This file is indexed.

/usr/share/go-1.6/src/runtime/cpuprof.go is in golang-1.6-src 1.6.1-0ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
// Copyright 2011 The Go Authors.  All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// CPU profiling.
// Based on algorithms and data structures used in
// http://code.google.com/p/google-perftools/.
//
// The main difference between this code and the google-perftools
// code is that this code is written to allow copying the profile data
// to an arbitrary io.Writer, while the google-perftools code always
// writes to an operating system file.
//
// The signal handler for the profiling clock tick adds a new stack trace
// to a hash table tracking counts for recent traces.  Most clock ticks
// hit in the cache.  In the event of a cache miss, an entry must be
// evicted from the hash table, copied to a log that will eventually be
// written as profile data.  The google-perftools code flushed the
// log itself during the signal handler.  This code cannot do that, because
// the io.Writer might block or need system calls or locks that are not
// safe to use from within the signal handler.  Instead, we split the log
// into two halves and let the signal handler fill one half while a goroutine
// is writing out the other half.  When the signal handler fills its half, it
// offers to swap with the goroutine.  If the writer is not done with its half,
// we lose the stack trace for this clock tick (and record that loss).
// The goroutine interacts with the signal handler by calling getprofile() to
// get the next log piece to write, implicitly handing back the last log
// piece it obtained.
//
// The state of this dance between the signal handler and the goroutine
// is encoded in the Profile.handoff field.  If handoff == 0, then the goroutine
// is not using either log half and is waiting (or will soon be waiting) for
// a new piece by calling notesleep(&p.wait).  If the signal handler
// changes handoff from 0 to non-zero, it must call notewakeup(&p.wait)
// to wake the goroutine.  The value indicates the number of entries in the
// log half being handed off.  The goroutine leaves the non-zero value in
// place until it has finished processing the log half and then flips the number
// back to zero.  Setting the high bit in handoff means that the profiling is over,
// and the goroutine is now in charge of flushing the data left in the hash table
// to the log and returning that data.
//
// The handoff field is manipulated using atomic operations.
// For the most part, the manipulation of handoff is orderly: if handoff == 0
// then the signal handler owns it and can change it to non-zero.
// If handoff != 0 then the goroutine owns it and can change it to zero.
// If that were the end of the story then we would not need to manipulate
// handoff using atomic operations.  The operations are needed, however,
// in order to let the log closer set the high bit to indicate "EOF" safely
// in the situation when normally the goroutine "owns" handoff.

package runtime

import (
	"runtime/internal/atomic"
	"unsafe"
)

const (
	numBuckets      = 1 << 10
	logSize         = 1 << 17
	assoc           = 4
	maxCPUProfStack = 64
)

type cpuprofEntry struct {
	count uintptr
	depth int
	stack [maxCPUProfStack]uintptr
}

type cpuProfile struct {
	on     bool    // profiling is on
	wait   note    // goroutine waits here
	count  uintptr // tick count
	evicts uintptr // eviction count
	lost   uintptr // lost ticks that need to be logged

	// Active recent stack traces.
	hash [numBuckets]struct {
		entry [assoc]cpuprofEntry
	}

	// Log of traces evicted from hash.
	// Signal handler has filled log[toggle][:nlog].
	// Goroutine is writing log[1-toggle][:handoff].
	log     [2][logSize / 2]uintptr
	nlog    int
	toggle  int32
	handoff uint32

	// Writer state.
	// Writer maintains its own toggle to avoid races
	// looking at signal handler's toggle.
	wtoggle  uint32
	wholding bool // holding & need to release a log half
	flushing bool // flushing hash table - profile is over
	eodSent  bool // special end-of-data record sent; => flushing
}

var (
	cpuprofLock mutex
	cpuprof     *cpuProfile

	eod = [3]uintptr{0, 1, 0}
)

func setcpuprofilerate(hz int32) {
	systemstack(func() {
		setcpuprofilerate_m(hz)
	})
}

// lostProfileData is a no-op function used in profiles
// to mark the number of profiling stack traces that were
// discarded due to slow data writers.
func lostProfileData() {}

// SetCPUProfileRate sets the CPU profiling rate to hz samples per second.
// If hz <= 0, SetCPUProfileRate turns off profiling.
// If the profiler is on, the rate cannot be changed without first turning it off.
//
// Most clients should use the runtime/pprof package or
// the testing package's -test.cpuprofile flag instead of calling
// SetCPUProfileRate directly.
func SetCPUProfileRate(hz int) {
	// Clamp hz to something reasonable.
	if hz < 0 {
		hz = 0
	}
	if hz > 1000000 {
		hz = 1000000
	}

	lock(&cpuprofLock)
	if hz > 0 {
		if cpuprof == nil {
			cpuprof = (*cpuProfile)(sysAlloc(unsafe.Sizeof(cpuProfile{}), &memstats.other_sys))
			if cpuprof == nil {
				print("runtime: cpu profiling cannot allocate memory\n")
				unlock(&cpuprofLock)
				return
			}
		}
		if cpuprof.on || cpuprof.handoff != 0 {
			print("runtime: cannot set cpu profile rate until previous profile has finished.\n")
			unlock(&cpuprofLock)
			return
		}

		cpuprof.on = true
		// pprof binary header format.
		// http://code.google.com/p/google-perftools/source/browse/trunk/src/profiledata.cc#117
		p := &cpuprof.log[0]
		p[0] = 0                 // count for header
		p[1] = 3                 // depth for header
		p[2] = 0                 // version number
		p[3] = uintptr(1e6 / hz) // period (microseconds)
		p[4] = 0
		cpuprof.nlog = 5
		cpuprof.toggle = 0
		cpuprof.wholding = false
		cpuprof.wtoggle = 0
		cpuprof.flushing = false
		cpuprof.eodSent = false
		noteclear(&cpuprof.wait)

		setcpuprofilerate(int32(hz))
	} else if cpuprof != nil && cpuprof.on {
		setcpuprofilerate(0)
		cpuprof.on = false

		// Now add is not running anymore, and getprofile owns the entire log.
		// Set the high bit in cpuprof.handoff to tell getprofile.
		for {
			n := cpuprof.handoff
			if n&0x80000000 != 0 {
				print("runtime: setcpuprofile(off) twice\n")
			}
			if atomic.Cas(&cpuprof.handoff, n, n|0x80000000) {
				if n == 0 {
					// we did the transition from 0 -> nonzero so we wake getprofile
					notewakeup(&cpuprof.wait)
				}
				break
			}
		}
	}
	unlock(&cpuprofLock)
}

// add adds the stack trace to the profile.
// It is called from signal handlers and other limited environments
// and cannot allocate memory or acquire locks that might be
// held at the time of the signal, nor can it use substantial amounts
// of stack.  It is allowed to call evict.
func (p *cpuProfile) add(pc []uintptr) {
	if len(pc) > maxCPUProfStack {
		pc = pc[:maxCPUProfStack]
	}

	// Compute hash.
	h := uintptr(0)
	for _, x := range pc {
		h = h<<8 | (h >> (8 * (unsafe.Sizeof(h) - 1)))
		h += x * 41
	}
	p.count++

	// Add to entry count if already present in table.
	b := &p.hash[h%numBuckets]
Assoc:
	for i := range b.entry {
		e := &b.entry[i]
		if e.depth != len(pc) {
			continue
		}
		for j := range pc {
			if e.stack[j] != pc[j] {
				continue Assoc
			}
		}
		e.count++
		return
	}

	// Evict entry with smallest count.
	var e *cpuprofEntry
	for i := range b.entry {
		if e == nil || b.entry[i].count < e.count {
			e = &b.entry[i]
		}
	}
	if e.count > 0 {
		if !p.evict(e) {
			// Could not evict entry.  Record lost stack.
			p.lost++
			return
		}
		p.evicts++
	}

	// Reuse the newly evicted entry.
	e.depth = len(pc)
	e.count = 1
	copy(e.stack[:], pc)
}

// evict copies the given entry's data into the log, so that
// the entry can be reused.  evict is called from add, which
// is called from the profiling signal handler, so it must not
// allocate memory or block.  It is safe to call flushlog.
// evict returns true if the entry was copied to the log,
// false if there was no room available.
func (p *cpuProfile) evict(e *cpuprofEntry) bool {
	d := e.depth
	nslot := d + 2
	log := &p.log[p.toggle]
	if p.nlog+nslot > len(log) {
		if !p.flushlog() {
			return false
		}
		log = &p.log[p.toggle]
	}

	q := p.nlog
	log[q] = e.count
	q++
	log[q] = uintptr(d)
	q++
	copy(log[q:], e.stack[:d])
	q += d
	p.nlog = q
	e.count = 0
	return true
}

// flushlog tries to flush the current log and switch to the other one.
// flushlog is called from evict, called from add, called from the signal handler,
// so it cannot allocate memory or block.  It can try to swap logs with
// the writing goroutine, as explained in the comment at the top of this file.
func (p *cpuProfile) flushlog() bool {
	if !atomic.Cas(&p.handoff, 0, uint32(p.nlog)) {
		return false
	}
	notewakeup(&p.wait)

	p.toggle = 1 - p.toggle
	log := &p.log[p.toggle]
	q := 0
	if p.lost > 0 {
		lostPC := funcPC(lostProfileData)
		log[0] = p.lost
		log[1] = 1
		log[2] = lostPC
		q = 3
		p.lost = 0
	}
	p.nlog = q
	return true
}

// getprofile blocks until the next block of profiling data is available
// and returns it as a []byte.  It is called from the writing goroutine.
func (p *cpuProfile) getprofile() []byte {
	if p == nil {
		return nil
	}

	if p.wholding {
		// Release previous log to signal handling side.
		// Loop because we are racing against SetCPUProfileRate(0).
		for {
			n := p.handoff
			if n == 0 {
				print("runtime: phase error during cpu profile handoff\n")
				return nil
			}
			if n&0x80000000 != 0 {
				p.wtoggle = 1 - p.wtoggle
				p.wholding = false
				p.flushing = true
				goto Flush
			}
			if atomic.Cas(&p.handoff, n, 0) {
				break
			}
		}
		p.wtoggle = 1 - p.wtoggle
		p.wholding = false
	}

	if p.flushing {
		goto Flush
	}

	if !p.on && p.handoff == 0 {
		return nil
	}

	// Wait for new log.
	notetsleepg(&p.wait, -1)
	noteclear(&p.wait)

	switch n := p.handoff; {
	case n == 0:
		print("runtime: phase error during cpu profile wait\n")
		return nil
	case n == 0x80000000:
		p.flushing = true
		goto Flush
	default:
		n &^= 0x80000000

		// Return new log to caller.
		p.wholding = true

		return uintptrBytes(p.log[p.wtoggle][:n])
	}

	// In flush mode.
	// Add is no longer being called.  We own the log.
	// Also, p.handoff is non-zero, so flushlog will return false.
	// Evict the hash table into the log and return it.
Flush:
	for i := range p.hash {
		b := &p.hash[i]
		for j := range b.entry {
			e := &b.entry[j]
			if e.count > 0 && !p.evict(e) {
				// Filled the log.  Stop the loop and return what we've got.
				break Flush
			}
		}
	}

	// Return pending log data.
	if p.nlog > 0 {
		// Note that we're using toggle now, not wtoggle,
		// because we're working on the log directly.
		n := p.nlog
		p.nlog = 0
		return uintptrBytes(p.log[p.toggle][:n])
	}

	// Made it through the table without finding anything to log.
	if !p.eodSent {
		// We may not have space to append this to the partial log buf,
		// so we always return a new slice for the end-of-data marker.
		p.eodSent = true
		return uintptrBytes(eod[:])
	}

	// Finally done.  Clean up and return nil.
	p.flushing = false
	if !atomic.Cas(&p.handoff, p.handoff, 0) {
		print("runtime: profile flush racing with something\n")
	}
	return nil
}

func uintptrBytes(p []uintptr) (ret []byte) {
	pp := (*slice)(unsafe.Pointer(&p))
	rp := (*slice)(unsafe.Pointer(&ret))

	rp.array = pp.array
	rp.len = pp.len * int(unsafe.Sizeof(p[0]))
	rp.cap = rp.len

	return
}

// CPUProfile returns the next chunk of binary CPU profiling stack trace data,
// blocking until data is available.  If profiling is turned off and all the profile
// data accumulated while it was on has been returned, CPUProfile returns nil.
// The caller must save the returned data before calling CPUProfile again.
//
// Most clients should use the runtime/pprof package or
// the testing package's -test.cpuprofile flag instead of calling
// CPUProfile directly.
func CPUProfile() []byte {
	return cpuprof.getprofile()
}

//go:linkname runtime_pprof_runtime_cyclesPerSecond runtime/pprof.runtime_cyclesPerSecond
func runtime_pprof_runtime_cyclesPerSecond() int64 {
	return tickspersecond()
}