This file is indexed.

/usr/share/go-1.6/src/runtime/mbitmap.go is in golang-1.6-src 1.6.1-0ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
// Copyright 2009 The Go Authors.  All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// Garbage collector: type and heap bitmaps.
//
// Stack, data, and bss bitmaps
//
// Stack frames and global variables in the data and bss sections are described
// by 1-bit bitmaps in which 0 means uninteresting and 1 means live pointer
// to be visited during GC. The bits in each byte are consumed starting with
// the low bit: 1<<0, 1<<1, and so on.
//
// Heap bitmap
//
// The allocated heap comes from a subset of the memory in the range [start, used),
// where start == mheap_.arena_start and used == mheap_.arena_used.
// The heap bitmap comprises 2 bits for each pointer-sized word in that range,
// stored in bytes indexed backward in memory from start.
// That is, the byte at address start-1 holds the 2-bit entries for the four words
// start through start+3*ptrSize, the byte at start-2 holds the entries for
// start+4*ptrSize through start+7*ptrSize, and so on.
//
// In each 2-bit entry, the lower bit holds the same information as in the 1-bit
// bitmaps: 0 means uninteresting and 1 means live pointer to be visited during GC.
// The meaning of the high bit depends on the position of the word being described
// in its allocated object. In the first word, the high bit is the GC ``marked'' bit.
// In the second word, the high bit is the GC ``checkmarked'' bit (see below).
// In the third and later words, the high bit indicates that the object is still
// being described. In these words, if a bit pair with a high bit 0 is encountered,
// the low bit can also be assumed to be 0, and the object description is over.
// This 00 is called the ``dead'' encoding: it signals that the rest of the words
// in the object are uninteresting to the garbage collector.
//
// The 2-bit entries are split when written into the byte, so that the top half
// of the byte contains 4 mark bits and the bottom half contains 4 pointer bits.
// This form allows a copy from the 1-bit to the 4-bit form to keep the
// pointer bits contiguous, instead of having to space them out.
//
// The code makes use of the fact that the zero value for a heap bitmap
// has no live pointer bit set and is (depending on position), not marked,
// not checkmarked, and is the dead encoding.
// These properties must be preserved when modifying the encoding.
//
// Checkmarks
//
// In a concurrent garbage collector, one worries about failing to mark
// a live object due to mutations without write barriers or bugs in the
// collector implementation. As a sanity check, the GC has a 'checkmark'
// mode that retraverses the object graph with the world stopped, to make
// sure that everything that should be marked is marked.
// In checkmark mode, in the heap bitmap, the high bit of the 2-bit entry
// for the second word of the object holds the checkmark bit.
// When not in checkmark mode, this bit is set to 1.
//
// The smallest possible allocation is 8 bytes. On a 32-bit machine, that
// means every allocated object has two words, so there is room for the
// checkmark bit. On a 64-bit machine, however, the 8-byte allocation is
// just one word, so the second bit pair is not available for encoding the
// checkmark. However, because non-pointer allocations are combined
// into larger 16-byte (maxTinySize) allocations, a plain 8-byte allocation
// must be a pointer, so the type bit in the first word is not actually needed.
// It is still used in general, except in checkmark the type bit is repurposed
// as the checkmark bit and then reinitialized (to 1) as the type bit when
// finished.

package runtime

import (
	"runtime/internal/atomic"
	"runtime/internal/sys"
	"unsafe"
)

const (
	bitPointer = 1 << 0
	bitMarked  = 1 << 4

	heapBitsShift   = 1                     // shift offset between successive bitPointer or bitMarked entries
	heapBitmapScale = sys.PtrSize * (8 / 2) // number of data bytes described by one heap bitmap byte

	// all mark/pointer bits in a byte
	bitMarkedAll  = bitMarked | bitMarked<<heapBitsShift | bitMarked<<(2*heapBitsShift) | bitMarked<<(3*heapBitsShift)
	bitPointerAll = bitPointer | bitPointer<<heapBitsShift | bitPointer<<(2*heapBitsShift) | bitPointer<<(3*heapBitsShift)
)

// addb returns the byte pointer p+n.
//go:nowritebarrier
func addb(p *byte, n uintptr) *byte {
	// Note: wrote out full expression instead of calling add(p, n)
	// to reduce the number of temporaries generated by the
	// compiler for this trivial expression during inlining.
	return (*byte)(unsafe.Pointer(uintptr(unsafe.Pointer(p)) + n))
}

// subtractb returns the byte pointer p-n.
//go:nowritebarrier
func subtractb(p *byte, n uintptr) *byte {
	// Note: wrote out full expression instead of calling add(p, -n)
	// to reduce the number of temporaries generated by the
	// compiler for this trivial expression during inlining.
	return (*byte)(unsafe.Pointer(uintptr(unsafe.Pointer(p)) - n))
}

// add1 returns the byte pointer p+1.
//go:nowritebarrier
func add1(p *byte) *byte {
	// Note: wrote out full expression instead of calling addb(p, 1)
	// to reduce the number of temporaries generated by the
	// compiler for this trivial expression during inlining.
	return (*byte)(unsafe.Pointer(uintptr(unsafe.Pointer(p)) + 1))
}

// subtract1 returns the byte pointer p-1.
//go:nowritebarrier
//
// nosplit because it is used during write barriers and must not be preempted.
//go:nosplit
func subtract1(p *byte) *byte {
	// Note: wrote out full expression instead of calling subtractb(p, 1)
	// to reduce the number of temporaries generated by the
	// compiler for this trivial expression during inlining.
	return (*byte)(unsafe.Pointer(uintptr(unsafe.Pointer(p)) - 1))
}

// mHeap_MapBits is called each time arena_used is extended.
// It maps any additional bitmap memory needed for the new arena memory.
// It must be called with the expected new value of arena_used,
// *before* h.arena_used has been updated.
// Waiting to update arena_used until after the memory has been mapped
// avoids faults when other threads try access the bitmap immediately
// after observing the change to arena_used.
//
//go:nowritebarrier
func (h *mheap) mapBits(arena_used uintptr) {
	// Caller has added extra mappings to the arena.
	// Add extra mappings of bitmap words as needed.
	// We allocate extra bitmap pieces in chunks of bitmapChunk.
	const bitmapChunk = 8192

	n := (arena_used - mheap_.arena_start) / heapBitmapScale
	n = round(n, bitmapChunk)
	n = round(n, sys.PhysPageSize)
	if h.bitmap_mapped >= n {
		return
	}

	sysMap(unsafe.Pointer(h.arena_start-n), n-h.bitmap_mapped, h.arena_reserved, &memstats.gc_sys)
	h.bitmap_mapped = n
}

// heapBits provides access to the bitmap bits for a single heap word.
// The methods on heapBits take value receivers so that the compiler
// can more easily inline calls to those methods and registerize the
// struct fields independently.
type heapBits struct {
	bitp  *uint8
	shift uint32
}

// heapBitsForAddr returns the heapBits for the address addr.
// The caller must have already checked that addr is in the range [mheap_.arena_start, mheap_.arena_used).
//
// nosplit because it is used during write barriers and must not be preempted.
//go:nosplit
func heapBitsForAddr(addr uintptr) heapBits {
	// 2 bits per work, 4 pairs per byte, and a mask is hard coded.
	off := (addr - mheap_.arena_start) / sys.PtrSize
	return heapBits{(*uint8)(unsafe.Pointer(mheap_.arena_start - off/4 - 1)), uint32(off & 3)}
}

// heapBitsForSpan returns the heapBits for the span base address base.
func heapBitsForSpan(base uintptr) (hbits heapBits) {
	if base < mheap_.arena_start || base >= mheap_.arena_used {
		throw("heapBitsForSpan: base out of range")
	}
	hbits = heapBitsForAddr(base)
	if hbits.shift != 0 {
		throw("heapBitsForSpan: unaligned start")
	}
	return hbits
}

// heapBitsForObject returns the base address for the heap object
// containing the address p, along with the heapBits for base.
// If p does not point into a heap object,
// return base == 0
// otherwise return the base of the object.
//
// refBase and refOff optionally give the base address of the object
// in which the pointer p was found and the byte offset at which it
// was found. These are used for error reporting.
func heapBitsForObject(p, refBase, refOff uintptr) (base uintptr, hbits heapBits, s *mspan) {
	arenaStart := mheap_.arena_start
	if p < arenaStart || p >= mheap_.arena_used {
		return
	}
	off := p - arenaStart
	idx := off >> _PageShift
	// p points into the heap, but possibly to the middle of an object.
	// Consult the span table to find the block beginning.
	k := p >> _PageShift
	s = h_spans[idx]
	if s == nil || pageID(k) < s.start || p >= s.limit || s.state != mSpanInUse {
		if s == nil || s.state == _MSpanStack {
			// If s is nil, the virtual address has never been part of the heap.
			// This pointer may be to some mmap'd region, so we allow it.
			// Pointers into stacks are also ok, the runtime manages these explicitly.
			return
		}

		// The following ensures that we are rigorous about what data
		// structures hold valid pointers.
		if debug.invalidptr != 0 {
			// Typically this indicates an incorrect use
			// of unsafe or cgo to store a bad pointer in
			// the Go heap. It may also indicate a runtime
			// bug.
			//
			// TODO(austin): We could be more aggressive
			// and detect pointers to unallocated objects
			// in allocated spans.
			printlock()
			print("runtime: pointer ", hex(p))
			if s.state != mSpanInUse {
				print(" to unallocated span")
			} else {
				print(" to unused region of span")
			}
			print("idx=", hex(idx), " span.start=", hex(s.start<<_PageShift), " span.limit=", hex(s.limit), " span.state=", s.state, "\n")
			if refBase != 0 {
				print("runtime: found in object at *(", hex(refBase), "+", hex(refOff), ")\n")
				gcDumpObject("object", refBase, refOff)
			}
			throw("found bad pointer in Go heap (incorrect use of unsafe or cgo?)")
		}
		return
	}
	// If this span holds object of a power of 2 size, just mask off the bits to
	// the interior of the object. Otherwise use the size to get the base.
	if s.baseMask != 0 {
		// optimize for power of 2 sized objects.
		base = s.base()
		base = base + (p-base)&s.baseMask
		// base = p & s.baseMask is faster for small spans,
		// but doesn't work for large spans.
		// Overall, it's faster to use the more general computation above.
	} else {
		base = s.base()
		if p-base >= s.elemsize {
			// n := (p - base) / s.elemsize, using division by multiplication
			n := uintptr(uint64(p-base) >> s.divShift * uint64(s.divMul) >> s.divShift2)
			base += n * s.elemsize
		}
	}
	// Now that we know the actual base, compute heapBits to return to caller.
	hbits = heapBitsForAddr(base)
	return
}

// prefetch the bits.
func (h heapBits) prefetch() {
	prefetchnta(uintptr(unsafe.Pointer((h.bitp))))
}

// next returns the heapBits describing the next pointer-sized word in memory.
// That is, if h describes address p, h.next() describes p+ptrSize.
// Note that next does not modify h. The caller must record the result.
//
// nosplit because it is used during write barriers and must not be preempted.
//go:nosplit
func (h heapBits) next() heapBits {
	if h.shift < 3*heapBitsShift {
		return heapBits{h.bitp, h.shift + heapBitsShift}
	}
	return heapBits{subtract1(h.bitp), 0}
}

// forward returns the heapBits describing n pointer-sized words ahead of h in memory.
// That is, if h describes address p, h.forward(n) describes p+n*ptrSize.
// h.forward(1) is equivalent to h.next(), just slower.
// Note that forward does not modify h. The caller must record the result.
// bits returns the heap bits for the current word.
func (h heapBits) forward(n uintptr) heapBits {
	n += uintptr(h.shift) / heapBitsShift
	return heapBits{subtractb(h.bitp, n/4), uint32(n%4) * heapBitsShift}
}

// The caller can test isMarked and isPointer by &-ing with bitMarked and bitPointer.
// The result includes in its higher bits the bits for subsequent words
// described by the same bitmap byte.
func (h heapBits) bits() uint32 {
	return uint32(*h.bitp) >> h.shift
}

// isMarked reports whether the heap bits have the marked bit set.
// h must describe the initial word of the object.
func (h heapBits) isMarked() bool {
	return *h.bitp&(bitMarked<<h.shift) != 0
}

// setMarked sets the marked bit in the heap bits, atomically.
// h must describe the initial word of the object.
func (h heapBits) setMarked() {
	// Each byte of GC bitmap holds info for four words.
	// Might be racing with other updates, so use atomic update always.
	// We used to be clever here and use a non-atomic update in certain
	// cases, but it's not worth the risk.
	atomic.Or8(h.bitp, bitMarked<<h.shift)
}

// setMarkedNonAtomic sets the marked bit in the heap bits, non-atomically.
// h must describe the initial word of the object.
func (h heapBits) setMarkedNonAtomic() {
	*h.bitp |= bitMarked << h.shift
}

// isPointer reports whether the heap bits describe a pointer word.
// h must describe the initial word of the object.
//
// nosplit because it is used during write barriers and must not be preempted.
//go:nosplit
func (h heapBits) isPointer() bool {
	return (*h.bitp>>h.shift)&bitPointer != 0
}

// hasPointers reports whether the given object has any pointers.
// It must be told how large the object at h is, so that it does not read too
// far into the bitmap.
// h must describe the initial word of the object.
func (h heapBits) hasPointers(size uintptr) bool {
	if size == sys.PtrSize { // 1-word objects are always pointers
		return true
	}
	// Otherwise, at least a 2-word object, and at least 2-word aligned,
	// so h.shift is either 0 or 2, so we know we can get the bits for the
	// first two words out of *h.bitp.
	// If either of the first two words is a pointer, not pointer free.
	b := uint32(*h.bitp >> h.shift)
	if b&(bitPointer|bitPointer<<heapBitsShift) != 0 {
		return true
	}
	if size == 2*sys.PtrSize {
		return false
	}
	// At least a 4-word object. Check scan bit (aka marked bit) in third word.
	if h.shift == 0 {
		return b&(bitMarked<<(2*heapBitsShift)) != 0
	}
	return uint32(*subtract1(h.bitp))&bitMarked != 0
}

// isCheckmarked reports whether the heap bits have the checkmarked bit set.
// It must be told how large the object at h is, because the encoding of the
// checkmark bit varies by size.
// h must describe the initial word of the object.
func (h heapBits) isCheckmarked(size uintptr) bool {
	if size == sys.PtrSize {
		return (*h.bitp>>h.shift)&bitPointer != 0
	}
	// All multiword objects are 2-word aligned,
	// so we know that the initial word's 2-bit pair
	// and the second word's 2-bit pair are in the
	// same heap bitmap byte, *h.bitp.
	return (*h.bitp>>(heapBitsShift+h.shift))&bitMarked != 0
}

// setCheckmarked sets the checkmarked bit.
// It must be told how large the object at h is, because the encoding of the
// checkmark bit varies by size.
// h must describe the initial word of the object.
func (h heapBits) setCheckmarked(size uintptr) {
	if size == sys.PtrSize {
		atomic.Or8(h.bitp, bitPointer<<h.shift)
		return
	}
	atomic.Or8(h.bitp, bitMarked<<(heapBitsShift+h.shift))
}

// heapBitsBulkBarrier executes writebarrierptr_nostore
// for every pointer slot in the memory range [p, p+size),
// using the heap bitmap to locate those pointer slots.
// This executes the write barriers necessary after a memmove.
// Both p and size must be pointer-aligned.
// The range [p, p+size) must lie within a single allocation.
//
// Callers should call heapBitsBulkBarrier immediately after
// calling memmove(p, src, size). This function is marked nosplit
// to avoid being preempted; the GC must not stop the goroutine
// between the memmove and the execution of the barriers.
//
// The heap bitmap is not maintained for allocations containing
// no pointers at all; any caller of heapBitsBulkBarrier must first
// make sure the underlying allocation contains pointers, usually
// by checking typ.kind&kindNoPointers.
//
//go:nosplit
func heapBitsBulkBarrier(p, size uintptr) {
	if (p|size)&(sys.PtrSize-1) != 0 {
		throw("heapBitsBulkBarrier: unaligned arguments")
	}
	if !writeBarrier.needed {
		return
	}
	if !inheap(p) {
		// If p is on the stack and in a higher frame than the
		// caller, we either need to execute write barriers on
		// it (which is what happens for normal stack writes
		// through pointers to higher frames), or we need to
		// force the mark termination stack scan to scan the
		// frame containing p.
		//
		// Executing write barriers on p is complicated in the
		// general case because we either need to unwind the
		// stack to get the stack map, or we need the type's
		// bitmap, which may be a GC program.
		//
		// Hence, we opt for forcing the re-scan to scan the
		// frame containing p, which we can do by simply
		// unwinding the stack barriers between the current SP
		// and p's frame.
		gp := getg().m.curg
		if gp != nil && gp.stack.lo <= p && p < gp.stack.hi {
			// Run on the system stack to give it more
			// stack space.
			systemstack(func() {
				gcUnwindBarriers(gp, p)
			})
		}
		return
	}

	h := heapBitsForAddr(p)
	for i := uintptr(0); i < size; i += sys.PtrSize {
		if h.isPointer() {
			x := (*uintptr)(unsafe.Pointer(p + i))
			writebarrierptr_nostore(x, *x)
		}
		h = h.next()
	}
}

// typeBitsBulkBarrier executes writebarrierptr_nostore
// for every pointer slot in the memory range [p, p+size),
// using the type bitmap to locate those pointer slots.
// The type typ must correspond exactly to [p, p+size).
// This executes the write barriers necessary after a copy.
// Both p and size must be pointer-aligned.
// The type typ must have a plain bitmap, not a GC program.
// The only use of this function is in channel sends, and the
// 64 kB channel element limit takes care of this for us.
//
// Must not be preempted because it typically runs right after memmove,
// and the GC must not complete between those two.
//
//go:nosplit
func typeBitsBulkBarrier(typ *_type, p, size uintptr) {
	if typ == nil {
		throw("runtime: typeBitsBulkBarrier without type")
	}
	if typ.size != size {
		println("runtime: typeBitsBulkBarrier with type ", *typ._string, " of size ", typ.size, " but memory size", size)
		throw("runtime: invalid typeBitsBulkBarrier")
	}
	if typ.kind&kindGCProg != 0 {
		println("runtime: typeBitsBulkBarrier with type ", *typ._string, " with GC prog")
		throw("runtime: invalid typeBitsBulkBarrier")
	}
	if !writeBarrier.needed {
		return
	}
	ptrmask := typ.gcdata
	var bits uint32
	for i := uintptr(0); i < typ.ptrdata; i += sys.PtrSize {
		if i&(sys.PtrSize*8-1) == 0 {
			bits = uint32(*ptrmask)
			ptrmask = addb(ptrmask, 1)
		} else {
			bits = bits >> 1
		}
		if bits&1 != 0 {
			x := (*uintptr)(unsafe.Pointer(p + i))
			writebarrierptr_nostore(x, *x)
		}
	}
}

// The methods operating on spans all require that h has been returned
// by heapBitsForSpan and that size, n, total are the span layout description
// returned by the mspan's layout method.
// If total > size*n, it means that there is extra leftover memory in the span,
// usually due to rounding.
//
// TODO(rsc): Perhaps introduce a different heapBitsSpan type.

// initSpan initializes the heap bitmap for a span.
func (h heapBits) initSpan(size, n, total uintptr) {
	if total%heapBitmapScale != 0 {
		throw("initSpan: unaligned length")
	}
	nbyte := total / heapBitmapScale
	if sys.PtrSize == 8 && size == sys.PtrSize {
		end := h.bitp
		bitp := subtractb(end, nbyte-1)
		for {
			*bitp = bitPointerAll
			if bitp == end {
				break
			}
			bitp = add1(bitp)
		}
		return
	}
	memclr(unsafe.Pointer(subtractb(h.bitp, nbyte-1)), nbyte)
}

// initCheckmarkSpan initializes a span for being checkmarked.
// It clears the checkmark bits, which are set to 1 in normal operation.
func (h heapBits) initCheckmarkSpan(size, n, total uintptr) {
	// The ptrSize == 8 is a compile-time constant false on 32-bit and eliminates this code entirely.
	if sys.PtrSize == 8 && size == sys.PtrSize {
		// Checkmark bit is type bit, bottom bit of every 2-bit entry.
		// Only possible on 64-bit system, since minimum size is 8.
		// Must clear type bit (checkmark bit) of every word.
		// The type bit is the lower of every two-bit pair.
		bitp := h.bitp
		for i := uintptr(0); i < n; i += 4 {
			*bitp &^= bitPointerAll
			bitp = subtract1(bitp)
		}
		return
	}
	for i := uintptr(0); i < n; i++ {
		*h.bitp &^= bitMarked << (heapBitsShift + h.shift)
		h = h.forward(size / sys.PtrSize)
	}
}

// clearCheckmarkSpan undoes all the checkmarking in a span.
// The actual checkmark bits are ignored, so the only work to do
// is to fix the pointer bits. (Pointer bits are ignored by scanobject
// but consulted by typedmemmove.)
func (h heapBits) clearCheckmarkSpan(size, n, total uintptr) {
	// The ptrSize == 8 is a compile-time constant false on 32-bit and eliminates this code entirely.
	if sys.PtrSize == 8 && size == sys.PtrSize {
		// Checkmark bit is type bit, bottom bit of every 2-bit entry.
		// Only possible on 64-bit system, since minimum size is 8.
		// Must clear type bit (checkmark bit) of every word.
		// The type bit is the lower of every two-bit pair.
		bitp := h.bitp
		for i := uintptr(0); i < n; i += 4 {
			*bitp |= bitPointerAll
			bitp = subtract1(bitp)
		}
	}
}

// heapBitsSweepSpan coordinates the sweeping of a span by reading
// and updating the corresponding heap bitmap entries.
// For each free object in the span, heapBitsSweepSpan sets the type
// bits for the first two words (or one for single-word objects) to typeDead
// and then calls f(p), where p is the object's base address.
// f is expected to add the object to a free list.
// For non-free objects, heapBitsSweepSpan turns off the marked bit.
func heapBitsSweepSpan(base, size, n uintptr, f func(uintptr)) {
	h := heapBitsForSpan(base)
	switch {
	default:
		throw("heapBitsSweepSpan")
	case sys.PtrSize == 8 && size == sys.PtrSize:
		// Consider mark bits in all four 2-bit entries of each bitmap byte.
		bitp := h.bitp
		for i := uintptr(0); i < n; i += 4 {
			x := uint32(*bitp)
			// Note that unlike the other size cases, we leave the pointer bits set here.
			// These are initialized during initSpan when the span is created and left
			// in place the whole time the span is used for pointer-sized objects.
			// That lets heapBitsSetType avoid an atomic update to set the pointer bit
			// during allocation.
			if x&bitMarked != 0 {
				x &^= bitMarked
			} else {
				f(base + i*sys.PtrSize)
			}
			if x&(bitMarked<<heapBitsShift) != 0 {
				x &^= bitMarked << heapBitsShift
			} else {
				f(base + (i+1)*sys.PtrSize)
			}
			if x&(bitMarked<<(2*heapBitsShift)) != 0 {
				x &^= bitMarked << (2 * heapBitsShift)
			} else {
				f(base + (i+2)*sys.PtrSize)
			}
			if x&(bitMarked<<(3*heapBitsShift)) != 0 {
				x &^= bitMarked << (3 * heapBitsShift)
			} else {
				f(base + (i+3)*sys.PtrSize)
			}
			*bitp = uint8(x)
			bitp = subtract1(bitp)
		}

	case size%(4*sys.PtrSize) == 0:
		// Mark bit is in first word of each object.
		// Each object starts at bit 0 of a heap bitmap byte.
		bitp := h.bitp
		step := size / heapBitmapScale
		for i := uintptr(0); i < n; i++ {
			x := uint32(*bitp)
			if x&bitMarked != 0 {
				x &^= bitMarked
			} else {
				x = 0
				f(base + i*size)
			}
			*bitp = uint8(x)
			bitp = subtractb(bitp, step)
		}

	case size%(4*sys.PtrSize) == 2*sys.PtrSize:
		// Mark bit is in first word of each object,
		// but every other object starts halfway through a heap bitmap byte.
		// Unroll loop 2x to handle alternating shift count and step size.
		bitp := h.bitp
		step := size / heapBitmapScale
		var i uintptr
		for i = uintptr(0); i < n; i += 2 {
			x := uint32(*bitp)
			if x&bitMarked != 0 {
				x &^= bitMarked
			} else {
				x &^= bitMarked | bitPointer | (bitMarked|bitPointer)<<heapBitsShift
				f(base + i*size)
				if size > 2*sys.PtrSize {
					x = 0
				}
			}
			*bitp = uint8(x)
			if i+1 >= n {
				break
			}
			bitp = subtractb(bitp, step)
			x = uint32(*bitp)
			if x&(bitMarked<<(2*heapBitsShift)) != 0 {
				x &^= bitMarked << (2 * heapBitsShift)
			} else {
				x &^= (bitMarked|bitPointer)<<(2*heapBitsShift) | (bitMarked|bitPointer)<<(3*heapBitsShift)
				f(base + (i+1)*size)
				if size > 2*sys.PtrSize {
					*subtract1(bitp) = 0
				}
			}
			*bitp = uint8(x)
			bitp = subtractb(bitp, step+1)
		}
	}
}

// heapBitsSetType records that the new allocation [x, x+size)
// holds in [x, x+dataSize) one or more values of type typ.
// (The number of values is given by dataSize / typ.size.)
// If dataSize < size, the fragment [x+dataSize, x+size) is
// recorded as non-pointer data.
// It is known that the type has pointers somewhere;
// malloc does not call heapBitsSetType when there are no pointers,
// because all free objects are marked as noscan during
// heapBitsSweepSpan.
// There can only be one allocation from a given span active at a time,
// so this code is not racing with other instances of itself,
// and we don't allocate from a span until it has been swept,
// so this code is not racing with heapBitsSweepSpan.
// It is, however, racing with the concurrent GC mark phase,
// which can be setting the mark bit in the leading 2-bit entry
// of an allocated block. The block we are modifying is not quite
// allocated yet, so the GC marker is not racing with updates to x's bits,
// but if the start or end of x shares a bitmap byte with an adjacent
// object, the GC marker is racing with updates to those object's mark bits.
func heapBitsSetType(x, size, dataSize uintptr, typ *_type) {
	const doubleCheck = false // slow but helpful; enable to test modifications to this code

	// dataSize is always size rounded up to the next malloc size class,
	// except in the case of allocating a defer block, in which case
	// size is sizeof(_defer{}) (at least 6 words) and dataSize may be
	// arbitrarily larger.
	//
	// The checks for size == ptrSize and size == 2*ptrSize can therefore
	// assume that dataSize == size without checking it explicitly.

	if sys.PtrSize == 8 && size == sys.PtrSize {
		// It's one word and it has pointers, it must be a pointer.
		// In general we'd need an atomic update here if the
		// concurrent GC were marking objects in this span,
		// because each bitmap byte describes 3 other objects
		// in addition to the one being allocated.
		// However, since all allocated one-word objects are pointers
		// (non-pointers are aggregated into tinySize allocations),
		// initSpan sets the pointer bits for us. Nothing to do here.
		if doubleCheck {
			h := heapBitsForAddr(x)
			if !h.isPointer() {
				throw("heapBitsSetType: pointer bit missing")
			}
		}
		return
	}

	h := heapBitsForAddr(x)
	ptrmask := typ.gcdata // start of 1-bit pointer mask (or GC program, handled below)

	// Heap bitmap bits for 2-word object are only 4 bits,
	// so also shared with objects next to it; use atomic updates.
	// This is called out as a special case primarily for 32-bit systems,
	// so that on 32-bit systems the code below can assume all objects
	// are 4-word aligned (because they're all 16-byte aligned).
	if size == 2*sys.PtrSize {
		if typ.size == sys.PtrSize {
			// We're allocating a block big enough to hold two pointers.
			// On 64-bit, that means the actual object must be two pointers,
			// or else we'd have used the one-pointer-sized block.
			// On 32-bit, however, this is the 8-byte block, the smallest one.
			// So it could be that we're allocating one pointer and this was
			// just the smallest block available. Distinguish by checking dataSize.
			// (In general the number of instances of typ being allocated is
			// dataSize/typ.size.)
			if sys.PtrSize == 4 && dataSize == sys.PtrSize {
				// 1 pointer.
				if gcphase == _GCoff {
					*h.bitp |= bitPointer << h.shift
				} else {
					atomic.Or8(h.bitp, bitPointer<<h.shift)
				}
			} else {
				// 2-element slice of pointer.
				if gcphase == _GCoff {
					*h.bitp |= (bitPointer | bitPointer<<heapBitsShift) << h.shift
				} else {
					atomic.Or8(h.bitp, (bitPointer|bitPointer<<heapBitsShift)<<h.shift)
				}
			}
			return
		}
		// Otherwise typ.size must be 2*ptrSize, and typ.kind&kindGCProg == 0.
		if doubleCheck {
			if typ.size != 2*sys.PtrSize || typ.kind&kindGCProg != 0 {
				print("runtime: heapBitsSetType size=", size, " but typ.size=", typ.size, " gcprog=", typ.kind&kindGCProg != 0, "\n")
				throw("heapBitsSetType")
			}
		}
		b := uint32(*ptrmask)
		hb := b & 3
		if gcphase == _GCoff {
			*h.bitp |= uint8(hb << h.shift)
		} else {
			atomic.Or8(h.bitp, uint8(hb<<h.shift))
		}
		return
	}

	// Copy from 1-bit ptrmask into 2-bit bitmap.
	// The basic approach is to use a single uintptr as a bit buffer,
	// alternating between reloading the buffer and writing bitmap bytes.
	// In general, one load can supply two bitmap byte writes.
	// This is a lot of lines of code, but it compiles into relatively few
	// machine instructions.

	var (
		// Ptrmask input.
		p     *byte   // last ptrmask byte read
		b     uintptr // ptrmask bits already loaded
		nb    uintptr // number of bits in b at next read
		endp  *byte   // final ptrmask byte to read (then repeat)
		endnb uintptr // number of valid bits in *endp
		pbits uintptr // alternate source of bits

		// Heap bitmap output.
		w     uintptr // words processed
		nw    uintptr // number of words to process
		hbitp *byte   // next heap bitmap byte to write
		hb    uintptr // bits being prepared for *hbitp
	)

	hbitp = h.bitp

	// Handle GC program. Delayed until this part of the code
	// so that we can use the same double-checking mechanism
	// as the 1-bit case. Nothing above could have encountered
	// GC programs: the cases were all too small.
	if typ.kind&kindGCProg != 0 {
		heapBitsSetTypeGCProg(h, typ.ptrdata, typ.size, dataSize, size, addb(typ.gcdata, 4))
		if doubleCheck {
			// Double-check the heap bits written by GC program
			// by running the GC program to create a 1-bit pointer mask
			// and then jumping to the double-check code below.
			// This doesn't catch bugs shared between the 1-bit and 4-bit
			// GC program execution, but it does catch mistakes specific
			// to just one of those and bugs in heapBitsSetTypeGCProg's
			// implementation of arrays.
			lock(&debugPtrmask.lock)
			if debugPtrmask.data == nil {
				debugPtrmask.data = (*byte)(persistentalloc(1<<20, 1, &memstats.other_sys))
			}
			ptrmask = debugPtrmask.data
			runGCProg(addb(typ.gcdata, 4), nil, ptrmask, 1)
			goto Phase4
		}
		return
	}

	// Note about sizes:
	//
	// typ.size is the number of words in the object,
	// and typ.ptrdata is the number of words in the prefix
	// of the object that contains pointers. That is, the final
	// typ.size - typ.ptrdata words contain no pointers.
	// This allows optimization of a common pattern where
	// an object has a small header followed by a large scalar
	// buffer. If we know the pointers are over, we don't have
	// to scan the buffer's heap bitmap at all.
	// The 1-bit ptrmasks are sized to contain only bits for
	// the typ.ptrdata prefix, zero padded out to a full byte
	// of bitmap. This code sets nw (below) so that heap bitmap
	// bits are only written for the typ.ptrdata prefix; if there is
	// more room in the allocated object, the next heap bitmap
	// entry is a 00, indicating that there are no more pointers
	// to scan. So only the ptrmask for the ptrdata bytes is needed.
	//
	// Replicated copies are not as nice: if there is an array of
	// objects with scalar tails, all but the last tail does have to
	// be initialized, because there is no way to say "skip forward".
	// However, because of the possibility of a repeated type with
	// size not a multiple of 4 pointers (one heap bitmap byte),
	// the code already must handle the last ptrmask byte specially
	// by treating it as containing only the bits for endnb pointers,
	// where endnb <= 4. We represent large scalar tails that must
	// be expanded in the replication by setting endnb larger than 4.
	// This will have the effect of reading many bits out of b,
	// but once the real bits are shifted out, b will supply as many
	// zero bits as we try to read, which is exactly what we need.

	p = ptrmask
	if typ.size < dataSize {
		// Filling in bits for an array of typ.
		// Set up for repetition of ptrmask during main loop.
		// Note that ptrmask describes only a prefix of
		const maxBits = sys.PtrSize*8 - 7
		if typ.ptrdata/sys.PtrSize <= maxBits {
			// Entire ptrmask fits in uintptr with room for a byte fragment.
			// Load into pbits and never read from ptrmask again.
			// This is especially important when the ptrmask has
			// fewer than 8 bits in it; otherwise the reload in the middle
			// of the Phase 2 loop would itself need to loop to gather
			// at least 8 bits.

			// Accumulate ptrmask into b.
			// ptrmask is sized to describe only typ.ptrdata, but we record
			// it as describing typ.size bytes, since all the high bits are zero.
			nb = typ.ptrdata / sys.PtrSize
			for i := uintptr(0); i < nb; i += 8 {
				b |= uintptr(*p) << i
				p = add1(p)
			}
			nb = typ.size / sys.PtrSize

			// Replicate ptrmask to fill entire pbits uintptr.
			// Doubling and truncating is fewer steps than
			// iterating by nb each time. (nb could be 1.)
			// Since we loaded typ.ptrdata/ptrSize bits
			// but are pretending to have typ.size/ptrSize,
			// there might be no replication necessary/possible.
			pbits = b
			endnb = nb
			if nb+nb <= maxBits {
				for endnb <= sys.PtrSize*8 {
					pbits |= pbits << endnb
					endnb += endnb
				}
				// Truncate to a multiple of original ptrmask.
				endnb = maxBits / nb * nb
				pbits &= 1<<endnb - 1
				b = pbits
				nb = endnb
			}

			// Clear p and endp as sentinel for using pbits.
			// Checked during Phase 2 loop.
			p = nil
			endp = nil
		} else {
			// Ptrmask is larger. Read it multiple times.
			n := (typ.ptrdata/sys.PtrSize+7)/8 - 1
			endp = addb(ptrmask, n)
			endnb = typ.size/sys.PtrSize - n*8
		}
	}
	if p != nil {
		b = uintptr(*p)
		p = add1(p)
		nb = 8
	}

	if typ.size == dataSize {
		// Single entry: can stop once we reach the non-pointer data.
		nw = typ.ptrdata / sys.PtrSize
	} else {
		// Repeated instances of typ in an array.
		// Have to process first N-1 entries in full, but can stop
		// once we reach the non-pointer data in the final entry.
		nw = ((dataSize/typ.size-1)*typ.size + typ.ptrdata) / sys.PtrSize
	}
	if nw == 0 {
		// No pointers! Caller was supposed to check.
		println("runtime: invalid type ", *typ._string)
		throw("heapBitsSetType: called with non-pointer type")
		return
	}
	if nw < 2 {
		// Must write at least 2 words, because the "no scan"
		// encoding doesn't take effect until the third word.
		nw = 2
	}

	// Phase 1: Special case for leading byte (shift==0) or half-byte (shift==4).
	// The leading byte is special because it contains the bits for words 0 and 1,
	// which do not have the marked bits set.
	// The leading half-byte is special because it's a half a byte and must be
	// manipulated atomically.
	switch {
	default:
		throw("heapBitsSetType: unexpected shift")

	case h.shift == 0:
		// Ptrmask and heap bitmap are aligned.
		// Handle first byte of bitmap specially.
		// The first byte we write out contains the first two words of the object.
		// In those words, the mark bits are mark and checkmark, respectively,
		// and must not be set. In all following words, we want to set the mark bit
		// as a signal that the object continues to the next 2-bit entry in the bitmap.
		hb = b & bitPointerAll
		hb |= bitMarked<<(2*heapBitsShift) | bitMarked<<(3*heapBitsShift)
		if w += 4; w >= nw {
			goto Phase3
		}
		*hbitp = uint8(hb)
		hbitp = subtract1(hbitp)
		b >>= 4
		nb -= 4

	case sys.PtrSize == 8 && h.shift == 2:
		// Ptrmask and heap bitmap are misaligned.
		// The bits for the first two words are in a byte shared with another object
		// and must be updated atomically.
		// NOTE(rsc): The atomic here may not be necessary.
		// We took care of 1-word and 2-word objects above,
		// so this is at least a 6-word object, so our start bits
		// are shared only with the type bits of another object,
		// not with its mark bit. Since there is only one allocation
		// from a given span at a time, we should be able to set
		// these bits non-atomically. Not worth the risk right now.
		hb = (b & 3) << (2 * heapBitsShift)
		b >>= 2
		nb -= 2
		// Note: no bitMarker in hb because the first two words don't get markers from us.
		if gcphase == _GCoff {
			*hbitp |= uint8(hb)
		} else {
			atomic.Or8(hbitp, uint8(hb))
		}
		hbitp = subtract1(hbitp)
		if w += 2; w >= nw {
			// We know that there is more data, because we handled 2-word objects above.
			// This must be at least a 6-word object. If we're out of pointer words,
			// mark no scan in next bitmap byte and finish.
			hb = 0
			w += 4
			goto Phase3
		}
	}

	// Phase 2: Full bytes in bitmap, up to but not including write to last byte (full or partial) in bitmap.
	// The loop computes the bits for that last write but does not execute the write;
	// it leaves the bits in hb for processing by phase 3.
	// To avoid repeated adjustment of nb, we subtract out the 4 bits we're going to
	// use in the first half of the loop right now, and then we only adjust nb explicitly
	// if the 8 bits used by each iteration isn't balanced by 8 bits loaded mid-loop.
	nb -= 4
	for {
		// Emit bitmap byte.
		// b has at least nb+4 bits, with one exception:
		// if w+4 >= nw, then b has only nw-w bits,
		// but we'll stop at the break and then truncate
		// appropriately in Phase 3.
		hb = b & bitPointerAll
		hb |= bitMarkedAll
		if w += 4; w >= nw {
			break
		}
		*hbitp = uint8(hb)
		hbitp = subtract1(hbitp)
		b >>= 4

		// Load more bits. b has nb right now.
		if p != endp {
			// Fast path: keep reading from ptrmask.
			// nb unmodified: we just loaded 8 bits,
			// and the next iteration will consume 8 bits,
			// leaving us with the same nb the next time we're here.
			if nb < 8 {
				b |= uintptr(*p) << nb
				p = add1(p)
			} else {
				// Reduce the number of bits in b.
				// This is important if we skipped
				// over a scalar tail, since nb could
				// be larger than the bit width of b.
				nb -= 8
			}
		} else if p == nil {
			// Almost as fast path: track bit count and refill from pbits.
			// For short repetitions.
			if nb < 8 {
				b |= pbits << nb
				nb += endnb
			}
			nb -= 8 // for next iteration
		} else {
			// Slow path: reached end of ptrmask.
			// Process final partial byte and rewind to start.
			b |= uintptr(*p) << nb
			nb += endnb
			if nb < 8 {
				b |= uintptr(*ptrmask) << nb
				p = add1(ptrmask)
			} else {
				nb -= 8
				p = ptrmask
			}
		}

		// Emit bitmap byte.
		hb = b & bitPointerAll
		hb |= bitMarkedAll
		if w += 4; w >= nw {
			break
		}
		*hbitp = uint8(hb)
		hbitp = subtract1(hbitp)
		b >>= 4
	}

Phase3:
	// Phase 3: Write last byte or partial byte and zero the rest of the bitmap entries.
	if w > nw {
		// Counting the 4 entries in hb not yet written to memory,
		// there are more entries than possible pointer slots.
		// Discard the excess entries (can't be more than 3).
		mask := uintptr(1)<<(4-(w-nw)) - 1
		hb &= mask | mask<<4 // apply mask to both pointer bits and mark bits
	}

	// Change nw from counting possibly-pointer words to total words in allocation.
	nw = size / sys.PtrSize

	// Write whole bitmap bytes.
	// The first is hb, the rest are zero.
	if w <= nw {
		*hbitp = uint8(hb)
		hbitp = subtract1(hbitp)
		hb = 0 // for possible final half-byte below
		for w += 4; w <= nw; w += 4 {
			*hbitp = 0
			hbitp = subtract1(hbitp)
		}
	}

	// Write final partial bitmap byte if any.
	// We know w > nw, or else we'd still be in the loop above.
	// It can be bigger only due to the 4 entries in hb that it counts.
	// If w == nw+4 then there's nothing left to do: we wrote all nw entries
	// and can discard the 4 sitting in hb.
	// But if w == nw+2, we need to write first two in hb.
	// The byte is shared with the next object so we may need an atomic.
	if w == nw+2 {
		if gcphase == _GCoff {
			*hbitp = *hbitp&^(bitPointer|bitMarked|(bitPointer|bitMarked)<<heapBitsShift) | uint8(hb)
		} else {
			atomic.And8(hbitp, ^uint8(bitPointer|bitMarked|(bitPointer|bitMarked)<<heapBitsShift))
			atomic.Or8(hbitp, uint8(hb))
		}
	}

Phase4:
	// Phase 4: all done, but perhaps double check.
	if doubleCheck {
		end := heapBitsForAddr(x + size)
		if typ.kind&kindGCProg == 0 && (hbitp != end.bitp || (w == nw+2) != (end.shift == 2)) {
			println("ended at wrong bitmap byte for", *typ._string, "x", dataSize/typ.size)
			print("typ.size=", typ.size, " typ.ptrdata=", typ.ptrdata, " dataSize=", dataSize, " size=", size, "\n")
			print("w=", w, " nw=", nw, " b=", hex(b), " nb=", nb, " hb=", hex(hb), "\n")
			h0 := heapBitsForAddr(x)
			print("initial bits h0.bitp=", h0.bitp, " h0.shift=", h0.shift, "\n")
			print("ended at hbitp=", hbitp, " but next starts at bitp=", end.bitp, " shift=", end.shift, "\n")
			throw("bad heapBitsSetType")
		}

		// Double-check that bits to be written were written correctly.
		// Does not check that other bits were not written, unfortunately.
		h := heapBitsForAddr(x)
		nptr := typ.ptrdata / sys.PtrSize
		ndata := typ.size / sys.PtrSize
		count := dataSize / typ.size
		totalptr := ((count-1)*typ.size + typ.ptrdata) / sys.PtrSize
		for i := uintptr(0); i < size/sys.PtrSize; i++ {
			j := i % ndata
			var have, want uint8
			have = (*h.bitp >> h.shift) & (bitPointer | bitMarked)
			if i >= totalptr {
				want = 0 // deadmarker
				if typ.kind&kindGCProg != 0 && i < (totalptr+3)/4*4 {
					want = bitMarked
				}
			} else {
				if j < nptr && (*addb(ptrmask, j/8)>>(j%8))&1 != 0 {
					want |= bitPointer
				}
				if i >= 2 {
					want |= bitMarked
				} else {
					have &^= bitMarked
				}
			}
			if have != want {
				println("mismatch writing bits for", *typ._string, "x", dataSize/typ.size)
				print("typ.size=", typ.size, " typ.ptrdata=", typ.ptrdata, " dataSize=", dataSize, " size=", size, "\n")
				print("kindGCProg=", typ.kind&kindGCProg != 0, "\n")
				print("w=", w, " nw=", nw, " b=", hex(b), " nb=", nb, " hb=", hex(hb), "\n")
				h0 := heapBitsForAddr(x)
				print("initial bits h0.bitp=", h0.bitp, " h0.shift=", h0.shift, "\n")
				print("current bits h.bitp=", h.bitp, " h.shift=", h.shift, " *h.bitp=", hex(*h.bitp), "\n")
				print("ptrmask=", ptrmask, " p=", p, " endp=", endp, " endnb=", endnb, " pbits=", hex(pbits), " b=", hex(b), " nb=", nb, "\n")
				println("at word", i, "offset", i*sys.PtrSize, "have", have, "want", want)
				if typ.kind&kindGCProg != 0 {
					println("GC program:")
					dumpGCProg(addb(typ.gcdata, 4))
				}
				throw("bad heapBitsSetType")
			}
			h = h.next()
		}
		if ptrmask == debugPtrmask.data {
			unlock(&debugPtrmask.lock)
		}
	}
}

var debugPtrmask struct {
	lock mutex
	data *byte
}

// heapBitsSetTypeGCProg implements heapBitsSetType using a GC program.
// progSize is the size of the memory described by the program.
// elemSize is the size of the element that the GC program describes (a prefix of).
// dataSize is the total size of the intended data, a multiple of elemSize.
// allocSize is the total size of the allocated memory.
//
// GC programs are only used for large allocations.
// heapBitsSetType requires that allocSize is a multiple of 4 words,
// so that the relevant bitmap bytes are not shared with surrounding
// objects and need not be accessed with atomic instructions.
func heapBitsSetTypeGCProg(h heapBits, progSize, elemSize, dataSize, allocSize uintptr, prog *byte) {
	if sys.PtrSize == 8 && allocSize%(4*sys.PtrSize) != 0 {
		// Alignment will be wrong.
		throw("heapBitsSetTypeGCProg: small allocation")
	}
	var totalBits uintptr
	if elemSize == dataSize {
		totalBits = runGCProg(prog, nil, h.bitp, 2)
		if totalBits*sys.PtrSize != progSize {
			println("runtime: heapBitsSetTypeGCProg: total bits", totalBits, "but progSize", progSize)
			throw("heapBitsSetTypeGCProg: unexpected bit count")
		}
	} else {
		count := dataSize / elemSize

		// Piece together program trailer to run after prog that does:
		//	literal(0)
		//	repeat(1, elemSize-progSize-1) // zeros to fill element size
		//	repeat(elemSize, count-1) // repeat that element for count
		// This zero-pads the data remaining in the first element and then
		// repeats that first element to fill the array.
		var trailer [40]byte // 3 varints (max 10 each) + some bytes
		i := 0
		if n := elemSize/sys.PtrSize - progSize/sys.PtrSize; n > 0 {
			// literal(0)
			trailer[i] = 0x01
			i++
			trailer[i] = 0
			i++
			if n > 1 {
				// repeat(1, n-1)
				trailer[i] = 0x81
				i++
				n--
				for ; n >= 0x80; n >>= 7 {
					trailer[i] = byte(n | 0x80)
					i++
				}
				trailer[i] = byte(n)
				i++
			}
		}
		// repeat(elemSize/ptrSize, count-1)
		trailer[i] = 0x80
		i++
		n := elemSize / sys.PtrSize
		for ; n >= 0x80; n >>= 7 {
			trailer[i] = byte(n | 0x80)
			i++
		}
		trailer[i] = byte(n)
		i++
		n = count - 1
		for ; n >= 0x80; n >>= 7 {
			trailer[i] = byte(n | 0x80)
			i++
		}
		trailer[i] = byte(n)
		i++
		trailer[i] = 0
		i++

		runGCProg(prog, &trailer[0], h.bitp, 2)

		// Even though we filled in the full array just now,
		// record that we only filled in up to the ptrdata of the
		// last element. This will cause the code below to
		// memclr the dead section of the final array element,
		// so that scanobject can stop early in the final element.
		totalBits = (elemSize*(count-1) + progSize) / sys.PtrSize
	}
	endProg := unsafe.Pointer(subtractb(h.bitp, (totalBits+3)/4))
	endAlloc := unsafe.Pointer(subtractb(h.bitp, allocSize/heapBitmapScale))
	memclr(add(endAlloc, 1), uintptr(endProg)-uintptr(endAlloc))
}

// progToPointerMask returns the 1-bit pointer mask output by the GC program prog.
// size the size of the region described by prog, in bytes.
// The resulting bitvector will have no more than size/ptrSize bits.
func progToPointerMask(prog *byte, size uintptr) bitvector {
	n := (size/sys.PtrSize + 7) / 8
	x := (*[1 << 30]byte)(persistentalloc(n+1, 1, &memstats.buckhash_sys))[:n+1]
	x[len(x)-1] = 0xa1 // overflow check sentinel
	n = runGCProg(prog, nil, &x[0], 1)
	if x[len(x)-1] != 0xa1 {
		throw("progToPointerMask: overflow")
	}
	return bitvector{int32(n), &x[0]}
}

// Packed GC pointer bitmaps, aka GC programs.
//
// For large types containing arrays, the type information has a
// natural repetition that can be encoded to save space in the
// binary and in the memory representation of the type information.
//
// The encoding is a simple Lempel-Ziv style bytecode machine
// with the following instructions:
//
//	00000000: stop
//	0nnnnnnn: emit n bits copied from the next (n+7)/8 bytes
//	10000000 n c: repeat the previous n bits c times; n, c are varints
//	1nnnnnnn c: repeat the previous n bits c times; c is a varint

// runGCProg executes the GC program prog, and then trailer if non-nil,
// writing to dst with entries of the given size.
// If size == 1, dst is a 1-bit pointer mask laid out moving forward from dst.
// If size == 2, dst is the 2-bit heap bitmap, and writes move backward
// starting at dst (because the heap bitmap does). In this case, the caller guarantees
// that only whole bytes in dst need to be written.
//
// runGCProg returns the number of 1- or 2-bit entries written to memory.
func runGCProg(prog, trailer, dst *byte, size int) uintptr {
	dstStart := dst

	// Bits waiting to be written to memory.
	var bits uintptr
	var nbits uintptr

	p := prog
Run:
	for {
		// Flush accumulated full bytes.
		// The rest of the loop assumes that nbits <= 7.
		for ; nbits >= 8; nbits -= 8 {
			if size == 1 {
				*dst = uint8(bits)
				dst = add1(dst)
				bits >>= 8
			} else {
				v := bits&bitPointerAll | bitMarkedAll
				*dst = uint8(v)
				dst = subtract1(dst)
				bits >>= 4
				v = bits&bitPointerAll | bitMarkedAll
				*dst = uint8(v)
				dst = subtract1(dst)
				bits >>= 4
			}
		}

		// Process one instruction.
		inst := uintptr(*p)
		p = add1(p)
		n := inst & 0x7F
		if inst&0x80 == 0 {
			// Literal bits; n == 0 means end of program.
			if n == 0 {
				// Program is over; continue in trailer if present.
				if trailer != nil {
					//println("trailer")
					p = trailer
					trailer = nil
					continue
				}
				//println("done")
				break Run
			}
			//println("lit", n, dst)
			nbyte := n / 8
			for i := uintptr(0); i < nbyte; i++ {
				bits |= uintptr(*p) << nbits
				p = add1(p)
				if size == 1 {
					*dst = uint8(bits)
					dst = add1(dst)
					bits >>= 8
				} else {
					v := bits&0xf | bitMarkedAll
					*dst = uint8(v)
					dst = subtract1(dst)
					bits >>= 4
					v = bits&0xf | bitMarkedAll
					*dst = uint8(v)
					dst = subtract1(dst)
					bits >>= 4
				}
			}
			if n %= 8; n > 0 {
				bits |= uintptr(*p) << nbits
				p = add1(p)
				nbits += n
			}
			continue Run
		}

		// Repeat. If n == 0, it is encoded in a varint in the next bytes.
		if n == 0 {
			for off := uint(0); ; off += 7 {
				x := uintptr(*p)
				p = add1(p)
				n |= (x & 0x7F) << off
				if x&0x80 == 0 {
					break
				}
			}
		}

		// Count is encoded in a varint in the next bytes.
		c := uintptr(0)
		for off := uint(0); ; off += 7 {
			x := uintptr(*p)
			p = add1(p)
			c |= (x & 0x7F) << off
			if x&0x80 == 0 {
				break
			}
		}
		c *= n // now total number of bits to copy

		// If the number of bits being repeated is small, load them
		// into a register and use that register for the entire loop
		// instead of repeatedly reading from memory.
		// Handling fewer than 8 bits here makes the general loop simpler.
		// The cutoff is ptrSize*8 - 7 to guarantee that when we add
		// the pattern to a bit buffer holding at most 7 bits (a partial byte)
		// it will not overflow.
		src := dst
		const maxBits = sys.PtrSize*8 - 7
		if n <= maxBits {
			// Start with bits in output buffer.
			pattern := bits
			npattern := nbits

			// If we need more bits, fetch them from memory.
			if size == 1 {
				src = subtract1(src)
				for npattern < n {
					pattern <<= 8
					pattern |= uintptr(*src)
					src = subtract1(src)
					npattern += 8
				}
			} else {
				src = add1(src)
				for npattern < n {
					pattern <<= 4
					pattern |= uintptr(*src) & 0xf
					src = add1(src)
					npattern += 4
				}
			}

			// We started with the whole bit output buffer,
			// and then we loaded bits from whole bytes.
			// Either way, we might now have too many instead of too few.
			// Discard the extra.
			if npattern > n {
				pattern >>= npattern - n
				npattern = n
			}

			// Replicate pattern to at most maxBits.
			if npattern == 1 {
				// One bit being repeated.
				// If the bit is 1, make the pattern all 1s.
				// If the bit is 0, the pattern is already all 0s,
				// but we can claim that the number of bits
				// in the word is equal to the number we need (c),
				// because right shift of bits will zero fill.
				if pattern == 1 {
					pattern = 1<<maxBits - 1
					npattern = maxBits
				} else {
					npattern = c
				}
			} else {
				b := pattern
				nb := npattern
				if nb+nb <= maxBits {
					// Double pattern until the whole uintptr is filled.
					for nb <= sys.PtrSize*8 {
						b |= b << nb
						nb += nb
					}
					// Trim away incomplete copy of original pattern in high bits.
					// TODO(rsc): Replace with table lookup or loop on systems without divide?
					nb = maxBits / npattern * npattern
					b &= 1<<nb - 1
					pattern = b
					npattern = nb
				}
			}

			// Add pattern to bit buffer and flush bit buffer, c/npattern times.
			// Since pattern contains >8 bits, there will be full bytes to flush
			// on each iteration.
			for ; c >= npattern; c -= npattern {
				bits |= pattern << nbits
				nbits += npattern
				if size == 1 {
					for nbits >= 8 {
						*dst = uint8(bits)
						dst = add1(dst)
						bits >>= 8
						nbits -= 8
					}
				} else {
					for nbits >= 4 {
						*dst = uint8(bits&0xf | bitMarkedAll)
						dst = subtract1(dst)
						bits >>= 4
						nbits -= 4
					}
				}
			}

			// Add final fragment to bit buffer.
			if c > 0 {
				pattern &= 1<<c - 1
				bits |= pattern << nbits
				nbits += c
			}
			continue Run
		}

		// Repeat; n too large to fit in a register.
		// Since nbits <= 7, we know the first few bytes of repeated data
		// are already written to memory.
		off := n - nbits // n > nbits because n > maxBits and nbits <= 7
		if size == 1 {
			// Leading src fragment.
			src = subtractb(src, (off+7)/8)
			if frag := off & 7; frag != 0 {
				bits |= uintptr(*src) >> (8 - frag) << nbits
				src = add1(src)
				nbits += frag
				c -= frag
			}
			// Main loop: load one byte, write another.
			// The bits are rotating through the bit buffer.
			for i := c / 8; i > 0; i-- {
				bits |= uintptr(*src) << nbits
				src = add1(src)
				*dst = uint8(bits)
				dst = add1(dst)
				bits >>= 8
			}
			// Final src fragment.
			if c %= 8; c > 0 {
				bits |= (uintptr(*src) & (1<<c - 1)) << nbits
				nbits += c
			}
		} else {
			// Leading src fragment.
			src = addb(src, (off+3)/4)
			if frag := off & 3; frag != 0 {
				bits |= (uintptr(*src) & 0xf) >> (4 - frag) << nbits
				src = subtract1(src)
				nbits += frag
				c -= frag
			}
			// Main loop: load one byte, write another.
			// The bits are rotating through the bit buffer.
			for i := c / 4; i > 0; i-- {
				bits |= (uintptr(*src) & 0xf) << nbits
				src = subtract1(src)
				*dst = uint8(bits&0xf | bitMarkedAll)
				dst = subtract1(dst)
				bits >>= 4
			}
			// Final src fragment.
			if c %= 4; c > 0 {
				bits |= (uintptr(*src) & (1<<c - 1)) << nbits
				nbits += c
			}
		}
	}

	// Write any final bits out, using full-byte writes, even for the final byte.
	var totalBits uintptr
	if size == 1 {
		totalBits = (uintptr(unsafe.Pointer(dst))-uintptr(unsafe.Pointer(dstStart)))*8 + nbits
		nbits += -nbits & 7
		for ; nbits > 0; nbits -= 8 {
			*dst = uint8(bits)
			dst = add1(dst)
			bits >>= 8
		}
	} else {
		totalBits = (uintptr(unsafe.Pointer(dstStart))-uintptr(unsafe.Pointer(dst)))*4 + nbits
		nbits += -nbits & 3
		for ; nbits > 0; nbits -= 4 {
			v := bits&0xf | bitMarkedAll
			*dst = uint8(v)
			dst = subtract1(dst)
			bits >>= 4
		}
		// Clear the mark bits in the first two entries.
		// They are the actual mark and checkmark bits,
		// not non-dead markers. It simplified the code
		// above to set the marker in every bit written and
		// then clear these two as a special case at the end.
		*dstStart &^= bitMarked | bitMarked<<heapBitsShift
	}
	return totalBits
}

func dumpGCProg(p *byte) {
	nptr := 0
	for {
		x := *p
		p = add1(p)
		if x == 0 {
			print("\t", nptr, " end\n")
			break
		}
		if x&0x80 == 0 {
			print("\t", nptr, " lit ", x, ":")
			n := int(x+7) / 8
			for i := 0; i < n; i++ {
				print(" ", hex(*p))
				p = add1(p)
			}
			print("\n")
			nptr += int(x)
		} else {
			nbit := int(x &^ 0x80)
			if nbit == 0 {
				for nb := uint(0); ; nb += 7 {
					x := *p
					p = add1(p)
					nbit |= int(x&0x7f) << nb
					if x&0x80 == 0 {
						break
					}
				}
			}
			count := 0
			for nb := uint(0); ; nb += 7 {
				x := *p
				p = add1(p)
				count |= int(x&0x7f) << nb
				if x&0x80 == 0 {
					break
				}
			}
			print("\t", nptr, " repeat ", nbit, " × ", count, "\n")
			nptr += nbit * count
		}
	}
}

// Testing.

func getgcmaskcb(frame *stkframe, ctxt unsafe.Pointer) bool {
	target := (*stkframe)(ctxt)
	if frame.sp <= target.sp && target.sp < frame.varp {
		*target = *frame
		return false
	}
	return true
}

// gcbits returns the GC type info for x, for testing.
// The result is the bitmap entries (0 or 1), one entry per byte.
//go:linkname reflect_gcbits reflect.gcbits
func reflect_gcbits(x interface{}) []byte {
	ret := getgcmask(x)
	typ := (*ptrtype)(unsafe.Pointer(efaceOf(&x)._type)).elem
	nptr := typ.ptrdata / sys.PtrSize
	for uintptr(len(ret)) > nptr && ret[len(ret)-1] == 0 {
		ret = ret[:len(ret)-1]
	}
	return ret
}

// Returns GC type info for object p for testing.
func getgcmask(ep interface{}) (mask []byte) {
	e := *efaceOf(&ep)
	p := e.data
	t := e._type
	// data or bss
	for datap := &firstmoduledata; datap != nil; datap = datap.next {
		// data
		if datap.data <= uintptr(p) && uintptr(p) < datap.edata {
			bitmap := datap.gcdatamask.bytedata
			n := (*ptrtype)(unsafe.Pointer(t)).elem.size
			mask = make([]byte, n/sys.PtrSize)
			for i := uintptr(0); i < n; i += sys.PtrSize {
				off := (uintptr(p) + i - datap.data) / sys.PtrSize
				mask[i/sys.PtrSize] = (*addb(bitmap, off/8) >> (off % 8)) & 1
			}
			return
		}

		// bss
		if datap.bss <= uintptr(p) && uintptr(p) < datap.ebss {
			bitmap := datap.gcbssmask.bytedata
			n := (*ptrtype)(unsafe.Pointer(t)).elem.size
			mask = make([]byte, n/sys.PtrSize)
			for i := uintptr(0); i < n; i += sys.PtrSize {
				off := (uintptr(p) + i - datap.bss) / sys.PtrSize
				mask[i/sys.PtrSize] = (*addb(bitmap, off/8) >> (off % 8)) & 1
			}
			return
		}
	}

	// heap
	var n uintptr
	var base uintptr
	if mlookup(uintptr(p), &base, &n, nil) != 0 {
		mask = make([]byte, n/sys.PtrSize)
		for i := uintptr(0); i < n; i += sys.PtrSize {
			hbits := heapBitsForAddr(base + i)
			if hbits.isPointer() {
				mask[i/sys.PtrSize] = 1
			}
			if i >= 2*sys.PtrSize && !hbits.isMarked() {
				mask = mask[:i/sys.PtrSize]
				break
			}
		}
		return
	}

	// stack
	if _g_ := getg(); _g_.m.curg.stack.lo <= uintptr(p) && uintptr(p) < _g_.m.curg.stack.hi {
		var frame stkframe
		frame.sp = uintptr(p)
		_g_ := getg()
		gentraceback(_g_.m.curg.sched.pc, _g_.m.curg.sched.sp, 0, _g_.m.curg, 0, nil, 1000, getgcmaskcb, noescape(unsafe.Pointer(&frame)), 0)
		if frame.fn != nil {
			f := frame.fn
			targetpc := frame.continpc
			if targetpc == 0 {
				return
			}
			if targetpc != f.entry {
				targetpc--
			}
			pcdata := pcdatavalue(f, _PCDATA_StackMapIndex, targetpc, nil)
			if pcdata == -1 {
				return
			}
			stkmap := (*stackmap)(funcdata(f, _FUNCDATA_LocalsPointerMaps))
			if stkmap == nil || stkmap.n <= 0 {
				return
			}
			bv := stackmapdata(stkmap, pcdata)
			size := uintptr(bv.n) * sys.PtrSize
			n := (*ptrtype)(unsafe.Pointer(t)).elem.size
			mask = make([]byte, n/sys.PtrSize)
			for i := uintptr(0); i < n; i += sys.PtrSize {
				bitmap := bv.bytedata
				off := (uintptr(p) + i - frame.varp + size) / sys.PtrSize
				mask[i/sys.PtrSize] = (*addb(bitmap, off/8) >> (off % 8)) & 1
			}
		}
		return
	}

	// otherwise, not something the GC knows about.
	// possibly read-only data, like malloc(0).
	// must not have pointers
	return
}