This file is indexed.

/usr/share/go-1.6/src/runtime/cgocall.go is in golang-1.6-src 1.6.1-0ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
// Copyright 2009 The Go Authors.  All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// Cgo call and callback support.
//
// To call into the C function f from Go, the cgo-generated code calls
// runtime.cgocall(_cgo_Cfunc_f, frame), where _cgo_Cfunc_f is a
// gcc-compiled function written by cgo.
//
// runtime.cgocall (below) locks g to m, calls entersyscall
// so as not to block other goroutines or the garbage collector,
// and then calls runtime.asmcgocall(_cgo_Cfunc_f, frame).
//
// runtime.asmcgocall (in asm_$GOARCH.s) switches to the m->g0 stack
// (assumed to be an operating system-allocated stack, so safe to run
// gcc-compiled code on) and calls _cgo_Cfunc_f(frame).
//
// _cgo_Cfunc_f invokes the actual C function f with arguments
// taken from the frame structure, records the results in the frame,
// and returns to runtime.asmcgocall.
//
// After it regains control, runtime.asmcgocall switches back to the
// original g (m->curg)'s stack and returns to runtime.cgocall.
//
// After it regains control, runtime.cgocall calls exitsyscall, which blocks
// until this m can run Go code without violating the $GOMAXPROCS limit,
// and then unlocks g from m.
//
// The above description skipped over the possibility of the gcc-compiled
// function f calling back into Go.  If that happens, we continue down
// the rabbit hole during the execution of f.
//
// To make it possible for gcc-compiled C code to call a Go function p.GoF,
// cgo writes a gcc-compiled function named GoF (not p.GoF, since gcc doesn't
// know about packages).  The gcc-compiled C function f calls GoF.
//
// GoF calls crosscall2(_cgoexp_GoF, frame, framesize).  Crosscall2
// (in cgo/gcc_$GOARCH.S, a gcc-compiled assembly file) is a two-argument
// adapter from the gcc function call ABI to the 6c function call ABI.
// It is called from gcc to call 6c functions.  In this case it calls
// _cgoexp_GoF(frame, framesize), still running on m->g0's stack
// and outside the $GOMAXPROCS limit.  Thus, this code cannot yet
// call arbitrary Go code directly and must be careful not to allocate
// memory or use up m->g0's stack.
//
// _cgoexp_GoF calls runtime.cgocallback(p.GoF, frame, framesize).
// (The reason for having _cgoexp_GoF instead of writing a crosscall3
// to make this call directly is that _cgoexp_GoF, because it is compiled
// with 6c instead of gcc, can refer to dotted names like
// runtime.cgocallback and p.GoF.)
//
// runtime.cgocallback (in asm_$GOARCH.s) switches from m->g0's
// stack to the original g (m->curg)'s stack, on which it calls
// runtime.cgocallbackg(p.GoF, frame, framesize).
// As part of the stack switch, runtime.cgocallback saves the current
// SP as m->g0->sched.sp, so that any use of m->g0's stack during the
// execution of the callback will be done below the existing stack frames.
// Before overwriting m->g0->sched.sp, it pushes the old value on the
// m->g0 stack, so that it can be restored later.
//
// runtime.cgocallbackg (below) is now running on a real goroutine
// stack (not an m->g0 stack).  First it calls runtime.exitsyscall, which will
// block until the $GOMAXPROCS limit allows running this goroutine.
// Once exitsyscall has returned, it is safe to do things like call the memory
// allocator or invoke the Go callback function p.GoF.  runtime.cgocallbackg
// first defers a function to unwind m->g0.sched.sp, so that if p.GoF
// panics, m->g0.sched.sp will be restored to its old value: the m->g0 stack
// and the m->curg stack will be unwound in lock step.
// Then it calls p.GoF.  Finally it pops but does not execute the deferred
// function, calls runtime.entersyscall, and returns to runtime.cgocallback.
//
// After it regains control, runtime.cgocallback switches back to
// m->g0's stack (the pointer is still in m->g0.sched.sp), restores the old
// m->g0.sched.sp value from the stack, and returns to _cgoexp_GoF.
//
// _cgoexp_GoF immediately returns to crosscall2, which restores the
// callee-save registers for gcc and returns to GoF, which returns to f.

package runtime

import (
	"runtime/internal/sys"
	"unsafe"
)

// Call from Go to C.
//go:nosplit
func cgocall(fn, arg unsafe.Pointer) int32 {
	if !iscgo && GOOS != "solaris" && GOOS != "windows" {
		throw("cgocall unavailable")
	}

	if fn == nil {
		throw("cgocall nil")
	}

	if raceenabled {
		racereleasemerge(unsafe.Pointer(&racecgosync))
	}

	/*
	 * Lock g to m to ensure we stay on the same stack if we do a
	 * cgo callback. Add entry to defer stack in case of panic.
	 */
	lockOSThread()
	mp := getg().m
	mp.ncgocall++
	mp.ncgo++
	defer endcgo(mp)

	/*
	 * Announce we are entering a system call
	 * so that the scheduler knows to create another
	 * M to run goroutines while we are in the
	 * foreign code.
	 *
	 * The call to asmcgocall is guaranteed not to
	 * split the stack and does not allocate memory,
	 * so it is safe to call while "in a system call", outside
	 * the $GOMAXPROCS accounting.
	 */
	entersyscall(0)
	errno := asmcgocall(fn, arg)
	exitsyscall(0)

	return errno
}

//go:nosplit
func endcgo(mp *m) {
	mp.ncgo--

	if raceenabled {
		raceacquire(unsafe.Pointer(&racecgosync))
	}

	unlockOSThread() // invalidates mp
}

// Helper functions for cgo code.

func cmalloc(n uintptr) unsafe.Pointer {
	var args struct {
		n   uint64
		ret unsafe.Pointer
	}
	args.n = uint64(n)
	cgocall(_cgo_malloc, unsafe.Pointer(&args))
	if args.ret == nil {
		throw("C malloc failed")
	}
	return args.ret
}

func cfree(p unsafe.Pointer) {
	cgocall(_cgo_free, p)
}

// Call from C back to Go.
//go:nosplit
func cgocallbackg() {
	gp := getg()
	if gp != gp.m.curg {
		println("runtime: bad g in cgocallback")
		exit(2)
	}

	// Save current syscall parameters, so m.syscall can be
	// used again if callback decide to make syscall.
	syscall := gp.m.syscall

	// entersyscall saves the caller's SP to allow the GC to trace the Go
	// stack. However, since we're returning to an earlier stack frame and
	// need to pair with the entersyscall() call made by cgocall, we must
	// save syscall* and let reentersyscall restore them.
	savedsp := unsafe.Pointer(gp.syscallsp)
	savedpc := gp.syscallpc
	exitsyscall(0) // coming out of cgo call
	cgocallbackg1()
	// going back to cgo call
	reentersyscall(savedpc, uintptr(savedsp))

	gp.m.syscall = syscall
}

func cgocallbackg1() {
	gp := getg()
	if gp.m.needextram {
		gp.m.needextram = false
		systemstack(newextram)
	}

	if gp.m.ncgo == 0 {
		// The C call to Go came from a thread not currently running
		// any Go. In the case of -buildmode=c-archive or c-shared,
		// this call may be coming in before package initialization
		// is complete. Wait until it is.
		<-main_init_done
	}

	// Add entry to defer stack in case of panic.
	restore := true
	defer unwindm(&restore)

	if raceenabled {
		raceacquire(unsafe.Pointer(&racecgosync))
	}

	type args struct {
		fn      *funcval
		arg     unsafe.Pointer
		argsize uintptr
	}
	var cb *args

	// Location of callback arguments depends on stack frame layout
	// and size of stack frame of cgocallback_gofunc.
	sp := gp.m.g0.sched.sp
	switch GOARCH {
	default:
		throw("cgocallbackg is unimplemented on arch")
	case "arm":
		// On arm, stack frame is two words and there's a saved LR between
		// SP and the stack frame and between the stack frame and the arguments.
		cb = (*args)(unsafe.Pointer(sp + 4*sys.PtrSize))
	case "arm64":
		// On arm64, stack frame is four words and there's a saved LR between
		// SP and the stack frame and between the stack frame and the arguments.
		cb = (*args)(unsafe.Pointer(sp + 5*sys.PtrSize))
	case "amd64":
		// On amd64, stack frame is one word, plus caller PC.
		if framepointer_enabled {
			// In this case, there's also saved BP.
			cb = (*args)(unsafe.Pointer(sp + 3*sys.PtrSize))
			break
		}
		cb = (*args)(unsafe.Pointer(sp + 2*sys.PtrSize))
	case "386":
		// On 386, stack frame is three words, plus caller PC.
		cb = (*args)(unsafe.Pointer(sp + 4*sys.PtrSize))
	case "ppc64", "ppc64le", "s390x":
		// On ppc64 and s390x, the callback arguments are in the arguments area of
		// cgocallback's stack frame. The stack looks like this:
		// +--------------------+------------------------------+
		// |                    | ...                          |
		// | cgoexp_$fn         +------------------------------+
		// |                    | fixed frame area             |
		// +--------------------+------------------------------+
		// |                    | arguments area               |
		// | cgocallback        +------------------------------+ <- sp + 2*minFrameSize + 2*ptrSize
		// |                    | fixed frame area             |
		// +--------------------+------------------------------+ <- sp + minFrameSize + 2*ptrSize
		// |                    | local variables (2 pointers) |
		// | cgocallback_gofunc +------------------------------+ <- sp + minFrameSize
		// |                    | fixed frame area             |
		// +--------------------+------------------------------+ <- sp
		cb = (*args)(unsafe.Pointer(sp + 2*sys.MinFrameSize + 2*sys.PtrSize))
	}

	// Invoke callback.
	// NOTE(rsc): passing nil for argtype means that the copying of the
	// results back into cb.arg happens without any corresponding write barriers.
	// For cgo, cb.arg points into a C stack frame and therefore doesn't
	// hold any pointers that the GC can find anyway - the write barrier
	// would be a no-op.
	reflectcall(nil, unsafe.Pointer(cb.fn), unsafe.Pointer(cb.arg), uint32(cb.argsize), 0)

	if raceenabled {
		racereleasemerge(unsafe.Pointer(&racecgosync))
	}
	if msanenabled {
		// Tell msan that we wrote to the entire argument block.
		// This tells msan that we set the results.
		// Since we have already called the function it doesn't
		// matter that we are writing to the non-result parameters.
		msanwrite(cb.arg, cb.argsize)
	}

	// Do not unwind m->g0->sched.sp.
	// Our caller, cgocallback, will do that.
	restore = false
}

func unwindm(restore *bool) {
	if !*restore {
		return
	}
	// Restore sp saved by cgocallback during
	// unwind of g's stack (see comment at top of file).
	mp := acquirem()
	sched := &mp.g0.sched
	switch GOARCH {
	default:
		throw("unwindm not implemented")
	case "386", "amd64", "arm", "ppc64", "ppc64le", "s390x":
		sched.sp = *(*uintptr)(unsafe.Pointer(sched.sp + sys.MinFrameSize))
	case "arm64":
		sched.sp = *(*uintptr)(unsafe.Pointer(sched.sp + 16))
	}
	releasem(mp)
}

// called from assembly
func badcgocallback() {
	throw("misaligned stack in cgocallback")
}

// called from (incomplete) assembly
func cgounimpl() {
	throw("cgo not implemented")
}

var racecgosync uint64 // represents possible synchronization in C code

// Pointer checking for cgo code.

// We want to detect all cases where a program that does not use
// unsafe makes a cgo call passing a Go pointer to memory that
// contains a Go pointer.  Here a Go pointer is defined as a pointer
// to memory allocated by the Go runtime.  Programs that use unsafe
// can evade this restriction easily, so we don't try to catch them.
// The cgo program will rewrite all possibly bad pointer arguments to
// call cgoCheckPointer, where we can catch cases of a Go pointer
// pointing to a Go pointer.

// Complicating matters, taking the address of a slice or array
// element permits the C program to access all elements of the slice
// or array.  In that case we will see a pointer to a single element,
// but we need to check the entire data structure.

// The cgoCheckPointer call takes additional arguments indicating that
// it was called on an address expression.  An additional argument of
// true means that it only needs to check a single element.  An
// additional argument of a slice or array means that it needs to
// check the entire slice/array, but nothing else.  Otherwise, the
// pointer could be anything, and we check the entire heap object,
// which is conservative but safe.

// When and if we implement a moving garbage collector,
// cgoCheckPointer will pin the pointer for the duration of the cgo
// call.  (This is necessary but not sufficient; the cgo program will
// also have to change to pin Go pointers that can not point to Go
// pointers.)

// cgoCheckPointer checks if the argument contains a Go pointer that
// points to a Go pointer, and panics if it does.  It returns the pointer.
func cgoCheckPointer(ptr interface{}, args ...interface{}) interface{} {
	if debug.cgocheck == 0 {
		return ptr
	}

	ep := (*eface)(unsafe.Pointer(&ptr))
	t := ep._type

	top := true
	if len(args) > 0 && (t.kind&kindMask == kindPtr || t.kind&kindMask == kindUnsafePointer) {
		p := ep.data
		if t.kind&kindDirectIface == 0 {
			p = *(*unsafe.Pointer)(p)
		}
		if !cgoIsGoPointer(p) {
			return ptr
		}
		aep := (*eface)(unsafe.Pointer(&args[0]))
		switch aep._type.kind & kindMask {
		case kindBool:
			if t.kind&kindMask == kindUnsafePointer {
				// We don't know the type of the element.
				break
			}
			pt := (*ptrtype)(unsafe.Pointer(t))
			cgoCheckArg(pt.elem, p, true, false, cgoCheckPointerFail)
			return ptr
		case kindSlice:
			// Check the slice rather than the pointer.
			ep = aep
			t = ep._type
		case kindArray:
			// Check the array rather than the pointer.
			// Pass top as false since we have a pointer
			// to the array.
			ep = aep
			t = ep._type
			top = false
		default:
			throw("can't happen")
		}
	}

	cgoCheckArg(t, ep.data, t.kind&kindDirectIface == 0, top, cgoCheckPointerFail)
	return ptr
}

const cgoCheckPointerFail = "cgo argument has Go pointer to Go pointer"
const cgoResultFail = "cgo result has Go pointer"

// cgoCheckArg is the real work of cgoCheckPointer.  The argument p
// is either a pointer to the value (of type t), or the value itself,
// depending on indir.  The top parameter is whether we are at the top
// level, where Go pointers are allowed.
func cgoCheckArg(t *_type, p unsafe.Pointer, indir, top bool, msg string) {
	if t.kind&kindNoPointers != 0 {
		// If the type has no pointers there is nothing to do.
		return
	}

	switch t.kind & kindMask {
	default:
		throw("can't happen")
	case kindArray:
		at := (*arraytype)(unsafe.Pointer(t))
		if !indir {
			if at.len != 1 {
				throw("can't happen")
			}
			cgoCheckArg(at.elem, p, at.elem.kind&kindDirectIface == 0, top, msg)
			return
		}
		for i := uintptr(0); i < at.len; i++ {
			cgoCheckArg(at.elem, p, true, top, msg)
			p = add(p, at.elem.size)
		}
	case kindChan, kindMap:
		// These types contain internal pointers that will
		// always be allocated in the Go heap.  It's never OK
		// to pass them to C.
		panic(errorString(msg))
	case kindFunc:
		if indir {
			p = *(*unsafe.Pointer)(p)
		}
		if !cgoIsGoPointer(p) {
			return
		}
		panic(errorString(msg))
	case kindInterface:
		it := *(**_type)(p)
		if it == nil {
			return
		}
		// A type known at compile time is OK since it's
		// constant.  A type not known at compile time will be
		// in the heap and will not be OK.
		if inheap(uintptr(unsafe.Pointer(it))) {
			panic(errorString(msg))
		}
		p = *(*unsafe.Pointer)(add(p, sys.PtrSize))
		if !cgoIsGoPointer(p) {
			return
		}
		if !top {
			panic(errorString(msg))
		}
		cgoCheckArg(it, p, it.kind&kindDirectIface == 0, false, msg)
	case kindSlice:
		st := (*slicetype)(unsafe.Pointer(t))
		s := (*slice)(p)
		p = s.array
		if !cgoIsGoPointer(p) {
			return
		}
		if !top {
			panic(errorString(msg))
		}
		for i := 0; i < s.cap; i++ {
			cgoCheckArg(st.elem, p, true, false, msg)
			p = add(p, st.elem.size)
		}
	case kindString:
		ss := (*stringStruct)(p)
		if !cgoIsGoPointer(ss.str) {
			return
		}
		if !top {
			panic(errorString(msg))
		}
	case kindStruct:
		st := (*structtype)(unsafe.Pointer(t))
		if !indir {
			if len(st.fields) != 1 {
				throw("can't happen")
			}
			cgoCheckArg(st.fields[0].typ, p, st.fields[0].typ.kind&kindDirectIface == 0, top, msg)
			return
		}
		for _, f := range st.fields {
			cgoCheckArg(f.typ, add(p, f.offset), true, top, msg)
		}
	case kindPtr, kindUnsafePointer:
		if indir {
			p = *(*unsafe.Pointer)(p)
		}

		if !cgoIsGoPointer(p) {
			return
		}
		if !top {
			panic(errorString(msg))
		}

		cgoCheckUnknownPointer(p, msg)
	}
}

// cgoCheckUnknownPointer is called for an arbitrary pointer into Go
// memory.  It checks whether that Go memory contains any other
// pointer into Go memory.  If it does, we panic.
// The return values are unused but useful to see in panic tracebacks.
func cgoCheckUnknownPointer(p unsafe.Pointer, msg string) (base, i uintptr) {
	if cgoInRange(p, mheap_.arena_start, mheap_.arena_used) {
		if !inheap(uintptr(p)) {
			// On 32-bit systems it is possible for C's allocated memory
			// to have addresses between arena_start and arena_used.
			// Either this pointer is a stack or an unused span or it's
			// a C allocation. Escape analysis should prevent the first,
			// garbage collection should prevent the second,
			// and the third is completely OK.
			return
		}

		b, hbits, span := heapBitsForObject(uintptr(p), 0, 0)
		base = b
		if base == 0 {
			return
		}
		n := span.elemsize
		for i = uintptr(0); i < n; i += sys.PtrSize {
			bits := hbits.bits()
			if i >= 2*sys.PtrSize && bits&bitMarked == 0 {
				// No more possible pointers.
				break
			}
			if bits&bitPointer != 0 {
				if cgoIsGoPointer(*(*unsafe.Pointer)(unsafe.Pointer(base + i))) {
					panic(errorString(msg))
				}
			}
			hbits = hbits.next()
		}

		return
	}

	for datap := &firstmoduledata; datap != nil; datap = datap.next {
		if cgoInRange(p, datap.data, datap.edata) || cgoInRange(p, datap.bss, datap.ebss) {
			// We have no way to know the size of the object.
			// We have to assume that it might contain a pointer.
			panic(errorString(msg))
		}
		// In the text or noptr sections, we know that the
		// pointer does not point to a Go pointer.
	}

	return
}

// cgoIsGoPointer returns whether the pointer is a Go pointer--a
// pointer to Go memory.  We only care about Go memory that might
// contain pointers.
//go:nosplit
//go:nowritebarrierrec
func cgoIsGoPointer(p unsafe.Pointer) bool {
	if p == nil {
		return false
	}

	if cgoInRange(p, mheap_.arena_start, mheap_.arena_used) {
		return true
	}

	for datap := &firstmoduledata; datap != nil; datap = datap.next {
		if cgoInRange(p, datap.data, datap.edata) || cgoInRange(p, datap.bss, datap.ebss) {
			return true
		}
	}

	return false
}

// cgoInRange returns whether p is between start and end.
//go:nosplit
//go:nowritebarrierrec
func cgoInRange(p unsafe.Pointer, start, end uintptr) bool {
	return start <= uintptr(p) && uintptr(p) < end
}

// cgoCheckResult is called to check the result parameter of an
// exported Go function.  It panics if the result is or contains a Go
// pointer.
func cgoCheckResult(val interface{}) {
	if debug.cgocheck == 0 {
		return
	}

	ep := (*eface)(unsafe.Pointer(&val))
	t := ep._type
	cgoCheckArg(t, ep.data, t.kind&kindDirectIface == 0, false, cgoResultFail)
}