This file is indexed.

/usr/share/go-1.6/src/runtime/malloc.go is in golang-1.6-src 1.6.1-0ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// Memory allocator, based on tcmalloc.
// http://goog-perftools.sourceforge.net/doc/tcmalloc.html

// The main allocator works in runs of pages.
// Small allocation sizes (up to and including 32 kB) are
// rounded to one of about 100 size classes, each of which
// has its own free list of objects of exactly that size.
// Any free page of memory can be split into a set of objects
// of one size class, which are then managed using free list
// allocators.
//
// The allocator's data structures are:
//
//	FixAlloc: a free-list allocator for fixed-size objects,
//		used to manage storage used by the allocator.
//	MHeap: the malloc heap, managed at page (4096-byte) granularity.
//	MSpan: a run of pages managed by the MHeap.
//	MCentral: a shared free list for a given size class.
//	MCache: a per-thread (in Go, per-P) cache for small objects.
//	MStats: allocation statistics.
//
// Allocating a small object proceeds up a hierarchy of caches:
//
//	1. Round the size up to one of the small size classes
//	   and look in the corresponding MCache free list.
//	   If the list is not empty, allocate an object from it.
//	   This can all be done without acquiring a lock.
//
//	2. If the MCache free list is empty, replenish it by
//	   taking a bunch of objects from the MCentral free list.
//	   Moving a bunch amortizes the cost of acquiring the MCentral lock.
//
//	3. If the MCentral free list is empty, replenish it by
//	   allocating a run of pages from the MHeap and then
//	   chopping that memory into objects of the given size.
//	   Allocating many objects amortizes the cost of locking
//	   the heap.
//
//	4. If the MHeap is empty or has no page runs large enough,
//	   allocate a new group of pages (at least 1MB) from the
//	   operating system.  Allocating a large run of pages
//	   amortizes the cost of talking to the operating system.
//
// Freeing a small object proceeds up the same hierarchy:
//
//	1. Look up the size class for the object and add it to
//	   the MCache free list.
//
//	2. If the MCache free list is too long or the MCache has
//	   too much memory, return some to the MCentral free lists.
//
//	3. If all the objects in a given span have returned to
//	   the MCentral list, return that span to the page heap.
//
//	4. If the heap has too much memory, return some to the
//	   operating system.
//
//	TODO(rsc): Step 4 is not implemented.
//
// Allocating and freeing a large object uses the page heap
// directly, bypassing the MCache and MCentral free lists.
//
// The small objects on the MCache and MCentral free lists
// may or may not be zeroed.  They are zeroed if and only if
// the second word of the object is zero.  A span in the
// page heap is zeroed unless s->needzero is set. When a span
// is allocated to break into small objects, it is zeroed if needed
// and s->needzero is set. There are two main benefits to delaying the
// zeroing this way:
//
//	1. stack frames allocated from the small object lists
//	   or the page heap can avoid zeroing altogether.
//	2. the cost of zeroing when reusing a small object is
//	   charged to the mutator, not the garbage collector.

package runtime

import (
	"runtime/internal/sys"
	"unsafe"
)

const (
	debugMalloc = false

	flagNoScan = _FlagNoScan
	flagNoZero = _FlagNoZero

	maxTinySize   = _TinySize
	tinySizeClass = _TinySizeClass
	maxSmallSize  = _MaxSmallSize

	pageShift = _PageShift
	pageSize  = _PageSize
	pageMask  = _PageMask

	mSpanInUse = _MSpanInUse

	concurrentSweep = _ConcurrentSweep
)

const (
	_PageShift = 13
	_PageSize  = 1 << _PageShift
	_PageMask  = _PageSize - 1
)

const (
	// _64bit = 1 on 64-bit systems, 0 on 32-bit systems
	_64bit = 1 << (^uintptr(0) >> 63) / 2

	// Computed constant.  The definition of MaxSmallSize and the
	// algorithm in msize.go produces some number of different allocation
	// size classes.  NumSizeClasses is that number.  It's needed here
	// because there are static arrays of this length; when msize runs its
	// size choosing algorithm it double-checks that NumSizeClasses agrees.
	_NumSizeClasses = 67

	// Tunable constants.
	_MaxSmallSize = 32 << 10

	// Tiny allocator parameters, see "Tiny allocator" comment in malloc.go.
	_TinySize      = 16
	_TinySizeClass = 2

	_FixAllocChunk  = 16 << 10               // Chunk size for FixAlloc
	_MaxMHeapList   = 1 << (20 - _PageShift) // Maximum page length for fixed-size list in MHeap.
	_HeapAllocChunk = 1 << 20                // Chunk size for heap growth

	// Per-P, per order stack segment cache size.
	_StackCacheSize = 32 * 1024

	// Number of orders that get caching.  Order 0 is FixedStack
	// and each successive order is twice as large.
	// We want to cache 2KB, 4KB, 8KB, and 16KB stacks.  Larger stacks
	// will be allocated directly.
	// Since FixedStack is different on different systems, we
	// must vary NumStackOrders to keep the same maximum cached size.
	//   OS               | FixedStack | NumStackOrders
	//   -----------------+------------+---------------
	//   linux/darwin/bsd | 2KB        | 4
	//   windows/32       | 4KB        | 3
	//   windows/64       | 8KB        | 2
	//   plan9            | 4KB        | 3
	_NumStackOrders = 4 - sys.PtrSize/4*sys.GoosWindows - 1*sys.GoosPlan9

	// Number of bits in page to span calculations (4k pages).
	// On Windows 64-bit we limit the arena to 32GB or 35 bits.
	// Windows counts memory used by page table into committed memory
	// of the process, so we can't reserve too much memory.
	// See https://golang.org/issue/5402 and https://golang.org/issue/5236.
	// On other 64-bit platforms, we limit the arena to 512GB, or 39 bits.
	// On 32-bit, we don't bother limiting anything, so we use the full 32-bit address.
	// On Darwin/arm64, we cannot reserve more than ~5GB of virtual memory,
	// but as most devices have less than 4GB of physical memory anyway, we
	// try to be conservative here, and only ask for a 2GB heap.
	_MHeapMap_TotalBits = (_64bit*sys.GoosWindows)*35 + (_64bit*(1-sys.GoosWindows)*(1-sys.GoosDarwin*sys.GoarchArm64))*39 + sys.GoosDarwin*sys.GoarchArm64*31 + (1-_64bit)*32
	_MHeapMap_Bits      = _MHeapMap_TotalBits - _PageShift

	_MaxMem = uintptr(1<<_MHeapMap_TotalBits - 1)

	// Max number of threads to run garbage collection.
	// 2, 3, and 4 are all plausible maximums depending
	// on the hardware details of the machine.  The garbage
	// collector scales well to 32 cpus.
	_MaxGcproc = 32
)

// Page number (address>>pageShift)
type pageID uintptr

const _MaxArena32 = 2 << 30

// OS-defined helpers:
//
// sysAlloc obtains a large chunk of zeroed memory from the
// operating system, typically on the order of a hundred kilobytes
// or a megabyte.
// NOTE: sysAlloc returns OS-aligned memory, but the heap allocator
// may use larger alignment, so the caller must be careful to realign the
// memory obtained by sysAlloc.
//
// SysUnused notifies the operating system that the contents
// of the memory region are no longer needed and can be reused
// for other purposes.
// SysUsed notifies the operating system that the contents
// of the memory region are needed again.
//
// SysFree returns it unconditionally; this is only used if
// an out-of-memory error has been detected midway through
// an allocation.  It is okay if SysFree is a no-op.
//
// SysReserve reserves address space without allocating memory.
// If the pointer passed to it is non-nil, the caller wants the
// reservation there, but SysReserve can still choose another
// location if that one is unavailable.  On some systems and in some
// cases SysReserve will simply check that the address space is
// available and not actually reserve it.  If SysReserve returns
// non-nil, it sets *reserved to true if the address space is
// reserved, false if it has merely been checked.
// NOTE: SysReserve returns OS-aligned memory, but the heap allocator
// may use larger alignment, so the caller must be careful to realign the
// memory obtained by sysAlloc.
//
// SysMap maps previously reserved address space for use.
// The reserved argument is true if the address space was really
// reserved, not merely checked.
//
// SysFault marks a (already sysAlloc'd) region to fault
// if accessed.  Used only for debugging the runtime.

func mallocinit() {
	initSizes()

	if class_to_size[_TinySizeClass] != _TinySize {
		throw("bad TinySizeClass")
	}

	var p, bitmapSize, spansSize, pSize, limit uintptr
	var reserved bool

	// limit = runtime.memlimit();
	// See https://golang.org/issue/5049
	// TODO(rsc): Fix after 1.1.
	limit = 0

	// Set up the allocation arena, a contiguous area of memory where
	// allocated data will be found.  The arena begins with a bitmap large
	// enough to hold 4 bits per allocated word.
	if sys.PtrSize == 8 && (limit == 0 || limit > 1<<30) {
		// On a 64-bit machine, allocate from a single contiguous reservation.
		// 512 GB (MaxMem) should be big enough for now.
		//
		// The code will work with the reservation at any address, but ask
		// SysReserve to use 0x0000XXc000000000 if possible (XX=00...7f).
		// Allocating a 512 GB region takes away 39 bits, and the amd64
		// doesn't let us choose the top 17 bits, so that leaves the 9 bits
		// in the middle of 0x00c0 for us to choose.  Choosing 0x00c0 means
		// that the valid memory addresses will begin 0x00c0, 0x00c1, ..., 0x00df.
		// In little-endian, that's c0 00, c1 00, ..., df 00. None of those are valid
		// UTF-8 sequences, and they are otherwise as far away from
		// ff (likely a common byte) as possible.  If that fails, we try other 0xXXc0
		// addresses.  An earlier attempt to use 0x11f8 caused out of memory errors
		// on OS X during thread allocations.  0x00c0 causes conflicts with
		// AddressSanitizer which reserves all memory up to 0x0100.
		// These choices are both for debuggability and to reduce the
		// odds of a conservative garbage collector (as is still used in gccgo)
		// not collecting memory because some non-pointer block of memory
		// had a bit pattern that matched a memory address.
		//
		// Actually we reserve 544 GB (because the bitmap ends up being 32 GB)
		// but it hardly matters: e0 00 is not valid UTF-8 either.
		//
		// If this fails we fall back to the 32 bit memory mechanism
		//
		// However, on arm64, we ignore all this advice above and slam the
		// allocation at 0x40 << 32 because when using 4k pages with 3-level
		// translation buffers, the user address space is limited to 39 bits
		// On darwin/arm64, the address space is even smaller.
		arenaSize := round(_MaxMem, _PageSize)
		bitmapSize = arenaSize / (sys.PtrSize * 8 / 4)
		spansSize = arenaSize / _PageSize * sys.PtrSize
		spansSize = round(spansSize, _PageSize)
		for i := 0; i <= 0x7f; i++ {
			switch {
			case GOARCH == "arm64" && GOOS == "darwin":
				p = uintptr(i)<<40 | uintptrMask&(0x0013<<28)
			case GOARCH == "arm64":
				p = uintptr(i)<<40 | uintptrMask&(0x0040<<32)
			default:
				p = uintptr(i)<<40 | uintptrMask&(0x00c0<<32)
			}
			pSize = bitmapSize + spansSize + arenaSize + _PageSize
			p = uintptr(sysReserve(unsafe.Pointer(p), pSize, &reserved))
			if p != 0 {
				break
			}
		}
	}

	if p == 0 {
		// On a 32-bit machine, we can't typically get away
		// with a giant virtual address space reservation.
		// Instead we map the memory information bitmap
		// immediately after the data segment, large enough
		// to handle another 2GB of mappings (256 MB),
		// along with a reservation for an initial arena.
		// When that gets used up, we'll start asking the kernel
		// for any memory anywhere and hope it's in the 2GB
		// following the bitmap (presumably the executable begins
		// near the bottom of memory, so we'll have to use up
		// most of memory before the kernel resorts to giving out
		// memory before the beginning of the text segment).
		//
		// Alternatively we could reserve 512 MB bitmap, enough
		// for 4GB of mappings, and then accept any memory the
		// kernel threw at us, but normally that's a waste of 512 MB
		// of address space, which is probably too much in a 32-bit world.

		// If we fail to allocate, try again with a smaller arena.
		// This is necessary on Android L where we share a process
		// with ART, which reserves virtual memory aggressively.
		arenaSizes := []uintptr{
			512 << 20,
			256 << 20,
			128 << 20,
		}

		for _, arenaSize := range arenaSizes {
			bitmapSize = _MaxArena32 / (sys.PtrSize * 8 / 4)
			spansSize = _MaxArena32 / _PageSize * sys.PtrSize
			if limit > 0 && arenaSize+bitmapSize+spansSize > limit {
				bitmapSize = (limit / 9) &^ ((1 << _PageShift) - 1)
				arenaSize = bitmapSize * 8
				spansSize = arenaSize / _PageSize * sys.PtrSize
			}
			spansSize = round(spansSize, _PageSize)

			// SysReserve treats the address we ask for, end, as a hint,
			// not as an absolute requirement.  If we ask for the end
			// of the data segment but the operating system requires
			// a little more space before we can start allocating, it will
			// give out a slightly higher pointer.  Except QEMU, which
			// is buggy, as usual: it won't adjust the pointer upward.
			// So adjust it upward a little bit ourselves: 1/4 MB to get
			// away from the running binary image and then round up
			// to a MB boundary.
			p = round(firstmoduledata.end+(1<<18), 1<<20)
			pSize = bitmapSize + spansSize + arenaSize + _PageSize
			p = uintptr(sysReserve(unsafe.Pointer(p), pSize, &reserved))
			if p != 0 {
				break
			}
		}
		if p == 0 {
			throw("runtime: cannot reserve arena virtual address space")
		}
	}

	// PageSize can be larger than OS definition of page size,
	// so SysReserve can give us a PageSize-unaligned pointer.
	// To overcome this we ask for PageSize more and round up the pointer.
	p1 := round(p, _PageSize)

	mheap_.spans = (**mspan)(unsafe.Pointer(p1))
	mheap_.bitmap = p1 + spansSize
	mheap_.arena_start = p1 + (spansSize + bitmapSize)
	mheap_.arena_used = mheap_.arena_start
	mheap_.arena_end = p + pSize
	mheap_.arena_reserved = reserved

	if mheap_.arena_start&(_PageSize-1) != 0 {
		println("bad pagesize", hex(p), hex(p1), hex(spansSize), hex(bitmapSize), hex(_PageSize), "start", hex(mheap_.arena_start))
		throw("misrounded allocation in mallocinit")
	}

	// Initialize the rest of the allocator.
	mheap_.init(spansSize)
	_g_ := getg()
	_g_.m.mcache = allocmcache()
}

// sysReserveHigh reserves space somewhere high in the address space.
// sysReserve doesn't actually reserve the full amount requested on
// 64-bit systems, because of problems with ulimit. Instead it checks
// that it can get the first 64 kB and assumes it can grab the rest as
// needed. This doesn't work well with the "let the kernel pick an address"
// mode, so don't do that. Pick a high address instead.
func sysReserveHigh(n uintptr, reserved *bool) unsafe.Pointer {
	if sys.PtrSize == 4 {
		return sysReserve(nil, n, reserved)
	}

	for i := 0; i <= 0x7f; i++ {
		p := uintptr(i)<<40 | uintptrMask&(0x00c0<<32)
		*reserved = false
		p = uintptr(sysReserve(unsafe.Pointer(p), n, reserved))
		if p != 0 {
			return unsafe.Pointer(p)
		}
	}

	return sysReserve(nil, n, reserved)
}

func (h *mheap) sysAlloc(n uintptr) unsafe.Pointer {
	if n > h.arena_end-h.arena_used {
		// We are in 32-bit mode, maybe we didn't use all possible address space yet.
		// Reserve some more space.
		p_size := round(n+_PageSize, 256<<20)
		new_end := h.arena_end + p_size // Careful: can overflow
		if h.arena_end <= new_end && new_end <= h.arena_start+_MaxArena32 {
			// TODO: It would be bad if part of the arena
			// is reserved and part is not.
			var reserved bool
			p := uintptr(sysReserve(unsafe.Pointer(h.arena_end), p_size, &reserved))
			if p == 0 {
				return nil
			}
			if p == h.arena_end {
				h.arena_end = new_end
				h.arena_reserved = reserved
			} else if h.arena_start <= p && p+p_size <= h.arena_start+_MaxArena32 {
				// Keep everything page-aligned.
				// Our pages are bigger than hardware pages.
				h.arena_end = p + p_size
				used := p + (-uintptr(p) & (_PageSize - 1))
				h.mapBits(used)
				h.mapSpans(used)
				h.arena_used = used
				h.arena_reserved = reserved
			} else {
				// We haven't added this allocation to
				// the stats, so subtract it from a
				// fake stat (but avoid underflow).
				stat := uint64(p_size)
				sysFree(unsafe.Pointer(p), p_size, &stat)
			}
		}
	}

	if n <= h.arena_end-h.arena_used {
		// Keep taking from our reservation.
		p := h.arena_used
		sysMap(unsafe.Pointer(p), n, h.arena_reserved, &memstats.heap_sys)
		h.mapBits(p + n)
		h.mapSpans(p + n)
		h.arena_used = p + n
		if raceenabled {
			racemapshadow(unsafe.Pointer(p), n)
		}

		if uintptr(p)&(_PageSize-1) != 0 {
			throw("misrounded allocation in MHeap_SysAlloc")
		}
		return unsafe.Pointer(p)
	}

	// If using 64-bit, our reservation is all we have.
	if h.arena_end-h.arena_start >= _MaxArena32 {
		return nil
	}

	// On 32-bit, once the reservation is gone we can
	// try to get memory at a location chosen by the OS
	// and hope that it is in the range we allocated bitmap for.
	p_size := round(n, _PageSize) + _PageSize
	p := uintptr(sysAlloc(p_size, &memstats.heap_sys))
	if p == 0 {
		return nil
	}

	if p < h.arena_start || uintptr(p)+p_size-h.arena_start >= _MaxArena32 {
		top := ^uintptr(0)
		if top-h.arena_start > _MaxArena32 {
			top = h.arena_start + _MaxArena32
		}
		print("runtime: memory allocated by OS (", hex(p), ") not in usable range [", hex(h.arena_start), ",", hex(top), ")\n")
		sysFree(unsafe.Pointer(p), p_size, &memstats.heap_sys)
		return nil
	}

	p_end := p + p_size
	p += -p & (_PageSize - 1)
	if uintptr(p)+n > h.arena_used {
		h.mapBits(p + n)
		h.mapSpans(p + n)
		h.arena_used = p + n
		if p_end > h.arena_end {
			h.arena_end = p_end
		}
		if raceenabled {
			racemapshadow(unsafe.Pointer(p), n)
		}
	}

	if uintptr(p)&(_PageSize-1) != 0 {
		throw("misrounded allocation in MHeap_SysAlloc")
	}
	return unsafe.Pointer(p)
}

// base address for all 0-byte allocations
var zerobase uintptr

const (
	// flags to malloc
	_FlagNoScan = 1 << 0 // GC doesn't have to scan object
	_FlagNoZero = 1 << 1 // don't zero memory
)

// Allocate an object of size bytes.
// Small objects are allocated from the per-P cache's free lists.
// Large objects (> 32 kB) are allocated straight from the heap.
func mallocgc(size uintptr, typ *_type, flags uint32) unsafe.Pointer {
	if gcphase == _GCmarktermination {
		throw("mallocgc called with gcphase == _GCmarktermination")
	}

	if size == 0 {
		return unsafe.Pointer(&zerobase)
	}

	if flags&flagNoScan == 0 && typ == nil {
		throw("malloc missing type")
	}

	if debug.sbrk != 0 {
		align := uintptr(16)
		if typ != nil {
			align = uintptr(typ.align)
		}
		return persistentalloc(size, align, &memstats.other_sys)
	}

	// assistG is the G to charge for this allocation, or nil if
	// GC is not currently active.
	var assistG *g
	if gcBlackenEnabled != 0 {
		// Charge the current user G for this allocation.
		assistG = getg()
		if assistG.m.curg != nil {
			assistG = assistG.m.curg
		}
		// Charge the allocation against the G. We'll account
		// for internal fragmentation at the end of mallocgc.
		assistG.gcAssistBytes -= int64(size)

		if assistG.gcAssistBytes < 0 {
			// This G is in debt. Assist the GC to correct
			// this before allocating. This must happen
			// before disabling preemption.
			gcAssistAlloc(assistG)
		}
	}

	// Set mp.mallocing to keep from being preempted by GC.
	mp := acquirem()
	if mp.mallocing != 0 {
		throw("malloc deadlock")
	}
	if mp.gsignal == getg() {
		throw("malloc during signal")
	}
	mp.mallocing = 1

	shouldhelpgc := false
	dataSize := size
	c := gomcache()
	var s *mspan
	var x unsafe.Pointer
	if size <= maxSmallSize {
		if flags&flagNoScan != 0 && size < maxTinySize {
			// Tiny allocator.
			//
			// Tiny allocator combines several tiny allocation requests
			// into a single memory block. The resulting memory block
			// is freed when all subobjects are unreachable. The subobjects
			// must be FlagNoScan (don't have pointers), this ensures that
			// the amount of potentially wasted memory is bounded.
			//
			// Size of the memory block used for combining (maxTinySize) is tunable.
			// Current setting is 16 bytes, which relates to 2x worst case memory
			// wastage (when all but one subobjects are unreachable).
			// 8 bytes would result in no wastage at all, but provides less
			// opportunities for combining.
			// 32 bytes provides more opportunities for combining,
			// but can lead to 4x worst case wastage.
			// The best case winning is 8x regardless of block size.
			//
			// Objects obtained from tiny allocator must not be freed explicitly.
			// So when an object will be freed explicitly, we ensure that
			// its size >= maxTinySize.
			//
			// SetFinalizer has a special case for objects potentially coming
			// from tiny allocator, it such case it allows to set finalizers
			// for an inner byte of a memory block.
			//
			// The main targets of tiny allocator are small strings and
			// standalone escaping variables. On a json benchmark
			// the allocator reduces number of allocations by ~12% and
			// reduces heap size by ~20%.
			off := c.tinyoffset
			// Align tiny pointer for required (conservative) alignment.
			if size&7 == 0 {
				off = round(off, 8)
			} else if size&3 == 0 {
				off = round(off, 4)
			} else if size&1 == 0 {
				off = round(off, 2)
			}
			if off+size <= maxTinySize && c.tiny != 0 {
				// The object fits into existing tiny block.
				x = unsafe.Pointer(c.tiny + off)
				c.tinyoffset = off + size
				c.local_tinyallocs++
				mp.mallocing = 0
				releasem(mp)
				return x
			}
			// Allocate a new maxTinySize block.
			s = c.alloc[tinySizeClass]
			v := s.freelist
			if v.ptr() == nil {
				systemstack(func() {
					c.refill(tinySizeClass)
				})
				shouldhelpgc = true
				s = c.alloc[tinySizeClass]
				v = s.freelist
			}
			s.freelist = v.ptr().next
			s.ref++
			// prefetchnta offers best performance, see change list message.
			prefetchnta(uintptr(v.ptr().next))
			x = unsafe.Pointer(v)
			(*[2]uint64)(x)[0] = 0
			(*[2]uint64)(x)[1] = 0
			// See if we need to replace the existing tiny block with the new one
			// based on amount of remaining free space.
			if size < c.tinyoffset || c.tiny == 0 {
				c.tiny = uintptr(x)
				c.tinyoffset = size
			}
			size = maxTinySize
		} else {
			var sizeclass int8
			if size <= 1024-8 {
				sizeclass = size_to_class8[(size+7)>>3]
			} else {
				sizeclass = size_to_class128[(size-1024+127)>>7]
			}
			size = uintptr(class_to_size[sizeclass])
			s = c.alloc[sizeclass]
			v := s.freelist
			if v.ptr() == nil {
				systemstack(func() {
					c.refill(int32(sizeclass))
				})
				shouldhelpgc = true
				s = c.alloc[sizeclass]
				v = s.freelist
			}
			s.freelist = v.ptr().next
			s.ref++
			// prefetchnta offers best performance, see change list message.
			prefetchnta(uintptr(v.ptr().next))
			x = unsafe.Pointer(v)
			if flags&flagNoZero == 0 {
				v.ptr().next = 0
				if size > 2*sys.PtrSize && ((*[2]uintptr)(x))[1] != 0 {
					memclr(unsafe.Pointer(v), size)
				}
			}
		}
	} else {
		var s *mspan
		shouldhelpgc = true
		systemstack(func() {
			s = largeAlloc(size, uint32(flags))
		})
		x = unsafe.Pointer(uintptr(s.start << pageShift))
		size = uintptr(s.elemsize)
	}

	if flags&flagNoScan != 0 {
		// All objects are pre-marked as noscan. Nothing to do.
	} else {
		// If allocating a defer+arg block, now that we've picked a malloc size
		// large enough to hold everything, cut the "asked for" size down to
		// just the defer header, so that the GC bitmap will record the arg block
		// as containing nothing at all (as if it were unused space at the end of
		// a malloc block caused by size rounding).
		// The defer arg areas are scanned as part of scanstack.
		if typ == deferType {
			dataSize = unsafe.Sizeof(_defer{})
		}
		heapBitsSetType(uintptr(x), size, dataSize, typ)
		if dataSize > typ.size {
			// Array allocation. If there are any
			// pointers, GC has to scan to the last
			// element.
			if typ.ptrdata != 0 {
				c.local_scan += dataSize - typ.size + typ.ptrdata
			}
		} else {
			c.local_scan += typ.ptrdata
		}

		// Ensure that the stores above that initialize x to
		// type-safe memory and set the heap bits occur before
		// the caller can make x observable to the garbage
		// collector. Otherwise, on weakly ordered machines,
		// the garbage collector could follow a pointer to x,
		// but see uninitialized memory or stale heap bits.
		publicationBarrier()
	}

	// GCmarkterminate allocates black
	// All slots hold nil so no scanning is needed.
	// This may be racing with GC so do it atomically if there can be
	// a race marking the bit.
	if gcphase == _GCmarktermination || gcBlackenPromptly {
		systemstack(func() {
			gcmarknewobject_m(uintptr(x), size)
		})
	}

	if raceenabled {
		racemalloc(x, size)
	}
	if msanenabled {
		msanmalloc(x, size)
	}

	mp.mallocing = 0
	releasem(mp)

	if debug.allocfreetrace != 0 {
		tracealloc(x, size, typ)
	}

	if rate := MemProfileRate; rate > 0 {
		if size < uintptr(rate) && int32(size) < c.next_sample {
			c.next_sample -= int32(size)
		} else {
			mp := acquirem()
			profilealloc(mp, x, size)
			releasem(mp)
		}
	}

	if assistG != nil {
		// Account for internal fragmentation in the assist
		// debt now that we know it.
		assistG.gcAssistBytes -= int64(size - dataSize)
	}

	if shouldhelpgc && gcShouldStart(false) {
		gcStart(gcBackgroundMode, false)
	}

	return x
}

func largeAlloc(size uintptr, flag uint32) *mspan {
	// print("largeAlloc size=", size, "\n")

	if size+_PageSize < size {
		throw("out of memory")
	}
	npages := size >> _PageShift
	if size&_PageMask != 0 {
		npages++
	}

	// Deduct credit for this span allocation and sweep if
	// necessary. mHeap_Alloc will also sweep npages, so this only
	// pays the debt down to npage pages.
	deductSweepCredit(npages*_PageSize, npages)

	s := mheap_.alloc(npages, 0, true, flag&_FlagNoZero == 0)
	if s == nil {
		throw("out of memory")
	}
	s.limit = uintptr(s.start)<<_PageShift + size
	heapBitsForSpan(s.base()).initSpan(s.layout())
	return s
}

// implementation of new builtin
func newobject(typ *_type) unsafe.Pointer {
	flags := uint32(0)
	if typ.kind&kindNoPointers != 0 {
		flags |= flagNoScan
	}
	return mallocgc(uintptr(typ.size), typ, flags)
}

//go:linkname reflect_unsafe_New reflect.unsafe_New
func reflect_unsafe_New(typ *_type) unsafe.Pointer {
	return newobject(typ)
}

// implementation of make builtin for slices
func newarray(typ *_type, n uintptr) unsafe.Pointer {
	flags := uint32(0)
	if typ.kind&kindNoPointers != 0 {
		flags |= flagNoScan
	}
	if int(n) < 0 || (typ.size > 0 && n > _MaxMem/uintptr(typ.size)) {
		panic("runtime: allocation size out of range")
	}
	return mallocgc(uintptr(typ.size)*n, typ, flags)
}

//go:linkname reflect_unsafe_NewArray reflect.unsafe_NewArray
func reflect_unsafe_NewArray(typ *_type, n uintptr) unsafe.Pointer {
	return newarray(typ, n)
}

// rawmem returns a chunk of pointerless memory.  It is
// not zeroed.
func rawmem(size uintptr) unsafe.Pointer {
	return mallocgc(size, nil, flagNoScan|flagNoZero)
}

func profilealloc(mp *m, x unsafe.Pointer, size uintptr) {
	mp.mcache.next_sample = nextSample()
	mProf_Malloc(x, size)
}

// nextSample returns the next sampling point for heap profiling.
// It produces a random variable with a geometric distribution and
// mean MemProfileRate. This is done by generating a uniformly
// distributed random number and applying the cumulative distribution
// function for an exponential.
func nextSample() int32 {
	if GOOS == "plan9" {
		// Plan 9 doesn't support floating point in note handler.
		if g := getg(); g == g.m.gsignal {
			return nextSampleNoFP()
		}
	}

	period := MemProfileRate

	// make nextSample not overflow. Maximum possible step is
	// -ln(1/(1<<kRandomBitCount)) * period, approximately 20 * period.
	switch {
	case period > 0x7000000:
		period = 0x7000000
	case period == 0:
		return 0
	}

	// Let m be the sample rate,
	// the probability distribution function is m*exp(-mx), so the CDF is
	// p = 1 - exp(-mx), so
	// q = 1 - p == exp(-mx)
	// log_e(q) = -mx
	// -log_e(q)/m = x
	// x = -log_e(q) * period
	// x = log_2(q) * (-log_e(2)) * period    ; Using log_2 for efficiency
	const randomBitCount = 26
	q := uint32(fastrand1())%(1<<randomBitCount) + 1
	qlog := fastlog2(float64(q)) - randomBitCount
	if qlog > 0 {
		qlog = 0
	}
	const minusLog2 = -0.6931471805599453 // -ln(2)
	return int32(qlog*(minusLog2*float64(period))) + 1
}

// nextSampleNoFP is similar to nextSample, but uses older,
// simpler code to avoid floating point.
func nextSampleNoFP() int32 {
	// Set first allocation sample size.
	rate := MemProfileRate
	if rate > 0x3fffffff { // make 2*rate not overflow
		rate = 0x3fffffff
	}
	if rate != 0 {
		return int32(int(fastrand1()) % (2 * rate))
	}
	return 0
}

type persistentAlloc struct {
	base unsafe.Pointer
	off  uintptr
}

var globalAlloc struct {
	mutex
	persistentAlloc
}

// Wrapper around sysAlloc that can allocate small chunks.
// There is no associated free operation.
// Intended for things like function/type/debug-related persistent data.
// If align is 0, uses default align (currently 8).
func persistentalloc(size, align uintptr, sysStat *uint64) unsafe.Pointer {
	var p unsafe.Pointer
	systemstack(func() {
		p = persistentalloc1(size, align, sysStat)
	})
	return p
}

// Must run on system stack because stack growth can (re)invoke it.
// See issue 9174.
//go:systemstack
func persistentalloc1(size, align uintptr, sysStat *uint64) unsafe.Pointer {
	const (
		chunk    = 256 << 10
		maxBlock = 64 << 10 // VM reservation granularity is 64K on windows
	)

	if size == 0 {
		throw("persistentalloc: size == 0")
	}
	if align != 0 {
		if align&(align-1) != 0 {
			throw("persistentalloc: align is not a power of 2")
		}
		if align > _PageSize {
			throw("persistentalloc: align is too large")
		}
	} else {
		align = 8
	}

	if size >= maxBlock {
		return sysAlloc(size, sysStat)
	}

	mp := acquirem()
	var persistent *persistentAlloc
	if mp != nil && mp.p != 0 {
		persistent = &mp.p.ptr().palloc
	} else {
		lock(&globalAlloc.mutex)
		persistent = &globalAlloc.persistentAlloc
	}
	persistent.off = round(persistent.off, align)
	if persistent.off+size > chunk || persistent.base == nil {
		persistent.base = sysAlloc(chunk, &memstats.other_sys)
		if persistent.base == nil {
			if persistent == &globalAlloc.persistentAlloc {
				unlock(&globalAlloc.mutex)
			}
			throw("runtime: cannot allocate memory")
		}
		persistent.off = 0
	}
	p := add(persistent.base, persistent.off)
	persistent.off += size
	releasem(mp)
	if persistent == &globalAlloc.persistentAlloc {
		unlock(&globalAlloc.mutex)
	}

	if sysStat != &memstats.other_sys {
		mSysStatInc(sysStat, size)
		mSysStatDec(&memstats.other_sys, size)
	}
	return p
}