This file is indexed.

/usr/share/go-1.6/src/runtime/mfinal.go is in golang-1.6-src 1.6.1-0ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
// Copyright 2009 The Go Authors.  All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// Garbage collector: finalizers and block profiling.

package runtime

import (
	"runtime/internal/atomic"
	"runtime/internal/sys"
	"unsafe"
)

type finblock struct {
	alllink *finblock
	next    *finblock
	cnt     int32
	_       int32
	fin     [(_FinBlockSize - 2*sys.PtrSize - 2*4) / unsafe.Sizeof(finalizer{})]finalizer
}

var finlock mutex  // protects the following variables
var fing *g        // goroutine that runs finalizers
var finq *finblock // list of finalizers that are to be executed
var finc *finblock // cache of free blocks
var finptrmask [_FinBlockSize / sys.PtrSize / 8]byte
var fingwait bool
var fingwake bool
var allfin *finblock // list of all blocks

// NOTE: Layout known to queuefinalizer.
type finalizer struct {
	fn   *funcval       // function to call
	arg  unsafe.Pointer // ptr to object
	nret uintptr        // bytes of return values from fn
	fint *_type         // type of first argument of fn
	ot   *ptrtype       // type of ptr to object
}

var finalizer1 = [...]byte{
	// Each Finalizer is 5 words, ptr ptr INT ptr ptr (INT = uintptr here)
	// Each byte describes 8 words.
	// Need 8 Finalizers described by 5 bytes before pattern repeats:
	//	ptr ptr INT ptr ptr
	//	ptr ptr INT ptr ptr
	//	ptr ptr INT ptr ptr
	//	ptr ptr INT ptr ptr
	//	ptr ptr INT ptr ptr
	//	ptr ptr INT ptr ptr
	//	ptr ptr INT ptr ptr
	//	ptr ptr INT ptr ptr
	// aka
	//
	//	ptr ptr INT ptr ptr ptr ptr INT
	//	ptr ptr ptr ptr INT ptr ptr ptr
	//	ptr INT ptr ptr ptr ptr INT ptr
	//	ptr ptr ptr INT ptr ptr ptr ptr
	//	INT ptr ptr ptr ptr INT ptr ptr
	//
	// Assumptions about Finalizer layout checked below.
	1<<0 | 1<<1 | 0<<2 | 1<<3 | 1<<4 | 1<<5 | 1<<6 | 0<<7,
	1<<0 | 1<<1 | 1<<2 | 1<<3 | 0<<4 | 1<<5 | 1<<6 | 1<<7,
	1<<0 | 0<<1 | 1<<2 | 1<<3 | 1<<4 | 1<<5 | 0<<6 | 1<<7,
	1<<0 | 1<<1 | 1<<2 | 0<<3 | 1<<4 | 1<<5 | 1<<6 | 1<<7,
	0<<0 | 1<<1 | 1<<2 | 1<<3 | 1<<4 | 0<<5 | 1<<6 | 1<<7,
}

func queuefinalizer(p unsafe.Pointer, fn *funcval, nret uintptr, fint *_type, ot *ptrtype) {
	lock(&finlock)
	if finq == nil || finq.cnt == int32(len(finq.fin)) {
		if finc == nil {
			// Note: write barrier here, assigning to finc, but should be okay.
			finc = (*finblock)(persistentalloc(_FinBlockSize, 0, &memstats.gc_sys))
			finc.alllink = allfin
			allfin = finc
			if finptrmask[0] == 0 {
				// Build pointer mask for Finalizer array in block.
				// Check assumptions made in finalizer1 array above.
				if (unsafe.Sizeof(finalizer{}) != 5*sys.PtrSize ||
					unsafe.Offsetof(finalizer{}.fn) != 0 ||
					unsafe.Offsetof(finalizer{}.arg) != sys.PtrSize ||
					unsafe.Offsetof(finalizer{}.nret) != 2*sys.PtrSize ||
					unsafe.Offsetof(finalizer{}.fint) != 3*sys.PtrSize ||
					unsafe.Offsetof(finalizer{}.ot) != 4*sys.PtrSize) {
					throw("finalizer out of sync")
				}
				for i := range finptrmask {
					finptrmask[i] = finalizer1[i%len(finalizer1)]
				}
			}
		}
		block := finc
		finc = block.next
		block.next = finq
		finq = block
	}
	f := &finq.fin[finq.cnt]
	finq.cnt++
	f.fn = fn
	f.nret = nret
	f.fint = fint
	f.ot = ot
	f.arg = p
	fingwake = true
	unlock(&finlock)
}

//go:nowritebarrier
func iterate_finq(callback func(*funcval, unsafe.Pointer, uintptr, *_type, *ptrtype)) {
	for fb := allfin; fb != nil; fb = fb.alllink {
		for i := int32(0); i < fb.cnt; i++ {
			f := &fb.fin[i]
			callback(f.fn, f.arg, f.nret, f.fint, f.ot)
		}
	}
}

func wakefing() *g {
	var res *g
	lock(&finlock)
	if fingwait && fingwake {
		fingwait = false
		fingwake = false
		res = fing
	}
	unlock(&finlock)
	return res
}

var (
	fingCreate  uint32
	fingRunning bool
)

func createfing() {
	// start the finalizer goroutine exactly once
	if fingCreate == 0 && atomic.Cas(&fingCreate, 0, 1) {
		go runfinq()
	}
}

// This is the goroutine that runs all of the finalizers
func runfinq() {
	var (
		frame    unsafe.Pointer
		framecap uintptr
	)

	for {
		lock(&finlock)
		fb := finq
		finq = nil
		if fb == nil {
			gp := getg()
			fing = gp
			fingwait = true
			goparkunlock(&finlock, "finalizer wait", traceEvGoBlock, 1)
			continue
		}
		unlock(&finlock)
		if raceenabled {
			racefingo()
		}
		for fb != nil {
			for i := fb.cnt; i > 0; i-- {
				f := &fb.fin[i-1]

				framesz := unsafe.Sizeof((interface{})(nil)) + uintptr(f.nret)
				if framecap < framesz {
					// The frame does not contain pointers interesting for GC,
					// all not yet finalized objects are stored in finq.
					// If we do not mark it as FlagNoScan,
					// the last finalized object is not collected.
					frame = mallocgc(framesz, nil, flagNoScan)
					framecap = framesz
				}

				if f.fint == nil {
					throw("missing type in runfinq")
				}
				switch f.fint.kind & kindMask {
				case kindPtr:
					// direct use of pointer
					*(*unsafe.Pointer)(frame) = f.arg
				case kindInterface:
					ityp := (*interfacetype)(unsafe.Pointer(f.fint))
					// set up with empty interface
					(*eface)(frame)._type = &f.ot.typ
					(*eface)(frame).data = f.arg
					if len(ityp.mhdr) != 0 {
						// convert to interface with methods
						// this conversion is guaranteed to succeed - we checked in SetFinalizer
						assertE2I(ityp, *(*eface)(frame), (*iface)(frame))
					}
				default:
					throw("bad kind in runfinq")
				}
				fingRunning = true
				reflectcall(nil, unsafe.Pointer(f.fn), frame, uint32(framesz), uint32(framesz))
				fingRunning = false

				// drop finalizer queue references to finalized object
				f.fn = nil
				f.arg = nil
				f.ot = nil
				fb.cnt = i - 1
			}
			next := fb.next
			lock(&finlock)
			fb.next = finc
			finc = fb
			unlock(&finlock)
			fb = next
		}
	}
}

// SetFinalizer sets the finalizer associated with x to f.
// When the garbage collector finds an unreachable block
// with an associated finalizer, it clears the association and runs
// f(x) in a separate goroutine.  This makes x reachable again, but
// now without an associated finalizer.  Assuming that SetFinalizer
// is not called again, the next time the garbage collector sees
// that x is unreachable, it will free x.
//
// SetFinalizer(x, nil) clears any finalizer associated with x.
//
// The argument x must be a pointer to an object allocated by
// calling new or by taking the address of a composite literal.
// The argument f must be a function that takes a single argument
// to which x's type can be assigned, and can have arbitrary ignored return
// values. If either of these is not true, SetFinalizer aborts the
// program.
//
// Finalizers are run in dependency order: if A points at B, both have
// finalizers, and they are otherwise unreachable, only the finalizer
// for A runs; once A is freed, the finalizer for B can run.
// If a cyclic structure includes a block with a finalizer, that
// cycle is not guaranteed to be garbage collected and the finalizer
// is not guaranteed to run, because there is no ordering that
// respects the dependencies.
//
// The finalizer for x is scheduled to run at some arbitrary time after
// x becomes unreachable.
// There is no guarantee that finalizers will run before a program exits,
// so typically they are useful only for releasing non-memory resources
// associated with an object during a long-running program.
// For example, an os.File object could use a finalizer to close the
// associated operating system file descriptor when a program discards
// an os.File without calling Close, but it would be a mistake
// to depend on a finalizer to flush an in-memory I/O buffer such as a
// bufio.Writer, because the buffer would not be flushed at program exit.
//
// It is not guaranteed that a finalizer will run if the size of *x is
// zero bytes.
//
// It is not guaranteed that a finalizer will run for objects allocated
// in initializers for package-level variables. Such objects may be
// linker-allocated, not heap-allocated.
//
// A single goroutine runs all finalizers for a program, sequentially.
// If a finalizer must run for a long time, it should do so by starting
// a new goroutine.
func SetFinalizer(obj interface{}, finalizer interface{}) {
	if debug.sbrk != 0 {
		// debug.sbrk never frees memory, so no finalizers run
		// (and we don't have the data structures to record them).
		return
	}
	e := efaceOf(&obj)
	etyp := e._type
	if etyp == nil {
		throw("runtime.SetFinalizer: first argument is nil")
	}
	if etyp.kind&kindMask != kindPtr {
		throw("runtime.SetFinalizer: first argument is " + *etyp._string + ", not pointer")
	}
	ot := (*ptrtype)(unsafe.Pointer(etyp))
	if ot.elem == nil {
		throw("nil elem type!")
	}

	// find the containing object
	_, base, _ := findObject(e.data)

	if base == nil {
		// 0-length objects are okay.
		if e.data == unsafe.Pointer(&zerobase) {
			return
		}

		// Global initializers might be linker-allocated.
		//	var Foo = &Object{}
		//	func main() {
		//		runtime.SetFinalizer(Foo, nil)
		//	}
		// The relevant segments are: noptrdata, data, bss, noptrbss.
		// We cannot assume they are in any order or even contiguous,
		// due to external linking.
		for datap := &firstmoduledata; datap != nil; datap = datap.next {
			if datap.noptrdata <= uintptr(e.data) && uintptr(e.data) < datap.enoptrdata ||
				datap.data <= uintptr(e.data) && uintptr(e.data) < datap.edata ||
				datap.bss <= uintptr(e.data) && uintptr(e.data) < datap.ebss ||
				datap.noptrbss <= uintptr(e.data) && uintptr(e.data) < datap.enoptrbss {
				return
			}
		}
		throw("runtime.SetFinalizer: pointer not in allocated block")
	}

	if e.data != base {
		// As an implementation detail we allow to set finalizers for an inner byte
		// of an object if it could come from tiny alloc (see mallocgc for details).
		if ot.elem == nil || ot.elem.kind&kindNoPointers == 0 || ot.elem.size >= maxTinySize {
			throw("runtime.SetFinalizer: pointer not at beginning of allocated block")
		}
	}

	f := efaceOf(&finalizer)
	ftyp := f._type
	if ftyp == nil {
		// switch to system stack and remove finalizer
		systemstack(func() {
			removefinalizer(e.data)
		})
		return
	}

	if ftyp.kind&kindMask != kindFunc {
		throw("runtime.SetFinalizer: second argument is " + *ftyp._string + ", not a function")
	}
	ft := (*functype)(unsafe.Pointer(ftyp))
	if ft.dotdotdot || len(ft.in) != 1 {
		throw("runtime.SetFinalizer: cannot pass " + *etyp._string + " to finalizer " + *ftyp._string)
	}
	fint := ft.in[0]
	switch {
	case fint == etyp:
		// ok - same type
		goto okarg
	case fint.kind&kindMask == kindPtr:
		if (fint.x == nil || fint.x.name == nil || etyp.x == nil || etyp.x.name == nil) && (*ptrtype)(unsafe.Pointer(fint)).elem == ot.elem {
			// ok - not same type, but both pointers,
			// one or the other is unnamed, and same element type, so assignable.
			goto okarg
		}
	case fint.kind&kindMask == kindInterface:
		ityp := (*interfacetype)(unsafe.Pointer(fint))
		if len(ityp.mhdr) == 0 {
			// ok - satisfies empty interface
			goto okarg
		}
		if assertE2I2(ityp, *efaceOf(&obj), nil) {
			goto okarg
		}
	}
	throw("runtime.SetFinalizer: cannot pass " + *etyp._string + " to finalizer " + *ftyp._string)
okarg:
	// compute size needed for return parameters
	nret := uintptr(0)
	for _, t := range ft.out {
		nret = round(nret, uintptr(t.align)) + uintptr(t.size)
	}
	nret = round(nret, sys.PtrSize)

	// make sure we have a finalizer goroutine
	createfing()

	systemstack(func() {
		if !addfinalizer(e.data, (*funcval)(f.data), nret, fint, ot) {
			throw("runtime.SetFinalizer: finalizer already set")
		}
	})
}

// Look up pointer v in heap.  Return the span containing the object,
// the start of the object, and the size of the object.  If the object
// does not exist, return nil, nil, 0.
func findObject(v unsafe.Pointer) (s *mspan, x unsafe.Pointer, n uintptr) {
	c := gomcache()
	c.local_nlookup++
	if sys.PtrSize == 4 && c.local_nlookup >= 1<<30 {
		// purge cache stats to prevent overflow
		lock(&mheap_.lock)
		purgecachedstats(c)
		unlock(&mheap_.lock)
	}

	// find span
	arena_start := mheap_.arena_start
	arena_used := mheap_.arena_used
	if uintptr(v) < arena_start || uintptr(v) >= arena_used {
		return
	}
	p := uintptr(v) >> pageShift
	q := p - arena_start>>pageShift
	s = *(**mspan)(add(unsafe.Pointer(mheap_.spans), q*sys.PtrSize))
	if s == nil {
		return
	}
	x = unsafe.Pointer(uintptr(s.start) << pageShift)

	if uintptr(v) < uintptr(x) || uintptr(v) >= uintptr(unsafe.Pointer(s.limit)) || s.state != mSpanInUse {
		s = nil
		x = nil
		return
	}

	n = uintptr(s.elemsize)
	if s.sizeclass != 0 {
		x = add(x, (uintptr(v)-uintptr(x))/n*n)
	}
	return
}