC. If we wait they memory will not be
// reclaimed until the next GC cycle.
clearpools()
gcResetMarkState()
work.finalizersDone = false
if mode == gcBackgroundMode { // Do as much work concurrently as possible
gcController.startCycle()
work.heapGoal = gcController.heapGoal
// Enter concurrent mark phase and enable
// write barriers.
//
// Because the world is stopped, all Ps will
// observe that write barriers are enabled by
// the time we start the world and begin
// scanning.
//
// It's necessary to enable write barriers
// during the scan phase for several reasons:
//
// They must be enabled for writes to higher
// stack frames before we scan stacks and
// install stack barriers because this is how
// we track writes to inactive stack frames.
// (Alternatively, we could not install stack
// barriers over frame boundaries with
// up-pointers).
//
// They must be enabled before assists are
// enabled because they must be enabled before
// any non-leaf heap objects are marked. Since
// allocations are blocked until assists can
// happen, we want enable assists as early as
// possible.
setGCPhase(_GCmark)
// markrootSpans uses work.spans, so make sure
// it is up to date.
gcCopySpans()
gcBgMarkPrepare() // Must happen before assist enable.
gcMarkRootPrepare()
// At this point all Ps have enabled the write
// barrier, thus maintaining the no white to
// black invariant. Enable mutator assists to
// put back-pressure on fast allocating
// mutators.
atomic.Store(&gcBlackenEnabled, 1)
// Assists and workers can start the moment we start
// the world.
gcController.assistStartTime = now
gcController.bgMarkStartTime = now
// Concurrent mark.
systemstack(startTheWorldWithSema)
now = nanotime()
work.pauseNS += now - work.pauseStart
work.tMark = now
} else {
t := nanotime()
work.tMark, work.tMarkTerm = t, t
work.heapGoal = work.heap0
// Perform mark termination. This will restart the world.
gcMarkTermination()
}
if useStartSema {
semrelease(&work.startSema)
}
}
// gcMarkDone transitions the GC from mark 1 to mark 2 and from mark 2
// to mark termination.
//
// This should be called when all mark work has been drained. In mark
// 1, this includes all root marking jobs, global work buffers, and
// active work buffers in assists and background workers; however,
// work may still be cached in per-P work buffers. In mark 2, per-P
// caches are disabled.
//
// The calling context must be preemptible.
//
// Note that it is explicitly okay to have write barriers in this
// function because completion of concurrent mark is best-effort
// anyway. Any work created by write barriers here will be cleaned up
// by mark termination.
func gcMarkDone() {
top:
semacquire(&work.markDoneSema, false)
// Re-check transition condition under transition lock.
if !(gcphase == _GCmark && work.nwait == work.nproc && !gcMarkWorkAvailable(nil)) {
semrelease(&work.markDoneSema)
return
}
// Disallow starting new workers so that any remaining workers
// in the current mark phase will drain out.
//
// TODO(austin): Should dedicated workers keep an eye on this
// and exit gcDrain promptly?
atomic.Xaddint64(&gcController.dedicatedMarkWorkersNeeded, -0xffffffff)
atomic.Xaddint64(&gcController.fractionalMarkWorkersNeeded, -0xffffffff)
if !gcBlackenPromptly {
// Transition from mark 1 to mark 2.
//
// The global work list is empty, but there can still be work
// sitting in the per-P work caches and there can be more
// objects reachable from global roots since they don't have write
// barriers. Rescan some roots and flush work caches.
gcMarkRootCheck()
// Disallow caching workbufs and indicate that we're in mark 2.
gcBlackenPromptly = true
// Prevent completion of mark 2 until we've flushed
// cached workbufs.
atomic.Xadd(&work.nwait, -1)
// Rescan global data and BSS. There may still work
// workers running at this point, so bump "jobs" down
// before "next" so they won't try running root jobs
// until we set next.
atomic.Store(&work.markrootJobs, uint32(fixedRootCount+work.nDataRoots+work.nBSSRoots))
atomic.Store(&work.markrootNext, fixedRootCount)
// GC is set up for mark 2. Let Gs blocked on the
// transition lock go while we flush caches.
semrelease(&work.markDoneSema)
systemstack(func() {
// Flush all currently cached workbufs and
// ensure all Ps see gcBlackenPromptly. This
// also blocks until any remaining mark 1
// workers have exited their loop so we can
// start new mark 2 workers that will observe
// the new root marking jobs.
forEachP(func(_p_ *p) {
_p_.gcw.dispose()
})
})
// Now we can start up mark 2 workers.
atomic.Xaddint64(&gcController.dedicatedMarkWorkersNeeded, 0xffffffff)
atomic.Xaddint64(&gcController.fractionalMarkWorkersNeeded, 0xffffffff)
incnwait := atomic.Xadd(&work.nwait, +1)
if incnwait == work.nproc && !gcMarkWorkAvailable(nil) {
// This loop will make progress because
// gcBlackenPromptly is now true, so it won't
// take this same "if" branch.
goto top
}
} else {
// Transition to mark termination.
now := nanotime()
work.tMarkTerm = now
work.pauseStart = now
getg().m.preemptoff = "gcing"
systemstack(stopTheWorldWithSema)
// The gcphase is _GCmark, it will transition to _GCmarktermination
// below. The important thing is that the wb remains active until
// all marking is complete. This includes writes made by the GC.
// markroot is done now, so record that objects with
// finalizers have been scanned.
work.finalizersDone = true
// Disable assists and background workers. We must do
// this before waking blocked assists.
atomic.Store(&gcBlackenEnabled, 0)
// Flush the gcWork caches. This must be done before
// endCycle since endCycle depends on statistics kept
// in these caches.
gcFlushGCWork()
// Wake all blocked assists. These will run when we
// start the world again.
gcWakeAllAssists()
// Likewise, release the transition lock. Blocked
// workers and assists will run when we start the
// world again.
semrelease(&work.markDoneSema)
gcController.endCycle()
// Perform mark termination. This will restart the world.
gcMarkTermination()
}
}
func gcMarkTermination() {
// World is stopped.
// Start marktermination which includes enabling the write barrier.
atomic.Store(&gcBlackenEnabled, 0)
gcBlackenPromptly = false
setGCPhase(_GCmarktermination)
work.heap1 = memstats.heap_live
startTime := nanotime()
mp := acquirem()
mp.preemptoff = "gcing"
_g_ := getg()
_g_.m.traceback = 2
gp := _g_.m.curg
casgstatus(gp, _Grunning, _Gwaiting)
gp.waitreason = "garbage collection"
// Run gc on the g0 stack. We do this so that the g stack
// we're currently running on will no longer change. Cuts
// the root set down a bit (g0 stacks are not scanned, and
// we don't need to scan gc's internal state). We also
// need to switch to g0 so we can shrink the stack.
systemstack(func() {
gcMark(startTime)
// Must return immediately.
// The outer function's stack may have moved
// during gcMark (it shrinks stacks, including the
// outer function's stack), so we must not refer
// to any of its variables. Return back to the
// non-system stack to pick up the new addresses
// before continuing.
})
systemstack(func() {
work.heap2 = work.bytesMarked
if debug.gccheckmark > 0 {
// Run a full stop-the-world mark using checkmark bits,
// to check that we didn't forget to mark anything during
// the concurrent mark process.
gcResetMarkState()
initCheckmarks()
gcMark(startTime)
clearCheckmarks()
}
// marking is complete so we can turn the write barrier off
setGCPhase(_GCoff)
gcSweep(work.mode)
if debug.gctrace > 1 {
startTime = nanotime()
// The g stacks have been scanned so
// they have gcscanvalid==true and gcworkdone==true.
// Reset these so that all stacks will be rescanned.
gcResetMarkState()
finishsweep_m(true)
// Still in STW but gcphase is _GCoff, reset to _GCmarktermination
// At this point all objects will be found during the gcMark which
// does a complete STW mark and object scan.
setGCPhase(_GCmarktermination)
gcMark(startTime)
setGCPhase(_GCoff) // marking is done, turn off wb.
gcSweep(work.mode)
}
})
_g_.m.traceback = 0
casgstatus(gp, _Gwaiting, _Grunning)
if trace.enabled {
traceGCDone()
}
// all done
mp.preemptoff = ""
if gcphase != _GCoff {
throw("gc done but gcphase != _GCoff")
}
// Update timing memstats
now, unixNow := nanotime(), unixnanotime()
work.pauseNS += now - work.pauseStart
work.tEnd = now
atomic.Store64(&memstats.last_gc, uint64(unixNow)) // must be Unix time to make sense to user
memstats.pause_ns[memstats.numgc%uint32(len(memstats.pause_ns))] = uint64(work.pauseNS)
memstats.pause_end[memstats.numgc%uint32(len(memstats.pause_end))] = uint64(unixNow)
memstats.pause_total_ns += uint64(work.pauseNS)
// Update work.totaltime.
sweepTermCpu := int64(work.stwprocs) * (work.tMark - work.tSweepTerm)
// We report idle marking time below, but omit it from the
// overall utilization here since it's "free".
markCpu := gcController.assistTime + gcController.dedicatedMarkTime + gcController.fractionalMarkTime
markTermCpu := int64(work.stwprocs) * (work.tEnd - work.tMarkTerm)
cycleCpu := sweepTermCpu + markCpu + markTermCpu
work.totaltime += cycleCpu
// Compute overall GC CPU utilization.
totalCpu := sched.totaltime + (now-sched.procresizetime)*int64(gomaxprocs)
memstats.gc_cpu_fraction = float64(work.totaltime) / float64(totalCpu)
memstats.numgc++
// Reset sweep state.
sweep.nbgsweep = 0
sweep.npausesweep = 0
systemstack(startTheWorldWithSema)
// Free stack spans. This must be done between GC cycles.
systemstack(freeStackSpans)
// Print gctrace before dropping worldsema. As soon as we drop
// worldsema another cycle could start and smash the stats
// we're trying to print.
if debug.gctrace > 0 {
util := int(memstats.gc_cpu_fraction * 100)
var sbuf [24]byte
printlock()
print("gc ", memstats.numgc,
" @", string(itoaDiv(sbuf[:], uint64(work.tSweepTerm-runtimeInitTime)/1e6, 3)), "s ",
util, "%: ")
prev := work.tSweepTerm
for i, ns := range []int64{work.tMark, work.tMarkTerm, work.tEnd} {
if i != 0 {
print("+")
}
print(string(fmtNSAsMS(sbuf[:], uint64(ns-prev))))
prev = ns
}
print(" ms clock, ")
for i, ns := range []int64{sweepTermCpu, gcController.assistTime, gcController.dedicatedMarkTime + gcController.fractionalMarkTime, gcController.idleMarkTime, markTermCpu} {
if i == 2 || i == 3 {
// Separate mark time components with /.
print("/")
} else if i != 0 {
print("+")
}
print(string(fmtNSAsMS(sbuf[:], uint64(ns))))
}
print(" ms cpu, ",
work.heap0>>20, "->", work.heap1>>20, "->", work.heap2>>20, " MB, ",
work.heapGoal>>20, " MB goal, ",
work.maxprocs, " P")
if work.mode != gcBackgroundMode {
print(" (forced)")
}
print("\n")
printunlock()
}
semrelease(&worldsema)
// Careful: another GC cycle may start now.
releasem(mp)
mp = nil
// now that gc is done, kick off finalizer thread if needed
if !concurrentSweep {
// give the queued finalizers, if any, a chance to run
Gosched()
}
}
// gcBgMarkStartWorkers prepares background mark worker goroutines.
// These goroutines will not run until the mark phase, but they must
// be started while the work is not stopped and from a regular G
// stack. The caller must hold worldsema.
func gcBgMarkStartWorkers() {
// Background marking is performed by per-P G's. Ensure that
// each P has a background GC G.
for _, p := range &allp {
if p == nil || p.status == _Pdead {
break
}
if p.gcBgMarkWorker == 0 {
go gcBgMarkWorker(p)
notetsleepg(&work.bgMarkReady, -1)
noteclear(&work.bgMarkReady)
}
}
}
// gcBgMarkPrepare sets up state for background marking.
// Mutator assists must not yet be enabled.
func gcBgMarkPrepare() {
// Background marking will stop when the work queues are empty
// and there are no more workers (note that, since this is
// concurrent, this may be a transient state, but mark
// termination will clean it up). Between background workers
// and assists, we don't really know how many workers there
// will be, so we pretend to have an arbitrarily large number
// of workers, almost all of which are "waiting". While a
// worker is working it decrements nwait. If nproc == nwait,
// there are no workers.
work.nproc = ^uint32(0)
work.nwait = ^uint32(0)
}
func gcBgMarkWorker(_p_ *p) {
type parkInfo struct {
m *m // Release this m on park.
attach *p // If non-nil, attach to this p on park.
}
var park parkInfo
gp := getg()
park.m = acquirem()
park.attach = _p_
// Inform gcBgMarkStartWorkers that this worker is ready.
// After this point, the background mark worker is scheduled
// cooperatively by gcController.findRunnable. Hence, it must
// never be preempted, as this would put it into _Grunnable
// and put it on a run queue. Instead, when the preempt flag
// is set, this puts itself into _Gwaiting to be woken up by
// gcController.findRunnable at the appropriate time.
notewakeup(&work.bgMarkReady)
for {
// Go to sleep until woken by gcContoller.findRunnable.
// We can't releasem yet since even the call to gopark
// may be preempted.
gopark(func(g *g, parkp unsafe.Pointer) bool {
park := (*parkInfo)(parkp)
// The worker G is no longer running, so it's
// now safe to allow preemption.
releasem(park.m)
// If the worker isn't attached to its P,
// attach now. During initialization and after
// a phase change, the worker may have been
// running on a different P. As soon as we
// attach, the owner P may schedule the
// worker, so this must be done after the G is
// stopped.
if park.attach != nil {
p := park.attach
park.attach = nil
// cas the worker because we may be
// racing with a new worker starting
// on this P.
if !p.gcBgMarkWorker.cas(0, guintptr(unsafe.Pointer(g))) {
// The P got a new worker.
// Exit this worker.
return false
}
}
return true
}, noescape(unsafe.Pointer(&park)), "GC worker (idle)", traceEvGoBlock, 0)
// Loop until the P dies and disassociates this
// worker (the P may later be reused, in which case
// it will get a new worker) or we failed to associate.
if _p_.gcBgMarkWorker.ptr() != gp {
break
}
// Disable preemption so we can use the gcw. If the
// scheduler wants to preempt us, we'll stop draining,
// dispose the gcw, and then preempt.
park.m = acquirem()
if gcBlackenEnabled == 0 {
throw("gcBgMarkWorker: blackening not enabled")
}
startTime := nanotime()
decnwait := atomic.Xadd(&work.nwait, -1)
if decnwait == work.nproc {
println("runtime: work.nwait=", decnwait, "work.nproc=", work.nproc)
throw("work.nwait was > work.nproc")
}
switch _p_.gcMarkWorkerMode {
default:
throw("gcBgMarkWorker: unexpected gcMarkWorkerMode")
case gcMarkWorkerDedicatedMode:
gcDrain(&_p_.gcw, gcDrainNoBlock|gcDrainFlushBgCredit)
case gcMarkWorkerFractionalMode, gcMarkWorkerIdleMode:
gcDrain(&_p_.gcw, gcDrainUntilPreempt|gcDrainFlushBgCredit)
}
// If we are nearing the end of mark, dispose
// of the cache promptly. We must do this
// before signaling that we're no longer
// working so that other workers can't observe
// no workers and no work while we have this
// cached, and before we compute done.
if gcBlackenPromptly {
_p_.gcw.dispose()
}
// Account for time.
duration := nanotime() - startTime
switch _p_.gcMarkWorkerMode {
case gcMarkWorkerDedicatedMode:
atomic.Xaddint64(&gcController.dedicatedMarkTime, duration)
atomic.Xaddint64(&gcController.dedicatedMarkWorkersNeeded, 1)
case gcMarkWorkerFractionalMode:
atomic.Xaddint64(&gcController.fractionalMarkTime, duration)
atomic.Xaddint64(&gcController.fractionalMarkWorkersNeeded, 1)
case gcMarkWorkerIdleMode:
atomic.Xaddint64(&gcController.idleMarkTime, duration)
}
// Was this the last worker and did we run out
// of work?
incnwait := atomic.Xadd(&work.nwait, +1)
if incnwait > work.nproc {
println("runtime: p.gcMarkWorkerMode=", _p_.gcMarkWorkerMode,
"work.nwait=", incnwait, "work.nproc=", work.nproc)
throw("work.nwait > work.nproc")
}
// If this worker reached a background mark completion
// point, signal the main GC goroutine.
if incnwait == work.nproc && !gcMarkWorkAvailable(nil) {
// Make this G preemptible and disassociate it
// as the worker for this P so
// findRunnableGCWorker doesn't try to
// schedule it.
_p_.gcBgMarkWorker.set(nil)
releasem(park.m)
gcMarkDone()
// Disable preemption and prepare to reattach
// to the P.
//
// We may be running on a different P at this
// point, so we can't reattach until this G is
// parked.
park.m = acquirem()
park.attach = _p_
}
}
}
// gcMarkWorkAvailable returns true if executing a mark worker
// on p is potentially useful. p may be nil, in which case it only
// checks the global sources of work.
func gcMarkWorkAvailable(p *p) bool {
if p != nil && !p.gcw.empty() {
return true
}
if atomic.Load64(&work.full) != 0 {
return true // global work available
}
if work.markrootNext < work.markrootJobs {
return true // root scan work available
}
return false
}
// gcFlushGCWork disposes the gcWork caches of all Ps. The world must
// be stopped.
//go:nowritebarrier
func gcFlushGCWork() {
// Gather all cached GC work. All other Ps are stopped, so
// it's safe to manipulate their GC work caches.
for i := 0; i < int(gomaxprocs); i++ {
allp[i].gcw.dispose()
}
}
// gcMark runs the mark (or, for concurrent GC, mark termination)
// STW is in effect at this point.
//TODO go:nowritebarrier
func gcMark(start_time int64) {
if debug.allocfreetrace > 0 {
tracegc()
}
if gcphase != _GCmarktermination {
throw("in gcMark expecting to see gcphase as _GCmarktermination")
}
work.tstart = start_time
gcCopySpans() // TODO(rlh): should this be hoisted and done only once? Right now it is done for normal marking and also for checkmarking.
// Make sure the per-P gcWork caches are empty. During mark
// termination, these caches can still be used temporarily,
// but must be disposed to the global lists immediately.
gcFlushGCWork()
// Queue root marking jobs.
gcMarkRootPrepare()
work.nwait = 0
work.ndone = 0
work.nproc = uint32(gcprocs())
if trace.enabled {
traceGCScanStart()
}
if work.nproc > 1 {
noteclear(&work.alldone)
helpgc(int32(work.nproc))
}
gchelperstart()
var gcw gcWork
gcDrain(&gcw, gcDrainBlock)
gcw.dispose()
gcMarkRootCheck()
if work.full != 0 {
throw("work.full != 0")
}
if work.nproc > 1 {
notesleep(&work.alldone)
}
// markroot is done now, so record that objects with
// finalizers have been scanned.
work.finalizersDone = true
for i := 0; i < int(gomaxprocs); i++ {
if !allp[i].gcw.empty() {
throw("P has cached GC work at end of mark termination")
}
}
if trace.enabled {
traceGCScanDone()
}
cachestats()
// Compute the reachable heap size at the beginning of the
// cycle. This is approximately the marked heap size at the
// end (which we know) minus the amount of marked heap that
// was allocated after marking began (which we don't know, but
// is approximately the amount of heap that was allocated
// since marking began).
allocatedDuringCycle := memstats.heap_live - work.initialHeapLive
if memstats.heap_live < work.initialHeapLive {
// This can happen if mCentral_UncacheSpan tightens
// the heap_live approximation.
allocatedDuringCycle = 0
}
if work.bytesMarked >= allocatedDuringCycle {
memstats.heap_reachable = work.bytesMarked - allocatedDuringCycle
} else {
// This can happen if most of the allocation during
// the cycle never became reachable from the heap.
// Just set the reachable heap approximation to 0 and
// let the heapminimum kick in below.
memstats.heap_reachable = 0
}
// Trigger the next GC cycle when the allocated heap has grown
// by triggerRatio over the reachable heap size. Assume that
// we're in steady state, so the reachable heap size is the
// same now as it was at the beginning of the GC cycle.
memstats.next_gc = uint64(float64(memstats.heap_reachable) * (1 + gcController.triggerRatio))
if memstats.next_gc < heapminimum {
memstats.next_gc = heapminimum
}
if int64(memstats.next_gc) < 0 {
print("next_gc=", memstats.next_gc, " bytesMarked=", work.bytesMarked, " heap_live=", memstats.heap_live, " initialHeapLive=", work.initialHeapLive, "\n")
throw("next_gc underflow")
}
// Update other GC heap size stats. This must happen after
// cachestats (which flushes local statistics to these) and
// flushallmcaches (which modifies heap_live).
memstats.heap_live = work.bytesMarked
memstats.heap_marked = work.bytesMarked
memstats.heap_scan = uint64(gcController.scanWork)
minNextGC := memstats.heap_live + sweepMinHeapDistance*uint64(gcpercent)/100
if memstats.next_gc < minNextGC {
// The allocated heap is already past the trigger.
// This can happen if the triggerRatio is very low and
// the reachable heap estimate is less than the live
// heap size.
//
// Concurrent sweep happens in the heap growth from
// heap_live to next_gc, so bump next_gc up to ensure
// that concurrent sweep has some heap growth in which
// to perform sweeping before we start the next GC
// cycle.
memstats.next_gc = minNextGC
}
if trace.enabled {
traceHeapAlloc()
traceNextGC()
}
}
func gcSweep(mode gcMode) {
if gcphase != _GCoff {
throw("gcSweep being done but phase is not GCoff")
}
gcCopySpans()
lock(&mheap_.lock)
mheap_.sweepgen += 2
mheap_.sweepdone = 0
sweep.spanidx = 0
unlock(&mheap_.lock)
if !_ConcurrentSweep || mode == gcForceBlockMode {
// Special case synchronous sweep.
// Record that no proportional sweeping has to happen.
lock(&mheap_.lock)
mheap_.sweepPagesPerByte = 0
mheap_.pagesSwept = 0
unlock(&mheap_.lock)
// Sweep all spans eagerly.
for sweepone() != ^uintptr(0) {
sweep.npausesweep++
}
// Do an additional mProf_GC, because all 'free' events are now real as well.
mProf_GC()
mProf_GC()
return
}
// Concurrent sweep needs to sweep all of the in-use pages by
// the time the allocated heap reaches the GC trigger. Compute
// the ratio of in-use pages to sweep per byte allocated.
heapDistance := int64(memstats.next_gc) - int64(memstats.heap_live)
// Add a little margin so rounding errors and concurrent
// sweep are less likely to leave pages unswept when GC starts.
heapDistance -= 1024 * 1024
if heapDistance < _PageSize {
// Avoid setting the sweep ratio extremely high
heapDistance = _PageSize
}
lock(&mheap_.lock)
mheap_.sweepPagesPerByte = float64(mheap_.pagesInUse) / float64(heapDistance)
mheap_.pagesSwept = 0
mheap_.spanBytesAlloc = 0
unlock(&mheap_.lock)
// Background sweep.
lock(&sweep.lock)
if sweep.parked {
sweep.parked = false
ready(sweep.g, 0)
}
unlock(&sweep.lock)
mProf_GC()
}
func gcCopySpans() {
// Cache runtime.mheap_.allspans in work.spans to avoid conflicts with
// resizing/freeing allspans.
// New spans can be created while GC progresses, but they are not garbage for
// this round:
// - new stack spans can be created even while the world is stopped.
// - new malloc spans can be created during the concurrent sweep
// Even if this is stop-the-world, a concurrent exitsyscall can allocate a stack from heap.
lock(&mheap_.lock)
// Free the old cached mark array if necessary.
if work.spans != nil && &work.spans[0] != &h_allspans[0] {
sysFree(unsafe.Pointer(&work.spans[0]), uintptr(len(work.spans))*unsafe.Sizeof(work.spans[0]), &memstats.other_sys)
}
// Cache the current array for sweeping.
mheap_.gcspans = mheap_.allspans
work.spans = h_allspans
unlock(&mheap_.lock)
}
// gcResetMarkState resets global state prior to marking (concurrent
// or STW) and resets the stack scan state of all Gs. Any Gs created
// after this will also be in the reset state.
func gcResetMarkState() {
// This may be called during a concurrent phase, so make sure
// allgs doesn't change.
lock(&allglock)
for _, gp := range allgs {
gp.gcscandone = false // set to true in gcphasework
gp.gcscanvalid = false // stack has not been scanned
gp.gcAssistBytes = 0
}
unlock(&allglock)
work.bytesMarked = 0
work.initialHeapLive = memstats.heap_live
}
// Hooks for other packages
var poolcleanup func()
//go:linkname sync_runtime_registerPoolCleanup sync.runtime_registerPoolCleanup
func sync_runtime_registerPoolCleanup(f func()) {
poolcleanup = f
}
func clearpools() {
// clear sync.Pools
if poolcleanup != nil {
poolcleanup()
}
// Clear central sudog cache.
// Leave per-P caches alone, they have strictly bounded size.
// Disconnect cached list before dropping it on the floor,
// so that a dangling ref to one entry does not pin all of them.
lock(&sched.sudoglock)
var sg, sgnext *sudog
for sg = sched.sudogcache; sg != nil; sg = sgnext {
sgnext = sg.next
sg.next = nil
}
sched.sudogcache = nil
unlock(&sched.sudoglock)
// Clear central defer pools.
// Leave per-P pools alone, they have strictly bounded size.
lock(&sched.deferlock)
for i := range sched.deferpool {
// disconnect cached list before dropping it on the floor,
// so that a dangling ref to one entry does not pin all of them.
var d, dlink *_defer
for d = sched.deferpool[i]; d != nil; d = dlink {
dlink = d.link
d.link = nil
}
sched.deferpool[i] = nil
}
unlock(&sched.deferlock)
}
// Timing
//go:nowritebarrier
func gchelper() {
_g_ := getg()
_g_.m.traceback = 2
gchelperstart()
if trace.enabled {
traceGCScanStart()
}
// Parallel mark over GC roots and heap
if gcphase == _GCmarktermination {
var gcw gcWork
gcDrain(&gcw, gcDrainBlock) // blocks in getfull
gcw.dispose()
}
if trace.enabled {
traceGCScanDone()
}
nproc := work.nproc // work.nproc can change right after we increment work.ndone
if atomic.Xadd(&work.ndone, +1) == nproc-1 {
notewakeup(&work.alldone)
}
_g_.m.traceback = 0
}
func gchelperstart() {
_g_ := getg()
if _g_.m.helpgc < 0 || _g_.m.helpgc >= _MaxGcproc {
throw("gchelperstart: bad m->helpgc")
}
if _g_ != _g_.m.g0 {
throw("gchelper not running on g0 stack")
}
}
// itoaDiv formats val/(10**dec) into buf.
func itoaDiv(buf []byte, val uint64, dec int) []byte {
i := len(buf) - 1
idec := i - dec
for val >= 10 || i >= idec {
buf[i] = byte(val%10 + '0')
i--
if i == idec {
buf[i] = '.'
i--
}
val /= 10
}
buf[i] = byte(val + '0')
return buf[i:]
}
// fmtNSAsMS nicely formats ns nanoseconds as milliseconds.
func fmtNSAsMS(buf []byte, ns uint64) []byte {
if ns >= 10e6 {
// Format as whole milliseconds.
return itoaDiv(buf, ns/1e6, 0)
}
// Format two digits of precision, with at most three decimal places.
x := ns / 1e3
if x == 0 {
buf[0] = '0'
return buf[:1]
}
dec := 3
for x >= 100 {
x /= 10
dec--
}
return itoaDiv(buf, x, dec)
}
|