This file is indexed.

/usr/share/go-1.6/src/runtime/mbarrier.go is in golang-1.6-src 1.6.1-0ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
// Copyright 2015 The Go Authors.  All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// Garbage collector: write barriers.
//
// For the concurrent garbage collector, the Go compiler implements
// updates to pointer-valued fields that may be in heap objects by
// emitting calls to write barriers. This file contains the actual write barrier
// implementation, markwb, and the various wrappers called by the
// compiler to implement pointer assignment, slice assignment,
// typed memmove, and so on.

package runtime

import (
	"runtime/internal/sys"
	"unsafe"
)

// markwb is the mark-phase write barrier, the only barrier we have.
// The rest of this file exists only to make calls to this function.
//
// This is the Dijkstra barrier coarsened to always shade the ptr (dst) object.
// The original Dijkstra barrier only shaded ptrs being placed in black slots.
//
// Shade indicates that it has seen a white pointer by adding the referent
// to wbuf as well as marking it.
//
// slot is the destination (dst) in go code
// ptr is the value that goes into the slot (src) in the go code
//
//
// Dealing with memory ordering:
//
// Dijkstra pointed out that maintaining the no black to white
// pointers means that white to white pointers do not need
// to be noted by the write barrier. Furthermore if either
// white object dies before it is reached by the
// GC then the object can be collected during this GC cycle
// instead of waiting for the next cycle. Unfortunately the cost of
// ensuring that the object holding the slot doesn't concurrently
// change to black without the mutator noticing seems prohibitive.
//
// Consider the following example where the mutator writes into
// a slot and then loads the slot's mark bit while the GC thread
// writes to the slot's mark bit and then as part of scanning reads
// the slot.
//
// Initially both [slot] and [slotmark] are 0 (nil)
// Mutator thread          GC thread
// st [slot], ptr          st [slotmark], 1
//
// ld r1, [slotmark]       ld r2, [slot]
//
// Without an expensive memory barrier between the st and the ld, the final
// result on most HW (including 386/amd64) can be r1==r2==0. This is a classic
// example of what can happen when loads are allowed to be reordered with older
// stores (avoiding such reorderings lies at the heart of the classic
// Peterson/Dekker algorithms for mutual exclusion). Rather than require memory
// barriers, which will slow down both the mutator and the GC, we always grey
// the ptr object regardless of the slot's color.
//
// Another place where we intentionally omit memory barriers is when
// accessing mheap_.arena_used to check if a pointer points into the
// heap. On relaxed memory machines, it's possible for a mutator to
// extend the size of the heap by updating arena_used, allocate an
// object from this new region, and publish a pointer to that object,
// but for tracing running on another processor to observe the pointer
// but use the old value of arena_used. In this case, tracing will not
// mark the object, even though it's reachable. However, the mutator
// is guaranteed to execute a write barrier when it publishes the
// pointer, so it will take care of marking the object. A general
// consequence of this is that the garbage collector may cache the
// value of mheap_.arena_used. (See issue #9984.)
//
//
// Stack writes:
//
// The compiler omits write barriers for writes to the current frame,
// but if a stack pointer has been passed down the call stack, the
// compiler will generate a write barrier for writes through that
// pointer (because it doesn't know it's not a heap pointer).
//
// One might be tempted to ignore the write barrier if slot points
// into to the stack. Don't do it! Mark termination only re-scans
// frames that have potentially been active since the concurrent scan,
// so it depends on write barriers to track changes to pointers in
// stack frames that have not been active.
//go:nowritebarrierrec
func gcmarkwb_m(slot *uintptr, ptr uintptr) {
	if writeBarrier.needed {
		if ptr != 0 && inheap(ptr) {
			shade(ptr)
		}
	}
}

// Write barrier calls must not happen during critical GC and scheduler
// related operations. In particular there are times when the GC assumes
// that the world is stopped but scheduler related code is still being
// executed, dealing with syscalls, dealing with putting gs on runnable
// queues and so forth. This code can not execute write barriers because
// the GC might drop them on the floor. Stopping the world involves removing
// the p associated with an m. We use the fact that m.p == nil to indicate
// that we are in one these critical section and throw if the write is of
// a pointer to a heap object.
//go:nosplit
func writebarrierptr_nostore1(dst *uintptr, src uintptr) {
	mp := acquirem()
	if mp.inwb || mp.dying > 0 {
		releasem(mp)
		return
	}
	systemstack(func() {
		if mp.p == 0 && memstats.enablegc && !mp.inwb && inheap(src) {
			throw("writebarrierptr_nostore1 called with mp.p == nil")
		}
		mp.inwb = true
		gcmarkwb_m(dst, src)
	})
	mp.inwb = false
	releasem(mp)
}

// NOTE: Really dst *unsafe.Pointer, src unsafe.Pointer,
// but if we do that, Go inserts a write barrier on *dst = src.
//go:nosplit
func writebarrierptr(dst *uintptr, src uintptr) {
	*dst = src
	if writeBarrier.cgo {
		cgoCheckWriteBarrier(dst, src)
	}
	if !writeBarrier.needed {
		return
	}
	if src != 0 && (src < sys.PhysPageSize || src == poisonStack) {
		systemstack(func() {
			print("runtime: writebarrierptr *", dst, " = ", hex(src), "\n")
			throw("bad pointer in write barrier")
		})
	}
	writebarrierptr_nostore1(dst, src)
}

// Like writebarrierptr, but the store has already been applied.
// Do not reapply.
//go:nosplit
func writebarrierptr_nostore(dst *uintptr, src uintptr) {
	if writeBarrier.cgo {
		cgoCheckWriteBarrier(dst, src)
	}
	if !writeBarrier.needed {
		return
	}
	if src != 0 && (src < sys.PhysPageSize || src == poisonStack) {
		systemstack(func() { throw("bad pointer in write barrier") })
	}
	writebarrierptr_nostore1(dst, src)
}

//go:nosplit
func writebarrierstring(dst *[2]uintptr, src [2]uintptr) {
	writebarrierptr(&dst[0], src[0])
	dst[1] = src[1]
}

//go:nosplit
func writebarrierslice(dst *[3]uintptr, src [3]uintptr) {
	writebarrierptr(&dst[0], src[0])
	dst[1] = src[1]
	dst[2] = src[2]
}

//go:nosplit
func writebarrieriface(dst *[2]uintptr, src [2]uintptr) {
	writebarrierptr(&dst[0], src[0])
	writebarrierptr(&dst[1], src[1])
}

//go:generate go run wbfat_gen.go -- wbfat.go
//
// The above line generates multiword write barriers for
// all the combinations of ptr+scalar up to four words.
// The implementations are written to wbfat.go.

// typedmemmove copies a value of type t to dst from src.
//go:nosplit
func typedmemmove(typ *_type, dst, src unsafe.Pointer) {
	memmove(dst, src, typ.size)
	if writeBarrier.cgo {
		cgoCheckMemmove(typ, dst, src, 0, typ.size)
	}
	if typ.kind&kindNoPointers != 0 {
		return
	}
	heapBitsBulkBarrier(uintptr(dst), typ.size)
}

//go:linkname reflect_typedmemmove reflect.typedmemmove
func reflect_typedmemmove(typ *_type, dst, src unsafe.Pointer) {
	typedmemmove(typ, dst, src)
}

// typedmemmovepartial is like typedmemmove but assumes that
// dst and src point off bytes into the value and only copies size bytes.
//go:linkname reflect_typedmemmovepartial reflect.typedmemmovepartial
func reflect_typedmemmovepartial(typ *_type, dst, src unsafe.Pointer, off, size uintptr) {
	memmove(dst, src, size)
	if writeBarrier.cgo {
		cgoCheckMemmove(typ, dst, src, off, size)
	}
	if !writeBarrier.needed || typ.kind&kindNoPointers != 0 || size < sys.PtrSize || !inheap(uintptr(dst)) {
		return
	}

	if frag := -off & (sys.PtrSize - 1); frag != 0 {
		dst = add(dst, frag)
		size -= frag
	}
	heapBitsBulkBarrier(uintptr(dst), size&^(sys.PtrSize-1))
}

// callwritebarrier is invoked at the end of reflectcall, to execute
// write barrier operations to record the fact that a call's return
// values have just been copied to frame, starting at retoffset
// and continuing to framesize. The entire frame (not just the return
// values) is described by typ. Because the copy has already
// happened, we call writebarrierptr_nostore, and we must be careful
// not to be preempted before the write barriers have been run.
//go:nosplit
func callwritebarrier(typ *_type, frame unsafe.Pointer, framesize, retoffset uintptr) {
	if !writeBarrier.needed || typ == nil || typ.kind&kindNoPointers != 0 || framesize-retoffset < sys.PtrSize || !inheap(uintptr(frame)) {
		return
	}
	heapBitsBulkBarrier(uintptr(add(frame, retoffset)), framesize-retoffset)
}

//go:nosplit
func typedslicecopy(typ *_type, dst, src slice) int {
	// TODO(rsc): If typedslicecopy becomes faster than calling
	// typedmemmove repeatedly, consider using during func growslice.
	n := dst.len
	if n > src.len {
		n = src.len
	}
	if n == 0 {
		return 0
	}
	dstp := unsafe.Pointer(dst.array)
	srcp := unsafe.Pointer(src.array)

	if raceenabled {
		callerpc := getcallerpc(unsafe.Pointer(&typ))
		pc := funcPC(slicecopy)
		racewriterangepc(dstp, uintptr(n)*typ.size, callerpc, pc)
		racereadrangepc(srcp, uintptr(n)*typ.size, callerpc, pc)
	}
	if msanenabled {
		msanwrite(dstp, uintptr(n)*typ.size)
		msanread(srcp, uintptr(n)*typ.size)
	}

	if writeBarrier.cgo {
		cgoCheckSliceCopy(typ, dst, src, n)
	}

	// Note: No point in checking typ.kind&kindNoPointers here:
	// compiler only emits calls to typedslicecopy for types with pointers,
	// and growslice and reflect_typedslicecopy check for pointers
	// before calling typedslicecopy.
	if !writeBarrier.needed {
		memmove(dstp, srcp, uintptr(n)*typ.size)
		return n
	}

	systemstack(func() {
		if uintptr(srcp) < uintptr(dstp) && uintptr(srcp)+uintptr(n)*typ.size > uintptr(dstp) {
			// Overlap with src before dst.
			// Copy backward, being careful not to move dstp/srcp
			// out of the array they point into.
			dstp = add(dstp, uintptr(n-1)*typ.size)
			srcp = add(srcp, uintptr(n-1)*typ.size)
			i := 0
			for {
				typedmemmove(typ, dstp, srcp)
				if i++; i >= n {
					break
				}
				dstp = add(dstp, -typ.size)
				srcp = add(srcp, -typ.size)
			}
		} else {
			// Copy forward, being careful not to move dstp/srcp
			// out of the array they point into.
			i := 0
			for {
				typedmemmove(typ, dstp, srcp)
				if i++; i >= n {
					break
				}
				dstp = add(dstp, typ.size)
				srcp = add(srcp, typ.size)
			}
		}
	})
	return int(n)
}

//go:linkname reflect_typedslicecopy reflect.typedslicecopy
func reflect_typedslicecopy(elemType *_type, dst, src slice) int {
	if elemType.kind&kindNoPointers != 0 {
		n := dst.len
		if n > src.len {
			n = src.len
		}
		memmove(dst.array, src.array, uintptr(n)*elemType.size)
		return n
	}
	return typedslicecopy(elemType, dst, src)
}