This file is indexed.

/usr/share/go-1.6/src/runtime/mgc.go is in golang-1.6-src 1.6.1-0ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// TODO(rsc): The code having to do with the heap bitmap needs very serious cleanup.
// It has gotten completely out of control.

// Garbage collector (GC).
//
// The GC runs concurrently with mutator threads, is type accurate (aka precise), allows multiple
// GC thread to run in parallel. It is a concurrent mark and sweep that uses a write barrier. It is
// non-generational and non-compacting. Allocation is done using size segregated per P allocation
// areas to minimize fragmentation while eliminating locks in the common case.
//
// The algorithm decomposes into several steps.
// This is a high level description of the algorithm being used. For an overview of GC a good
// place to start is Richard Jones' gchandbook.org.
//
// The algorithm's intellectual heritage includes Dijkstra's on-the-fly algorithm, see
// Edsger W. Dijkstra, Leslie Lamport, A. J. Martin, C. S. Scholten, and E. F. M. Steffens. 1978.
// On-the-fly garbage collection: an exercise in cooperation. Commun. ACM 21, 11 (November 1978),
// 966-975.
// For journal quality proofs that these steps are complete, correct, and terminate see
// Hudson, R., and Moss, J.E.B. Copying Garbage Collection without stopping the world.
// Concurrency and Computation: Practice and Experience 15(3-5), 2003.
//
//  0. Set phase = GCscan from GCoff.
//  1. Wait for all P's to acknowledge phase change.
//         At this point all goroutines have passed through a GC safepoint and
//         know we are in the GCscan phase.
//  2. GC scans all goroutine stacks, mark and enqueues all encountered pointers
//       (marking avoids most duplicate enqueuing but races may produce benign duplication).
//       Preempted goroutines are scanned before P schedules next goroutine.
//  3. Set phase = GCmark.
//  4. Wait for all P's to acknowledge phase change.
//  5. Now write barrier marks and enqueues black, grey, or white to white pointers.
//       Malloc still allocates white (non-marked) objects.
//  6. Meanwhile GC transitively walks the heap marking reachable objects.
//  7. When GC finishes marking heap, it preempts P's one-by-one and
//       retakes partial wbufs (filled by write barrier or during a stack scan of the goroutine
//       currently scheduled on the P).
//  8. Once the GC has exhausted all available marking work it sets phase = marktermination.
//  9. Wait for all P's to acknowledge phase change.
// 10. Malloc now allocates black objects, so number of unmarked reachable objects
//        monotonically decreases.
// 11. GC preempts P's one-by-one taking partial wbufs and marks all unmarked yet
//        reachable objects.
// 12. When GC completes a full cycle over P's and discovers no new grey
//         objects, (which means all reachable objects are marked) set phase = GCoff.
// 13. Wait for all P's to acknowledge phase change.
// 14. Now malloc allocates white (but sweeps spans before use).
//         Write barrier becomes nop.
// 15. GC does background sweeping, see description below.
// 16. When sufficient allocation has taken place replay the sequence starting at 0 above,
//         see discussion of GC rate below.

// Changing phases.
// Phases are changed by setting the gcphase to the next phase and possibly calling ackgcphase.
// All phase action must be benign in the presence of a change.
// Starting with GCoff
// GCoff to GCscan
//     GSscan scans stacks and globals greying them and never marks an object black.
//     Once all the P's are aware of the new phase they will scan gs on preemption.
//     This means that the scanning of preempted gs can't start until all the Ps
//     have acknowledged.
//     When a stack is scanned, this phase also installs stack barriers to
//     track how much of the stack has been active.
//     This transition enables write barriers because stack barriers
//     assume that writes to higher frames will be tracked by write
//     barriers. Technically this only needs write barriers for writes
//     to stack slots, but we enable write barriers in general.
// GCscan to GCmark
//     In GCmark, work buffers are drained until there are no more
//     pointers to scan.
//     No scanning of objects (making them black) can happen until all
//     Ps have enabled the write barrier, but that already happened in
//     the transition to GCscan.
// GCmark to GCmarktermination
//     The only change here is that we start allocating black so the Ps must acknowledge
//     the change before we begin the termination algorithm
// GCmarktermination to GSsweep
//     Object currently on the freelist must be marked black for this to work.
//     Are things on the free lists black or white? How does the sweep phase work?

// Concurrent sweep.
//
// The sweep phase proceeds concurrently with normal program execution.
// The heap is swept span-by-span both lazily (when a goroutine needs another span)
// and concurrently in a background goroutine (this helps programs that are not CPU bound).
// At the end of STW mark termination all spans are marked as "needs sweeping".
//
// The background sweeper goroutine simply sweeps spans one-by-one.
//
// To avoid requesting more OS memory while there are unswept spans, when a
// goroutine needs another span, it first attempts to reclaim that much memory
// by sweeping. When a goroutine needs to allocate a new small-object span, it
// sweeps small-object spans for the same object size until it frees at least
// one object. When a goroutine needs to allocate large-object span from heap,
// it sweeps spans until it frees at least that many pages into heap. There is
// one case where this may not suffice: if a goroutine sweeps and frees two
// nonadjacent one-page spans to the heap, it will allocate a new two-page
// span, but there can still be other one-page unswept spans which could be
// combined into a two-page span.
//
// It's critical to ensure that no operations proceed on unswept spans (that would corrupt
// mark bits in GC bitmap). During GC all mcaches are flushed into the central cache,
// so they are empty. When a goroutine grabs a new span into mcache, it sweeps it.
// When a goroutine explicitly frees an object or sets a finalizer, it ensures that
// the span is swept (either by sweeping it, or by waiting for the concurrent sweep to finish).
// The finalizer goroutine is kicked off only when all spans are swept.
// When the next GC starts, it sweeps all not-yet-swept spans (if any).

// GC rate.
// Next GC is after we've allocated an extra amount of memory proportional to
// the amount already in use. The proportion is controlled by GOGC environment variable
// (100 by default). If GOGC=100 and we're using 4M, we'll GC again when we get to 8M
// (this mark is tracked in next_gc variable). This keeps the GC cost in linear
// proportion to the allocation cost. Adjusting GOGC just changes the linear constant
// (and also the amount of extra memory used).

package runtime

import (
	"runtime/internal/atomic"
	"runtime/internal/sys"
	"unsafe"
)

const (
	_DebugGC         = 0
	_ConcurrentSweep = true
	_FinBlockSize    = 4 * 1024

	// sweepMinHeapDistance is a lower bound on the heap distance
	// (in bytes) reserved for concurrent sweeping between GC
	// cycles. This will be scaled by gcpercent/100.
	sweepMinHeapDistance = 1024 * 1024
)

// heapminimum is the minimum heap size at which to trigger GC.
// For small heaps, this overrides the usual GOGC*live set rule.
//
// When there is a very small live set but a lot of allocation, simply
// collecting when the heap reaches GOGC*live results in many GC
// cycles and high total per-GC overhead. This minimum amortizes this
// per-GC overhead while keeping the heap reasonably small.
//
// During initialization this is set to 4MB*GOGC/100. In the case of
// GOGC==0, this will set heapminimum to 0, resulting in constant
// collection even when the heap size is small, which is useful for
// debugging.
var heapminimum uint64 = defaultHeapMinimum

// defaultHeapMinimum is the value of heapminimum for GOGC==100.
const defaultHeapMinimum = 4 << 20

// Initialized from $GOGC.  GOGC=off means no GC.
var gcpercent int32

func gcinit() {
	if unsafe.Sizeof(workbuf{}) != _WorkbufSize {
		throw("size of Workbuf is suboptimal")
	}

	_ = setGCPercent(readgogc())
	for datap := &firstmoduledata; datap != nil; datap = datap.next {
		datap.gcdatamask = progToPointerMask((*byte)(unsafe.Pointer(datap.gcdata)), datap.edata-datap.data)
		datap.gcbssmask = progToPointerMask((*byte)(unsafe.Pointer(datap.gcbss)), datap.ebss-datap.bss)
	}
	memstats.next_gc = heapminimum
	work.startSema = 1
	work.markDoneSema = 1
}

func readgogc() int32 {
	p := gogetenv("GOGC")
	if p == "" {
		return 100
	}
	if p == "off" {
		return -1
	}
	return int32(atoi(p))
}

// gcenable is called after the bulk of the runtime initialization,
// just before we're about to start letting user code run.
// It kicks off the background sweeper goroutine and enables GC.
func gcenable() {
	c := make(chan int, 1)
	go bgsweep(c)
	<-c
	memstats.enablegc = true // now that runtime is initialized, GC is okay
}

//go:linkname setGCPercent runtime/debug.setGCPercent
func setGCPercent(in int32) (out int32) {
	lock(&mheap_.lock)
	out = gcpercent
	if in < 0 {
		in = -1
	}
	gcpercent = in
	heapminimum = defaultHeapMinimum * uint64(gcpercent) / 100
	if gcController.triggerRatio > float64(gcpercent)/100 {
		gcController.triggerRatio = float64(gcpercent) / 100
	}
	unlock(&mheap_.lock)
	return out
}

// Garbage collector phase.
// Indicates to write barrier and sychronization task to preform.
var gcphase uint32

// The compiler knows about this variable.
// If you change it, you must change the compiler too.
var writeBarrier struct {
	enabled bool // compiler emits a check of this before calling write barrier
	needed  bool // whether we need a write barrier for current GC phase
	cgo     bool // whether we need a write barrier for a cgo check
}

// gcBlackenEnabled is 1 if mutator assists and background mark
// workers are allowed to blacken objects. This must only be set when
// gcphase == _GCmark.
var gcBlackenEnabled uint32

// gcBlackenPromptly indicates that optimizations that may
// hide work from the global work queue should be disabled.
//
// If gcBlackenPromptly is true, per-P gcWork caches should
// be flushed immediately and new objects should be allocated black.
//
// There is a tension between allocating objects white and
// allocating them black. If white and the objects die before being
// marked they can be collected during this GC cycle. On the other
// hand allocating them black will reduce _GCmarktermination latency
// since more work is done in the mark phase. This tension is resolved
// by allocating white until the mark phase is approaching its end and
// then allocating black for the remainder of the mark phase.
var gcBlackenPromptly bool

const (
	_GCoff             = iota // GC not running; sweeping in background, write barrier disabled
	_GCmark                   // GC marking roots and workbufs, write barrier ENABLED
	_GCmarktermination        // GC mark termination: allocate black, P's help GC, write barrier ENABLED
)

//go:nosplit
func setGCPhase(x uint32) {
	atomic.Store(&gcphase, x)
	writeBarrier.needed = gcphase == _GCmark || gcphase == _GCmarktermination
	writeBarrier.enabled = writeBarrier.needed || writeBarrier.cgo
}

// gcMarkWorkerMode represents the mode that a concurrent mark worker
// should operate in.
//
// Concurrent marking happens through four different mechanisms. One
// is mutator assists, which happen in response to allocations and are
// not scheduled. The other three are variations in the per-P mark
// workers and are distinguished by gcMarkWorkerMode.
type gcMarkWorkerMode int

const (
	// gcMarkWorkerDedicatedMode indicates that the P of a mark
	// worker is dedicated to running that mark worker. The mark
	// worker should run without preemption.
	gcMarkWorkerDedicatedMode gcMarkWorkerMode = iota

	// gcMarkWorkerFractionalMode indicates that a P is currently
	// running the "fractional" mark worker. The fractional worker
	// is necessary when GOMAXPROCS*gcGoalUtilization is not an
	// integer. The fractional worker should run until it is
	// preempted and will be scheduled to pick up the fractional
	// part of GOMAXPROCS*gcGoalUtilization.
	gcMarkWorkerFractionalMode

	// gcMarkWorkerIdleMode indicates that a P is running the mark
	// worker because it has nothing else to do. The idle worker
	// should run until it is preempted and account its time
	// against gcController.idleMarkTime.
	gcMarkWorkerIdleMode
)

// gcController implements the GC pacing controller that determines
// when to trigger concurrent garbage collection and how much marking
// work to do in mutator assists and background marking.
//
// It uses a feedback control algorithm to adjust the memstats.next_gc
// trigger based on the heap growth and GC CPU utilization each cycle.
// This algorithm optimizes for heap growth to match GOGC and for CPU
// utilization between assist and background marking to be 25% of
// GOMAXPROCS. The high-level design of this algorithm is documented
// at https://golang.org/s/go15gcpacing.
var gcController = gcControllerState{
	// Initial trigger ratio guess.
	triggerRatio: 7 / 8.0,
}

type gcControllerState struct {
	// scanWork is the total scan work performed this cycle. This
	// is updated atomically during the cycle. Updates occur in
	// bounded batches, since it is both written and read
	// throughout the cycle.
	//
	// Currently this is the bytes of heap scanned. For most uses,
	// this is an opaque unit of work, but for estimation the
	// definition is important.
	scanWork int64

	// bgScanCredit is the scan work credit accumulated by the
	// concurrent background scan. This credit is accumulated by
	// the background scan and stolen by mutator assists. This is
	// updated atomically. Updates occur in bounded batches, since
	// it is both written and read throughout the cycle.
	bgScanCredit int64

	// assistTime is the nanoseconds spent in mutator assists
	// during this cycle. This is updated atomically. Updates
	// occur in bounded batches, since it is both written and read
	// throughout the cycle.
	assistTime int64

	// dedicatedMarkTime is the nanoseconds spent in dedicated
	// mark workers during this cycle. This is updated atomically
	// at the end of the concurrent mark phase.
	dedicatedMarkTime int64

	// fractionalMarkTime is the nanoseconds spent in the
	// fractional mark worker during this cycle. This is updated
	// atomically throughout the cycle and will be up-to-date if
	// the fractional mark worker is not currently running.
	fractionalMarkTime int64

	// idleMarkTime is the nanoseconds spent in idle marking
	// during this cycle. This is updated atomically throughout
	// the cycle.
	idleMarkTime int64

	// bgMarkStartTime is the absolute start time in nanoseconds
	// that the background mark phase started.
	bgMarkStartTime int64

	// assistTime is the absolute start time in nanoseconds that
	// mutator assists were enabled.
	assistStartTime int64

	// heapGoal is the goal memstats.heap_live for when this cycle
	// ends. This is computed at the beginning of each cycle.
	heapGoal uint64

	// dedicatedMarkWorkersNeeded is the number of dedicated mark
	// workers that need to be started. This is computed at the
	// beginning of each cycle and decremented atomically as
	// dedicated mark workers get started.
	dedicatedMarkWorkersNeeded int64

	// assistWorkPerByte is the ratio of scan work to allocated
	// bytes that should be performed by mutator assists. This is
	// computed at the beginning of each cycle and updated every
	// time heap_scan is updated.
	assistWorkPerByte float64

	// assistBytesPerWork is 1/assistWorkPerByte.
	assistBytesPerWork float64

	// fractionalUtilizationGoal is the fraction of wall clock
	// time that should be spent in the fractional mark worker.
	// For example, if the overall mark utilization goal is 25%
	// and GOMAXPROCS is 6, one P will be a dedicated mark worker
	// and this will be set to 0.5 so that 50% of the time some P
	// is in a fractional mark worker. This is computed at the
	// beginning of each cycle.
	fractionalUtilizationGoal float64

	// triggerRatio is the heap growth ratio at which the garbage
	// collection cycle should start. E.g., if this is 0.6, then
	// GC should start when the live heap has reached 1.6 times
	// the heap size marked by the previous cycle. This is updated
	// at the end of of each cycle.
	triggerRatio float64

	_ [sys.CacheLineSize]byte

	// fractionalMarkWorkersNeeded is the number of fractional
	// mark workers that need to be started. This is either 0 or
	// 1. This is potentially updated atomically at every
	// scheduling point (hence it gets its own cache line).
	fractionalMarkWorkersNeeded int64

	_ [sys.CacheLineSize]byte
}

// startCycle resets the GC controller's state and computes estimates
// for a new GC cycle. The caller must hold worldsema.
func (c *gcControllerState) startCycle() {
	c.scanWork = 0
	c.bgScanCredit = 0
	c.assistTime = 0
	c.dedicatedMarkTime = 0
	c.fractionalMarkTime = 0
	c.idleMarkTime = 0

	// If this is the first GC cycle or we're operating on a very
	// small heap, fake heap_marked so it looks like next_gc is
	// the appropriate growth from heap_marked, even though the
	// real heap_marked may not have a meaningful value (on the
	// first cycle) or may be much smaller (resulting in a large
	// error response).
	if memstats.next_gc <= heapminimum {
		memstats.heap_marked = uint64(float64(memstats.next_gc) / (1 + c.triggerRatio))
		memstats.heap_reachable = memstats.heap_marked
	}

	// Compute the heap goal for this cycle
	c.heapGoal = memstats.heap_reachable + memstats.heap_reachable*uint64(gcpercent)/100

	// Ensure that the heap goal is at least a little larger than
	// the current live heap size. This may not be the case if GC
	// start is delayed or if the allocation that pushed heap_live
	// over next_gc is large or if the trigger is really close to
	// GOGC. Assist is proportional to this distance, so enforce a
	// minimum distance, even if it means going over the GOGC goal
	// by a tiny bit.
	if c.heapGoal < memstats.heap_live+1024*1024 {
		c.heapGoal = memstats.heap_live + 1024*1024
	}

	// Compute the total mark utilization goal and divide it among
	// dedicated and fractional workers.
	totalUtilizationGoal := float64(gomaxprocs) * gcGoalUtilization
	c.dedicatedMarkWorkersNeeded = int64(totalUtilizationGoal)
	c.fractionalUtilizationGoal = totalUtilizationGoal - float64(c.dedicatedMarkWorkersNeeded)
	if c.fractionalUtilizationGoal > 0 {
		c.fractionalMarkWorkersNeeded = 1
	} else {
		c.fractionalMarkWorkersNeeded = 0
	}

	// Clear per-P state
	for _, p := range &allp {
		if p == nil {
			break
		}
		p.gcAssistTime = 0
	}

	// Compute initial values for controls that are updated
	// throughout the cycle.
	c.revise()

	if debug.gcpacertrace > 0 {
		print("pacer: assist ratio=", c.assistWorkPerByte,
			" (scan ", memstats.heap_scan>>20, " MB in ",
			work.initialHeapLive>>20, "->",
			c.heapGoal>>20, " MB)",
			" workers=", c.dedicatedMarkWorkersNeeded,
			"+", c.fractionalMarkWorkersNeeded, "\n")
	}
}

// revise updates the assist ratio during the GC cycle to account for
// improved estimates. This should be called either under STW or
// whenever memstats.heap_scan or memstats.heap_live is updated (with
// mheap_.lock held).
//
// It should only be called when gcBlackenEnabled != 0 (because this
// is when assists are enabled and the necessary statistics are
// available).
func (c *gcControllerState) revise() {
	// Compute the expected scan work remaining.
	//
	// Note that the scannable heap size is likely to increase
	// during the GC cycle. This is why it's important to revise
	// the assist ratio throughout the cycle: if the scannable
	// heap size increases, the assist ratio based on the initial
	// scannable heap size may target too little scan work.
	//
	// This particular estimate is a strict upper bound on the
	// possible remaining scan work for the current heap.
	// You might consider dividing this by 2 (or by
	// (100+GOGC)/100) to counter this over-estimation, but
	// benchmarks show that this has almost no effect on mean
	// mutator utilization, heap size, or assist time and it
	// introduces the danger of under-estimating and letting the
	// mutator outpace the garbage collector.
	scanWorkExpected := int64(memstats.heap_scan) - c.scanWork
	if scanWorkExpected < 1000 {
		// We set a somewhat arbitrary lower bound on
		// remaining scan work since if we aim a little high,
		// we can miss by a little.
		//
		// We *do* need to enforce that this is at least 1,
		// since marking is racy and double-scanning objects
		// may legitimately make the expected scan work
		// negative.
		scanWorkExpected = 1000
	}

	// Compute the heap distance remaining.
	heapDistance := int64(c.heapGoal) - int64(memstats.heap_live)
	if heapDistance <= 0 {
		// This shouldn't happen, but if it does, avoid
		// dividing by zero or setting the assist negative.
		heapDistance = 1
	}

	// Compute the mutator assist ratio so by the time the mutator
	// allocates the remaining heap bytes up to next_gc, it will
	// have done (or stolen) the remaining amount of scan work.
	c.assistWorkPerByte = float64(scanWorkExpected) / float64(heapDistance)
	c.assistBytesPerWork = float64(heapDistance) / float64(scanWorkExpected)
}

// endCycle updates the GC controller state at the end of the
// concurrent part of the GC cycle.
func (c *gcControllerState) endCycle() {
	h_t := c.triggerRatio // For debugging

	// Proportional response gain for the trigger controller. Must
	// be in [0, 1]. Lower values smooth out transient effects but
	// take longer to respond to phase changes. Higher values
	// react to phase changes quickly, but are more affected by
	// transient changes. Values near 1 may be unstable.
	const triggerGain = 0.5

	// Compute next cycle trigger ratio. First, this computes the
	// "error" for this cycle; that is, how far off the trigger
	// was from what it should have been, accounting for both heap
	// growth and GC CPU utilization. We compute the actual heap
	// growth during this cycle and scale that by how far off from
	// the goal CPU utilization we were (to estimate the heap
	// growth if we had the desired CPU utilization). The
	// difference between this estimate and the GOGC-based goal
	// heap growth is the error.
	//
	// TODO(austin): next_gc is based on heap_reachable, not
	// heap_marked, which means the actual growth ratio
	// technically isn't comparable to the trigger ratio.
	goalGrowthRatio := float64(gcpercent) / 100
	actualGrowthRatio := float64(memstats.heap_live)/float64(memstats.heap_marked) - 1
	assistDuration := nanotime() - c.assistStartTime

	// Assume background mark hit its utilization goal.
	utilization := gcGoalUtilization
	// Add assist utilization; avoid divide by zero.
	if assistDuration > 0 {
		utilization += float64(c.assistTime) / float64(assistDuration*int64(gomaxprocs))
	}

	triggerError := goalGrowthRatio - c.triggerRatio - utilization/gcGoalUtilization*(actualGrowthRatio-c.triggerRatio)

	// Finally, we adjust the trigger for next time by this error,
	// damped by the proportional gain.
	c.triggerRatio += triggerGain * triggerError
	if c.triggerRatio < 0 {
		// This can happen if the mutator is allocating very
		// quickly or the GC is scanning very slowly.
		c.triggerRatio = 0
	} else if c.triggerRatio > goalGrowthRatio*0.95 {
		// Ensure there's always a little margin so that the
		// mutator assist ratio isn't infinity.
		c.triggerRatio = goalGrowthRatio * 0.95
	}

	if debug.gcpacertrace > 0 {
		// Print controller state in terms of the design
		// document.
		H_m_prev := memstats.heap_marked
		H_T := memstats.next_gc
		h_a := actualGrowthRatio
		H_a := memstats.heap_live
		h_g := goalGrowthRatio
		H_g := int64(float64(H_m_prev) * (1 + h_g))
		u_a := utilization
		u_g := gcGoalUtilization
		W_a := c.scanWork
		print("pacer: H_m_prev=", H_m_prev,
			" h_t=", h_t, " H_T=", H_T,
			" h_a=", h_a, " H_a=", H_a,
			" h_g=", h_g, " H_g=", H_g,
			" u_a=", u_a, " u_g=", u_g,
			" W_a=", W_a,
			" goalΔ=", goalGrowthRatio-h_t,
			" actualΔ=", h_a-h_t,
			" u_a/u_g=", u_a/u_g,
			"\n")
	}
}

// enlistWorker encourages another dedicated mark worker to start on
// another P if there are spare worker slots. It is used by putfull
// when more work is made available.
//
//go:nowritebarrier
func (c *gcControllerState) enlistWorker() {
	if c.dedicatedMarkWorkersNeeded <= 0 {
		return
	}
	// Pick a random other P to preempt.
	if gomaxprocs <= 1 {
		return
	}
	gp := getg()
	if gp == nil || gp.m == nil || gp.m.p == 0 {
		return
	}
	myID := gp.m.p.ptr().id
	for tries := 0; tries < 5; tries++ {
		id := int32(fastrand1() % uint32(gomaxprocs-1))
		if id >= myID {
			id++
		}
		p := allp[id]
		if p.status != _Prunning {
			continue
		}
		if preemptone(p) {
			return
		}
	}
}

// findRunnableGCWorker returns the background mark worker for _p_ if it
// should be run. This must only be called when gcBlackenEnabled != 0.
func (c *gcControllerState) findRunnableGCWorker(_p_ *p) *g {
	if gcBlackenEnabled == 0 {
		throw("gcControllerState.findRunnable: blackening not enabled")
	}
	if _p_.gcBgMarkWorker == 0 {
		// The mark worker associated with this P is blocked
		// performing a mark transition. We can't run it
		// because it may be on some other run or wait queue.
		return nil
	}

	if !gcMarkWorkAvailable(_p_) {
		// No work to be done right now. This can happen at
		// the end of the mark phase when there are still
		// assists tapering off. Don't bother running a worker
		// now because it'll just return immediately.
		return nil
	}

	decIfPositive := func(ptr *int64) bool {
		if *ptr > 0 {
			if atomic.Xaddint64(ptr, -1) >= 0 {
				return true
			}
			// We lost a race
			atomic.Xaddint64(ptr, +1)
		}
		return false
	}

	if decIfPositive(&c.dedicatedMarkWorkersNeeded) {
		// This P is now dedicated to marking until the end of
		// the concurrent mark phase.
		_p_.gcMarkWorkerMode = gcMarkWorkerDedicatedMode
		// TODO(austin): This P isn't going to run anything
		// else for a while, so kick everything out of its run
		// queue.
	} else {
		if !decIfPositive(&c.fractionalMarkWorkersNeeded) {
			// No more workers are need right now.
			return nil
		}

		// This P has picked the token for the fractional worker.
		// Is the GC currently under or at the utilization goal?
		// If so, do more work.
		//
		// We used to check whether doing one time slice of work
		// would remain under the utilization goal, but that has the
		// effect of delaying work until the mutator has run for
		// enough time slices to pay for the work. During those time
		// slices, write barriers are enabled, so the mutator is running slower.
		// Now instead we do the work whenever we're under or at the
		// utilization work and pay for it by letting the mutator run later.
		// This doesn't change the overall utilization averages, but it
		// front loads the GC work so that the GC finishes earlier and
		// write barriers can be turned off sooner, effectively giving
		// the mutator a faster machine.
		//
		// The old, slower behavior can be restored by setting
		//	gcForcePreemptNS = forcePreemptNS.
		const gcForcePreemptNS = 0

		// TODO(austin): We could fast path this and basically
		// eliminate contention on c.fractionalMarkWorkersNeeded by
		// precomputing the minimum time at which it's worth
		// next scheduling the fractional worker. Then Ps
		// don't have to fight in the window where we've
		// passed that deadline and no one has started the
		// worker yet.
		//
		// TODO(austin): Shorter preemption interval for mark
		// worker to improve fairness and give this
		// finer-grained control over schedule?
		now := nanotime() - gcController.bgMarkStartTime
		then := now + gcForcePreemptNS
		timeUsed := c.fractionalMarkTime + gcForcePreemptNS
		if then > 0 && float64(timeUsed)/float64(then) > c.fractionalUtilizationGoal {
			// Nope, we'd overshoot the utilization goal
			atomic.Xaddint64(&c.fractionalMarkWorkersNeeded, +1)
			return nil
		}
		_p_.gcMarkWorkerMode = gcMarkWorkerFractionalMode
	}

	// Run the background mark worker
	gp := _p_.gcBgMarkWorker.ptr()
	casgstatus(gp, _Gwaiting, _Grunnable)
	if trace.enabled {
		traceGoUnpark(gp, 0)
	}
	return gp
}

// gcGoalUtilization is the goal CPU utilization for background
// marking as a fraction of GOMAXPROCS.
const gcGoalUtilization = 0.25

// gcCreditSlack is the amount of scan work credit that can can
// accumulate locally before updating gcController.scanWork and,
// optionally, gcController.bgScanCredit. Lower values give a more
// accurate assist ratio and make it more likely that assists will
// successfully steal background credit. Higher values reduce memory
// contention.
const gcCreditSlack = 2000

// gcAssistTimeSlack is the nanoseconds of mutator assist time that
// can accumulate on a P before updating gcController.assistTime.
const gcAssistTimeSlack = 5000

// gcOverAssistBytes determines how many extra allocation bytes of
// assist credit a GC assist builds up when an assist happens. This
// amortizes the cost of an assist by pre-paying for this many bytes
// of future allocations.
const gcOverAssistBytes = 1 << 20

var work struct {
	full  uint64                   // lock-free list of full blocks workbuf
	empty uint64                   // lock-free list of empty blocks workbuf
	pad0  [sys.CacheLineSize]uint8 // prevents false-sharing between full/empty and nproc/nwait

	markrootNext uint32 // next markroot job
	markrootJobs uint32 // number of markroot jobs

	nproc   uint32
	tstart  int64
	nwait   uint32
	ndone   uint32
	alldone note

	// Number of roots of various root types. Set by gcMarkRootPrepare.
	nDataRoots, nBSSRoots, nSpanRoots, nStackRoots int

	// finalizersDone indicates that finalizers and objects with
	// finalizers have been scanned by markroot. During concurrent
	// GC, this happens during the concurrent scan phase. During
	// STW GC, this happens during mark termination.
	finalizersDone bool

	// Each type of GC state transition is protected by a lock.
	// Since multiple threads can simultaneously detect the state
	// transition condition, any thread that detects a transition
	// condition must acquire the appropriate transition lock,
	// re-check the transition condition and return if it no
	// longer holds or perform the transition if it does.
	// Likewise, any transition must invalidate the transition
	// condition before releasing the lock. This ensures that each
	// transition is performed by exactly one thread and threads
	// that need the transition to happen block until it has
	// happened.
	//
	// startSema protects the transition from "off" to mark or
	// mark termination.
	startSema uint32
	// markDoneSema protects transitions from mark 1 to mark 2 and
	// from mark 2 to mark termination.
	markDoneSema uint32

	bgMarkReady note   // signal background mark worker has started
	bgMarkDone  uint32 // cas to 1 when at a background mark completion point
	// Background mark completion signaling

	// mode is the concurrency mode of the current GC cycle.
	mode gcMode

	// Copy of mheap.allspans for marker or sweeper.
	spans []*mspan

	// totaltime is the CPU nanoseconds spent in GC since the
	// program started if debug.gctrace > 0.
	totaltime int64

	// bytesMarked is the number of bytes marked this cycle. This
	// includes bytes blackened in scanned objects, noscan objects
	// that go straight to black, and permagrey objects scanned by
	// markroot during the concurrent scan phase. This is updated
	// atomically during the cycle. Updates may be batched
	// arbitrarily, since the value is only read at the end of the
	// cycle.
	//
	// Because of benign races during marking, this number may not
	// be the exact number of marked bytes, but it should be very
	// close.
	bytesMarked uint64

	// initialHeapLive is the value of memstats.heap_live at the
	// beginning of this GC cycle.
	initialHeapLive uint64

	// assistQueue is a queue of assists that are blocked because
	// there was neither enough credit to steal or enough work to
	// do.
	assistQueue struct {
		lock       mutex
		head, tail guintptr
	}

	// Timing/utilization stats for this cycle.
	stwprocs, maxprocs                 int32
	tSweepTerm, tMark, tMarkTerm, tEnd int64 // nanotime() of phase start

	pauseNS    int64 // total STW time this cycle
	pauseStart int64 // nanotime() of last STW

	// debug.gctrace heap sizes for this cycle.
	heap0, heap1, heap2, heapGoal uint64
}

// GC runs a garbage collection and blocks the caller until the
// garbage collection is complete. It may also block the entire
// program.
func GC() {
	gcStart(gcForceBlockMode, false)
}

// gcMode indicates how concurrent a GC cycle should be.
type gcMode int

const (
	gcBackgroundMode gcMode = iota // concurrent GC and sweep
	gcForceMode                    // stop-the-world GC now, concurrent sweep
	gcForceBlockMode               // stop-the-world GC now and STW sweep
)

// gcShouldStart returns true if the exit condition for the _GCoff
// phase has been met. The exit condition should be tested when
// allocating.
//
// If forceTrigger is true, it ignores the current heap size, but
// checks all other conditions. In general this should be false.
func gcShouldStart(forceTrigger bool) bool {
	return gcphase == _GCoff && (forceTrigger || memstats.heap_live >= memstats.next_gc) && memstats.enablegc && panicking == 0 && gcpercent >= 0
}

// gcStart transitions the GC from _GCoff to _GCmark (if mode ==
// gcBackgroundMode) or _GCmarktermination (if mode !=
// gcBackgroundMode) by performing sweep termination and GC
// initialization.
//
// This may return without performing this transition in some cases,
// such as when called on a system stack or with locks held.
func gcStart(mode gcMode, forceTrigger bool) {
	// Since this is called from malloc and malloc is called in
	// the guts of a number of libraries that might be holding
	// locks, don't attempt to start GC in non-preemptible or
	// potentially unstable situations.
	mp := acquirem()
	if gp := getg(); gp == mp.g0 || mp.locks > 1 || mp.preemptoff != "" {
		releasem(mp)
		return
	}
	releasem(mp)
	mp = nil

	// Pick up the remaining unswept/not being swept spans concurrently
	//
	// This shouldn't happen if we're being invoked in background
	// mode since proportional sweep should have just finished
	// sweeping everything, but rounding errors, etc, may leave a
	// few spans unswept. In forced mode, this is necessary since
	// GC can be forced at any point in the sweeping cycle.
	//
	// We check the transition condition continuously here in case
	// this G gets delayed in to the next GC cycle.
	for (mode != gcBackgroundMode || gcShouldStart(forceTrigger)) && gosweepone() != ^uintptr(0) {
		sweep.nbgsweep++
	}

	// Perform GC initialization and the sweep termination
	// transition.
	//
	// If this is a forced GC, don't acquire the transition lock
	// or re-check the transition condition because we
	// specifically *don't* want to share the transition with
	// another thread.
	useStartSema := mode == gcBackgroundMode
	if useStartSema {
		semacquire(&work.startSema, false)
		// Re-check transition condition under transition lock.
		if !gcShouldStart(forceTrigger) {
			semrelease(&work.startSema)
			return
		}
	}

	// In gcstoptheworld debug mode, upgrade the mode accordingly.
	// We do this after re-checking the transition condition so
	// that multiple goroutines that detect the heap trigger don't
	// start multiple STW GCs.
	if mode == gcBackgroundMode {
		if debug.gcstoptheworld == 1 {
			mode = gcForceMode
		} else if debug.gcstoptheworld == 2 {
			mode = gcForceBlockMode
		}
	}

	// Ok, we're doing it!  Stop everybody else
	semacquire(&worldsema, false)

	if trace.enabled {
		traceGCStart()
	}

	if mode == gcBackgroundMode {
		gcBgMarkStartWorkers()
	}
	now := nanotime()
	work.stwprocs, work.maxprocs = gcprocs(), gomaxprocs
	work.tSweepTerm = now
	work.heap0 = memstats.heap_live
	work.pauseNS = 0
	work.mode = mode

	work.pauseStart = now
	systemstack(stopTheWorldWithSema)
	// Finish sweep before we start concurrent scan.
	systemstack(func() {
		finishsweep_m(true)
	})
	// clearpools before we start the GC. If we wait they memory will not be
	// reclaimed until the next GC cycle.
	clearpools()

	gcResetMarkState()

	work.finalizersDone = false

	if mode == gcBackgroundMode { // Do as much work concurrently as possible
		gcController.startCycle()
		work.heapGoal = gcController.heapGoal

		// Enter concurrent mark phase and enable
		// write barriers.
		//
		// Because the world is stopped, all Ps will
		// observe that write barriers are enabled by
		// the time we start the world and begin
		// scanning.
		//
		// It's necessary to enable write barriers
		// during the scan phase for several reasons:
		//
		// They must be enabled for writes to higher
		// stack frames before we scan stacks and
		// install stack barriers because this is how
		// we track writes to inactive stack frames.
		// (Alternatively, we could not install stack
		// barriers over frame boundaries with
		// up-pointers).
		//
		// They must be enabled before assists are
		// enabled because they must be enabled before
		// any non-leaf heap objects are marked. Since
		// allocations are blocked until assists can
		// happen, we want enable assists as early as
		// possible.
		setGCPhase(_GCmark)

		// markrootSpans uses work.spans, so make sure
		// it is up to date.
		gcCopySpans()

		gcBgMarkPrepare() // Must happen before assist enable.
		gcMarkRootPrepare()

		// At this point all Ps have enabled the write
		// barrier, thus maintaining the no white to
		// black invariant. Enable mutator assists to
		// put back-pressure on fast allocating
		// mutators.
		atomic.Store(&gcBlackenEnabled, 1)

		// Assists and workers can start the moment we start
		// the world.
		gcController.assistStartTime = now
		gcController.bgMarkStartTime = now

		// Concurrent mark.
		systemstack(startTheWorldWithSema)
		now = nanotime()
		work.pauseNS += now - work.pauseStart
		work.tMark = now
	} else {
		t := nanotime()
		work.tMark, work.tMarkTerm = t, t
		work.heapGoal = work.heap0

		// Perform mark termination. This will restart the world.
		gcMarkTermination()
	}

	if useStartSema {
		semrelease(&work.startSema)
	}
}

// gcMarkDone transitions the GC from mark 1 to mark 2 and from mark 2
// to mark termination.
//
// This should be called when all mark work has been drained. In mark
// 1, this includes all root marking jobs, global work buffers, and
// active work buffers in assists and background workers; however,
// work may still be cached in per-P work buffers. In mark 2, per-P
// caches are disabled.
//
// The calling context must be preemptible.
//
// Note that it is explicitly okay to have write barriers in this
// function because completion of concurrent mark is best-effort
// anyway. Any work created by write barriers here will be cleaned up
// by mark termination.
func gcMarkDone() {
top:
	semacquire(&work.markDoneSema, false)

	// Re-check transition condition under transition lock.
	if !(gcphase == _GCmark && work.nwait == work.nproc && !gcMarkWorkAvailable(nil)) {
		semrelease(&work.markDoneSema)
		return
	}

	// Disallow starting new workers so that any remaining workers
	// in the current mark phase will drain out.
	//
	// TODO(austin): Should dedicated workers keep an eye on this
	// and exit gcDrain promptly?
	atomic.Xaddint64(&gcController.dedicatedMarkWorkersNeeded, -0xffffffff)
	atomic.Xaddint64(&gcController.fractionalMarkWorkersNeeded, -0xffffffff)

	if !gcBlackenPromptly {
		// Transition from mark 1 to mark 2.
		//
		// The global work list is empty, but there can still be work
		// sitting in the per-P work caches and there can be more
		// objects reachable from global roots since they don't have write
		// barriers. Rescan some roots and flush work caches.

		gcMarkRootCheck()

		// Disallow caching workbufs and indicate that we're in mark 2.
		gcBlackenPromptly = true

		// Prevent completion of mark 2 until we've flushed
		// cached workbufs.
		atomic.Xadd(&work.nwait, -1)

		// Rescan global data and BSS. There may still work
		// workers running at this point, so bump "jobs" down
		// before "next" so they won't try running root jobs
		// until we set next.
		atomic.Store(&work.markrootJobs, uint32(fixedRootCount+work.nDataRoots+work.nBSSRoots))
		atomic.Store(&work.markrootNext, fixedRootCount)

		// GC is set up for mark 2. Let Gs blocked on the
		// transition lock go while we flush caches.
		semrelease(&work.markDoneSema)

		systemstack(func() {
			// Flush all currently cached workbufs and
			// ensure all Ps see gcBlackenPromptly. This
			// also blocks until any remaining mark 1
			// workers have exited their loop so we can
			// start new mark 2 workers that will observe
			// the new root marking jobs.
			forEachP(func(_p_ *p) {
				_p_.gcw.dispose()
			})
		})

		// Now we can start up mark 2 workers.
		atomic.Xaddint64(&gcController.dedicatedMarkWorkersNeeded, 0xffffffff)
		atomic.Xaddint64(&gcController.fractionalMarkWorkersNeeded, 0xffffffff)

		incnwait := atomic.Xadd(&work.nwait, +1)
		if incnwait == work.nproc && !gcMarkWorkAvailable(nil) {
			// This loop will make progress because
			// gcBlackenPromptly is now true, so it won't
			// take this same "if" branch.
			goto top
		}
	} else {
		// Transition to mark termination.
		now := nanotime()
		work.tMarkTerm = now
		work.pauseStart = now
		getg().m.preemptoff = "gcing"
		systemstack(stopTheWorldWithSema)
		// The gcphase is _GCmark, it will transition to _GCmarktermination
		// below. The important thing is that the wb remains active until
		// all marking is complete. This includes writes made by the GC.

		// markroot is done now, so record that objects with
		// finalizers have been scanned.
		work.finalizersDone = true

		// Disable assists and background workers. We must do
		// this before waking blocked assists.
		atomic.Store(&gcBlackenEnabled, 0)

		// Flush the gcWork caches. This must be done before
		// endCycle since endCycle depends on statistics kept
		// in these caches.
		gcFlushGCWork()

		// Wake all blocked assists. These will run when we
		// start the world again.
		gcWakeAllAssists()

		// Likewise, release the transition lock. Blocked
		// workers and assists will run when we start the
		// world again.
		semrelease(&work.markDoneSema)

		gcController.endCycle()

		// Perform mark termination. This will restart the world.
		gcMarkTermination()
	}
}

func gcMarkTermination() {
	// World is stopped.
	// Start marktermination which includes enabling the write barrier.
	atomic.Store(&gcBlackenEnabled, 0)
	gcBlackenPromptly = false
	setGCPhase(_GCmarktermination)

	work.heap1 = memstats.heap_live
	startTime := nanotime()

	mp := acquirem()
	mp.preemptoff = "gcing"
	_g_ := getg()
	_g_.m.traceback = 2
	gp := _g_.m.curg
	casgstatus(gp, _Grunning, _Gwaiting)
	gp.waitreason = "garbage collection"

	// Run gc on the g0 stack.  We do this so that the g stack
	// we're currently running on will no longer change.  Cuts
	// the root set down a bit (g0 stacks are not scanned, and
	// we don't need to scan gc's internal state).  We also
	// need to switch to g0 so we can shrink the stack.
	systemstack(func() {
		gcMark(startTime)
		// Must return immediately.
		// The outer function's stack may have moved
		// during gcMark (it shrinks stacks, including the
		// outer function's stack), so we must not refer
		// to any of its variables. Return back to the
		// non-system stack to pick up the new addresses
		// before continuing.
	})

	systemstack(func() {
		work.heap2 = work.bytesMarked
		if debug.gccheckmark > 0 {
			// Run a full stop-the-world mark using checkmark bits,
			// to check that we didn't forget to mark anything during
			// the concurrent mark process.
			gcResetMarkState()
			initCheckmarks()
			gcMark(startTime)
			clearCheckmarks()
		}

		// marking is complete so we can turn the write barrier off
		setGCPhase(_GCoff)
		gcSweep(work.mode)

		if debug.gctrace > 1 {
			startTime = nanotime()
			// The g stacks have been scanned so
			// they have gcscanvalid==true and gcworkdone==true.
			// Reset these so that all stacks will be rescanned.
			gcResetMarkState()
			finishsweep_m(true)

			// Still in STW but gcphase is _GCoff, reset to _GCmarktermination
			// At this point all objects will be found during the gcMark which
			// does a complete STW mark and object scan.
			setGCPhase(_GCmarktermination)
			gcMark(startTime)
			setGCPhase(_GCoff) // marking is done, turn off wb.
			gcSweep(work.mode)
		}
	})

	_g_.m.traceback = 0
	casgstatus(gp, _Gwaiting, _Grunning)

	if trace.enabled {
		traceGCDone()
	}

	// all done
	mp.preemptoff = ""

	if gcphase != _GCoff {
		throw("gc done but gcphase != _GCoff")
	}

	// Update timing memstats
	now, unixNow := nanotime(), unixnanotime()
	work.pauseNS += now - work.pauseStart
	work.tEnd = now
	atomic.Store64(&memstats.last_gc, uint64(unixNow)) // must be Unix time to make sense to user
	memstats.pause_ns[memstats.numgc%uint32(len(memstats.pause_ns))] = uint64(work.pauseNS)
	memstats.pause_end[memstats.numgc%uint32(len(memstats.pause_end))] = uint64(unixNow)
	memstats.pause_total_ns += uint64(work.pauseNS)

	// Update work.totaltime.
	sweepTermCpu := int64(work.stwprocs) * (work.tMark - work.tSweepTerm)
	// We report idle marking time below, but omit it from the
	// overall utilization here since it's "free".
	markCpu := gcController.assistTime + gcController.dedicatedMarkTime + gcController.fractionalMarkTime
	markTermCpu := int64(work.stwprocs) * (work.tEnd - work.tMarkTerm)
	cycleCpu := sweepTermCpu + markCpu + markTermCpu
	work.totaltime += cycleCpu

	// Compute overall GC CPU utilization.
	totalCpu := sched.totaltime + (now-sched.procresizetime)*int64(gomaxprocs)
	memstats.gc_cpu_fraction = float64(work.totaltime) / float64(totalCpu)

	memstats.numgc++

	// Reset sweep state.
	sweep.nbgsweep = 0
	sweep.npausesweep = 0

	systemstack(startTheWorldWithSema)

	// Free stack spans. This must be done between GC cycles.
	systemstack(freeStackSpans)

	// Print gctrace before dropping worldsema. As soon as we drop
	// worldsema another cycle could start and smash the stats
	// we're trying to print.
	if debug.gctrace > 0 {
		util := int(memstats.gc_cpu_fraction * 100)

		var sbuf [24]byte
		printlock()
		print("gc ", memstats.numgc,
			" @", string(itoaDiv(sbuf[:], uint64(work.tSweepTerm-runtimeInitTime)/1e6, 3)), "s ",
			util, "%: ")
		prev := work.tSweepTerm
		for i, ns := range []int64{work.tMark, work.tMarkTerm, work.tEnd} {
			if i != 0 {
				print("+")
			}
			print(string(fmtNSAsMS(sbuf[:], uint64(ns-prev))))
			prev = ns
		}
		print(" ms clock, ")
		for i, ns := range []int64{sweepTermCpu, gcController.assistTime, gcController.dedicatedMarkTime + gcController.fractionalMarkTime, gcController.idleMarkTime, markTermCpu} {
			if i == 2 || i == 3 {
				// Separate mark time components with /.
				print("/")
			} else if i != 0 {
				print("+")
			}
			print(string(fmtNSAsMS(sbuf[:], uint64(ns))))
		}
		print(" ms cpu, ",
			work.heap0>>20, "->", work.heap1>>20, "->", work.heap2>>20, " MB, ",
			work.heapGoal>>20, " MB goal, ",
			work.maxprocs, " P")
		if work.mode != gcBackgroundMode {
			print(" (forced)")
		}
		print("\n")
		printunlock()
	}

	semrelease(&worldsema)
	// Careful: another GC cycle may start now.

	releasem(mp)
	mp = nil

	// now that gc is done, kick off finalizer thread if needed
	if !concurrentSweep {
		// give the queued finalizers, if any, a chance to run
		Gosched()
	}
}

// gcBgMarkStartWorkers prepares background mark worker goroutines.
// These goroutines will not run until the mark phase, but they must
// be started while the work is not stopped and from a regular G
// stack. The caller must hold worldsema.
func gcBgMarkStartWorkers() {
	// Background marking is performed by per-P G's. Ensure that
	// each P has a background GC G.
	for _, p := range &allp {
		if p == nil || p.status == _Pdead {
			break
		}
		if p.gcBgMarkWorker == 0 {
			go gcBgMarkWorker(p)
			notetsleepg(&work.bgMarkReady, -1)
			noteclear(&work.bgMarkReady)
		}
	}
}

// gcBgMarkPrepare sets up state for background marking.
// Mutator assists must not yet be enabled.
func gcBgMarkPrepare() {
	// Background marking will stop when the work queues are empty
	// and there are no more workers (note that, since this is
	// concurrent, this may be a transient state, but mark
	// termination will clean it up). Between background workers
	// and assists, we don't really know how many workers there
	// will be, so we pretend to have an arbitrarily large number
	// of workers, almost all of which are "waiting". While a
	// worker is working it decrements nwait. If nproc == nwait,
	// there are no workers.
	work.nproc = ^uint32(0)
	work.nwait = ^uint32(0)
}

func gcBgMarkWorker(_p_ *p) {
	type parkInfo struct {
		m      *m // Release this m on park.
		attach *p // If non-nil, attach to this p on park.
	}
	var park parkInfo

	gp := getg()
	park.m = acquirem()
	park.attach = _p_
	// Inform gcBgMarkStartWorkers that this worker is ready.
	// After this point, the background mark worker is scheduled
	// cooperatively by gcController.findRunnable. Hence, it must
	// never be preempted, as this would put it into _Grunnable
	// and put it on a run queue. Instead, when the preempt flag
	// is set, this puts itself into _Gwaiting to be woken up by
	// gcController.findRunnable at the appropriate time.
	notewakeup(&work.bgMarkReady)

	for {
		// Go to sleep until woken by gcContoller.findRunnable.
		// We can't releasem yet since even the call to gopark
		// may be preempted.
		gopark(func(g *g, parkp unsafe.Pointer) bool {
			park := (*parkInfo)(parkp)

			// The worker G is no longer running, so it's
			// now safe to allow preemption.
			releasem(park.m)

			// If the worker isn't attached to its P,
			// attach now. During initialization and after
			// a phase change, the worker may have been
			// running on a different P. As soon as we
			// attach, the owner P may schedule the
			// worker, so this must be done after the G is
			// stopped.
			if park.attach != nil {
				p := park.attach
				park.attach = nil
				// cas the worker because we may be
				// racing with a new worker starting
				// on this P.
				if !p.gcBgMarkWorker.cas(0, guintptr(unsafe.Pointer(g))) {
					// The P got a new worker.
					// Exit this worker.
					return false
				}
			}
			return true
		}, noescape(unsafe.Pointer(&park)), "GC worker (idle)", traceEvGoBlock, 0)

		// Loop until the P dies and disassociates this
		// worker (the P may later be reused, in which case
		// it will get a new worker) or we failed to associate.
		if _p_.gcBgMarkWorker.ptr() != gp {
			break
		}

		// Disable preemption so we can use the gcw. If the
		// scheduler wants to preempt us, we'll stop draining,
		// dispose the gcw, and then preempt.
		park.m = acquirem()

		if gcBlackenEnabled == 0 {
			throw("gcBgMarkWorker: blackening not enabled")
		}

		startTime := nanotime()

		decnwait := atomic.Xadd(&work.nwait, -1)
		if decnwait == work.nproc {
			println("runtime: work.nwait=", decnwait, "work.nproc=", work.nproc)
			throw("work.nwait was > work.nproc")
		}

		switch _p_.gcMarkWorkerMode {
		default:
			throw("gcBgMarkWorker: unexpected gcMarkWorkerMode")
		case gcMarkWorkerDedicatedMode:
			gcDrain(&_p_.gcw, gcDrainNoBlock|gcDrainFlushBgCredit)
		case gcMarkWorkerFractionalMode, gcMarkWorkerIdleMode:
			gcDrain(&_p_.gcw, gcDrainUntilPreempt|gcDrainFlushBgCredit)
		}

		// If we are nearing the end of mark, dispose
		// of the cache promptly. We must do this
		// before signaling that we're no longer
		// working so that other workers can't observe
		// no workers and no work while we have this
		// cached, and before we compute done.
		if gcBlackenPromptly {
			_p_.gcw.dispose()
		}

		// Account for time.
		duration := nanotime() - startTime
		switch _p_.gcMarkWorkerMode {
		case gcMarkWorkerDedicatedMode:
			atomic.Xaddint64(&gcController.dedicatedMarkTime, duration)
			atomic.Xaddint64(&gcController.dedicatedMarkWorkersNeeded, 1)
		case gcMarkWorkerFractionalMode:
			atomic.Xaddint64(&gcController.fractionalMarkTime, duration)
			atomic.Xaddint64(&gcController.fractionalMarkWorkersNeeded, 1)
		case gcMarkWorkerIdleMode:
			atomic.Xaddint64(&gcController.idleMarkTime, duration)
		}

		// Was this the last worker and did we run out
		// of work?
		incnwait := atomic.Xadd(&work.nwait, +1)
		if incnwait > work.nproc {
			println("runtime: p.gcMarkWorkerMode=", _p_.gcMarkWorkerMode,
				"work.nwait=", incnwait, "work.nproc=", work.nproc)
			throw("work.nwait > work.nproc")
		}

		// If this worker reached a background mark completion
		// point, signal the main GC goroutine.
		if incnwait == work.nproc && !gcMarkWorkAvailable(nil) {
			// Make this G preemptible and disassociate it
			// as the worker for this P so
			// findRunnableGCWorker doesn't try to
			// schedule it.
			_p_.gcBgMarkWorker.set(nil)
			releasem(park.m)

			gcMarkDone()

			// Disable preemption and prepare to reattach
			// to the P.
			//
			// We may be running on a different P at this
			// point, so we can't reattach until this G is
			// parked.
			park.m = acquirem()
			park.attach = _p_
		}
	}
}

// gcMarkWorkAvailable returns true if executing a mark worker
// on p is potentially useful. p may be nil, in which case it only
// checks the global sources of work.
func gcMarkWorkAvailable(p *p) bool {
	if p != nil && !p.gcw.empty() {
		return true
	}
	if atomic.Load64(&work.full) != 0 {
		return true // global work available
	}
	if work.markrootNext < work.markrootJobs {
		return true // root scan work available
	}
	return false
}

// gcFlushGCWork disposes the gcWork caches of all Ps. The world must
// be stopped.
//go:nowritebarrier
func gcFlushGCWork() {
	// Gather all cached GC work. All other Ps are stopped, so
	// it's safe to manipulate their GC work caches.
	for i := 0; i < int(gomaxprocs); i++ {
		allp[i].gcw.dispose()
	}
}

// gcMark runs the mark (or, for concurrent GC, mark termination)
// STW is in effect at this point.
//TODO go:nowritebarrier
func gcMark(start_time int64) {
	if debug.allocfreetrace > 0 {
		tracegc()
	}

	if gcphase != _GCmarktermination {
		throw("in gcMark expecting to see gcphase as _GCmarktermination")
	}
	work.tstart = start_time

	gcCopySpans() // TODO(rlh): should this be hoisted and done only once? Right now it is done for normal marking and also for checkmarking.

	// Make sure the per-P gcWork caches are empty. During mark
	// termination, these caches can still be used temporarily,
	// but must be disposed to the global lists immediately.
	gcFlushGCWork()

	// Queue root marking jobs.
	gcMarkRootPrepare()

	work.nwait = 0
	work.ndone = 0
	work.nproc = uint32(gcprocs())

	if trace.enabled {
		traceGCScanStart()
	}

	if work.nproc > 1 {
		noteclear(&work.alldone)
		helpgc(int32(work.nproc))
	}

	gchelperstart()

	var gcw gcWork
	gcDrain(&gcw, gcDrainBlock)
	gcw.dispose()

	gcMarkRootCheck()
	if work.full != 0 {
		throw("work.full != 0")
	}

	if work.nproc > 1 {
		notesleep(&work.alldone)
	}

	// markroot is done now, so record that objects with
	// finalizers have been scanned.
	work.finalizersDone = true

	for i := 0; i < int(gomaxprocs); i++ {
		if !allp[i].gcw.empty() {
			throw("P has cached GC work at end of mark termination")
		}
	}

	if trace.enabled {
		traceGCScanDone()
	}

	cachestats()

	// Compute the reachable heap size at the beginning of the
	// cycle. This is approximately the marked heap size at the
	// end (which we know) minus the amount of marked heap that
	// was allocated after marking began (which we don't know, but
	// is approximately the amount of heap that was allocated
	// since marking began).
	allocatedDuringCycle := memstats.heap_live - work.initialHeapLive
	if memstats.heap_live < work.initialHeapLive {
		// This can happen if mCentral_UncacheSpan tightens
		// the heap_live approximation.
		allocatedDuringCycle = 0
	}
	if work.bytesMarked >= allocatedDuringCycle {
		memstats.heap_reachable = work.bytesMarked - allocatedDuringCycle
	} else {
		// This can happen if most of the allocation during
		// the cycle never became reachable from the heap.
		// Just set the reachable heap approximation to 0 and
		// let the heapminimum kick in below.
		memstats.heap_reachable = 0
	}

	// Trigger the next GC cycle when the allocated heap has grown
	// by triggerRatio over the reachable heap size. Assume that
	// we're in steady state, so the reachable heap size is the
	// same now as it was at the beginning of the GC cycle.
	memstats.next_gc = uint64(float64(memstats.heap_reachable) * (1 + gcController.triggerRatio))
	if memstats.next_gc < heapminimum {
		memstats.next_gc = heapminimum
	}
	if int64(memstats.next_gc) < 0 {
		print("next_gc=", memstats.next_gc, " bytesMarked=", work.bytesMarked, " heap_live=", memstats.heap_live, " initialHeapLive=", work.initialHeapLive, "\n")
		throw("next_gc underflow")
	}

	// Update other GC heap size stats. This must happen after
	// cachestats (which flushes local statistics to these) and
	// flushallmcaches (which modifies heap_live).
	memstats.heap_live = work.bytesMarked
	memstats.heap_marked = work.bytesMarked
	memstats.heap_scan = uint64(gcController.scanWork)

	minNextGC := memstats.heap_live + sweepMinHeapDistance*uint64(gcpercent)/100
	if memstats.next_gc < minNextGC {
		// The allocated heap is already past the trigger.
		// This can happen if the triggerRatio is very low and
		// the reachable heap estimate is less than the live
		// heap size.
		//
		// Concurrent sweep happens in the heap growth from
		// heap_live to next_gc, so bump next_gc up to ensure
		// that concurrent sweep has some heap growth in which
		// to perform sweeping before we start the next GC
		// cycle.
		memstats.next_gc = minNextGC
	}

	if trace.enabled {
		traceHeapAlloc()
		traceNextGC()
	}
}

func gcSweep(mode gcMode) {
	if gcphase != _GCoff {
		throw("gcSweep being done but phase is not GCoff")
	}
	gcCopySpans()

	lock(&mheap_.lock)
	mheap_.sweepgen += 2
	mheap_.sweepdone = 0
	sweep.spanidx = 0
	unlock(&mheap_.lock)

	if !_ConcurrentSweep || mode == gcForceBlockMode {
		// Special case synchronous sweep.
		// Record that no proportional sweeping has to happen.
		lock(&mheap_.lock)
		mheap_.sweepPagesPerByte = 0
		mheap_.pagesSwept = 0
		unlock(&mheap_.lock)
		// Sweep all spans eagerly.
		for sweepone() != ^uintptr(0) {
			sweep.npausesweep++
		}
		// Do an additional mProf_GC, because all 'free' events are now real as well.
		mProf_GC()
		mProf_GC()
		return
	}

	// Concurrent sweep needs to sweep all of the in-use pages by
	// the time the allocated heap reaches the GC trigger. Compute
	// the ratio of in-use pages to sweep per byte allocated.
	heapDistance := int64(memstats.next_gc) - int64(memstats.heap_live)
	// Add a little margin so rounding errors and concurrent
	// sweep are less likely to leave pages unswept when GC starts.
	heapDistance -= 1024 * 1024
	if heapDistance < _PageSize {
		// Avoid setting the sweep ratio extremely high
		heapDistance = _PageSize
	}
	lock(&mheap_.lock)
	mheap_.sweepPagesPerByte = float64(mheap_.pagesInUse) / float64(heapDistance)
	mheap_.pagesSwept = 0
	mheap_.spanBytesAlloc = 0
	unlock(&mheap_.lock)

	// Background sweep.
	lock(&sweep.lock)
	if sweep.parked {
		sweep.parked = false
		ready(sweep.g, 0)
	}
	unlock(&sweep.lock)
	mProf_GC()
}

func gcCopySpans() {
	// Cache runtime.mheap_.allspans in work.spans to avoid conflicts with
	// resizing/freeing allspans.
	// New spans can be created while GC progresses, but they are not garbage for
	// this round:
	//  - new stack spans can be created even while the world is stopped.
	//  - new malloc spans can be created during the concurrent sweep
	// Even if this is stop-the-world, a concurrent exitsyscall can allocate a stack from heap.
	lock(&mheap_.lock)
	// Free the old cached mark array if necessary.
	if work.spans != nil && &work.spans[0] != &h_allspans[0] {
		sysFree(unsafe.Pointer(&work.spans[0]), uintptr(len(work.spans))*unsafe.Sizeof(work.spans[0]), &memstats.other_sys)
	}
	// Cache the current array for sweeping.
	mheap_.gcspans = mheap_.allspans
	work.spans = h_allspans
	unlock(&mheap_.lock)
}

// gcResetMarkState resets global state prior to marking (concurrent
// or STW) and resets the stack scan state of all Gs. Any Gs created
// after this will also be in the reset state.
func gcResetMarkState() {
	// This may be called during a concurrent phase, so make sure
	// allgs doesn't change.
	lock(&allglock)
	for _, gp := range allgs {
		gp.gcscandone = false  // set to true in gcphasework
		gp.gcscanvalid = false // stack has not been scanned
		gp.gcAssistBytes = 0
	}
	unlock(&allglock)

	work.bytesMarked = 0
	work.initialHeapLive = memstats.heap_live
}

// Hooks for other packages

var poolcleanup func()

//go:linkname sync_runtime_registerPoolCleanup sync.runtime_registerPoolCleanup
func sync_runtime_registerPoolCleanup(f func()) {
	poolcleanup = f
}

func clearpools() {
	// clear sync.Pools
	if poolcleanup != nil {
		poolcleanup()
	}

	// Clear central sudog cache.
	// Leave per-P caches alone, they have strictly bounded size.
	// Disconnect cached list before dropping it on the floor,
	// so that a dangling ref to one entry does not pin all of them.
	lock(&sched.sudoglock)
	var sg, sgnext *sudog
	for sg = sched.sudogcache; sg != nil; sg = sgnext {
		sgnext = sg.next
		sg.next = nil
	}
	sched.sudogcache = nil
	unlock(&sched.sudoglock)

	// Clear central defer pools.
	// Leave per-P pools alone, they have strictly bounded size.
	lock(&sched.deferlock)
	for i := range sched.deferpool {
		// disconnect cached list before dropping it on the floor,
		// so that a dangling ref to one entry does not pin all of them.
		var d, dlink *_defer
		for d = sched.deferpool[i]; d != nil; d = dlink {
			dlink = d.link
			d.link = nil
		}
		sched.deferpool[i] = nil
	}
	unlock(&sched.deferlock)
}

// Timing

//go:nowritebarrier
func gchelper() {
	_g_ := getg()
	_g_.m.traceback = 2
	gchelperstart()

	if trace.enabled {
		traceGCScanStart()
	}

	// Parallel mark over GC roots and heap
	if gcphase == _GCmarktermination {
		var gcw gcWork
		gcDrain(&gcw, gcDrainBlock) // blocks in getfull
		gcw.dispose()
	}

	if trace.enabled {
		traceGCScanDone()
	}

	nproc := work.nproc // work.nproc can change right after we increment work.ndone
	if atomic.Xadd(&work.ndone, +1) == nproc-1 {
		notewakeup(&work.alldone)
	}
	_g_.m.traceback = 0
}

func gchelperstart() {
	_g_ := getg()

	if _g_.m.helpgc < 0 || _g_.m.helpgc >= _MaxGcproc {
		throw("gchelperstart: bad m->helpgc")
	}
	if _g_ != _g_.m.g0 {
		throw("gchelper not running on g0 stack")
	}
}

// itoaDiv formats val/(10**dec) into buf.
func itoaDiv(buf []byte, val uint64, dec int) []byte {
	i := len(buf) - 1
	idec := i - dec
	for val >= 10 || i >= idec {
		buf[i] = byte(val%10 + '0')
		i--
		if i == idec {
			buf[i] = '.'
			i--
		}
		val /= 10
	}
	buf[i] = byte(val + '0')
	return buf[i:]
}

// fmtNSAsMS nicely formats ns nanoseconds as milliseconds.
func fmtNSAsMS(buf []byte, ns uint64) []byte {
	if ns >= 10e6 {
		// Format as whole milliseconds.
		return itoaDiv(buf, ns/1e6, 0)
	}
	// Format two digits of precision, with at most three decimal places.
	x := ns / 1e3
	if x == 0 {
		buf[0] = '0'
		return buf[:1]
	}
	dec := 3
	for x >= 100 {
		x /= 10
		dec--
	}
	return itoaDiv(buf, x, dec)
}