/usr/share/go-1.6/src/regexp/backtrack.go is in golang-1.6-src 1.6.1-0ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 | // Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// backtrack is a regular expression search with submatch
// tracking for small regular expressions and texts. It allocates
// a bit vector with (length of input) * (length of prog) bits,
// to make sure it never explores the same (character position, instruction)
// state multiple times. This limits the search to run in time linear in
// the length of the test.
//
// backtrack is a fast replacement for the NFA code on small
// regexps when onepass cannot be used.
package regexp
import "regexp/syntax"
// A job is an entry on the backtracker's job stack. It holds
// the instruction pc and the position in the input.
type job struct {
pc uint32
arg int
pos int
}
const (
visitedBits = 32
maxBacktrackProg = 500 // len(prog.Inst) <= max
maxBacktrackVector = 256 * 1024 // bit vector size <= max (bits)
)
// bitState holds state for the backtracker.
type bitState struct {
prog *syntax.Prog
end int
cap []int
input input
jobs []job
visited []uint32
}
var notBacktrack *bitState = nil
// maxBitStateLen returns the maximum length of a string to search with
// the backtracker using prog.
func maxBitStateLen(prog *syntax.Prog) int {
if !shouldBacktrack(prog) {
return 0
}
return maxBacktrackVector / len(prog.Inst)
}
// newBitState returns a new bitState for the given prog,
// or notBacktrack if the size of the prog exceeds the maximum size that
// the backtracker will be run for.
func newBitState(prog *syntax.Prog) *bitState {
if !shouldBacktrack(prog) {
return notBacktrack
}
return &bitState{
prog: prog,
}
}
// shouldBacktrack reports whether the program is too
// long for the backtracker to run.
func shouldBacktrack(prog *syntax.Prog) bool {
return len(prog.Inst) <= maxBacktrackProg
}
// reset resets the state of the backtracker.
// end is the end position in the input.
// ncap is the number of captures.
func (b *bitState) reset(end int, ncap int) {
b.end = end
if cap(b.jobs) == 0 {
b.jobs = make([]job, 0, 256)
} else {
b.jobs = b.jobs[:0]
}
visitedSize := (len(b.prog.Inst)*(end+1) + visitedBits - 1) / visitedBits
if cap(b.visited) < visitedSize {
b.visited = make([]uint32, visitedSize, maxBacktrackVector/visitedBits)
} else {
b.visited = b.visited[:visitedSize]
for i := range b.visited {
b.visited[i] = 0
}
}
if cap(b.cap) < ncap {
b.cap = make([]int, ncap)
} else {
b.cap = b.cap[:ncap]
}
for i := range b.cap {
b.cap[i] = -1
}
}
// shouldVisit reports whether the combination of (pc, pos) has not
// been visited yet.
func (b *bitState) shouldVisit(pc uint32, pos int) bool {
n := uint(int(pc)*(b.end+1) + pos)
if b.visited[n/visitedBits]&(1<<(n&(visitedBits-1))) != 0 {
return false
}
b.visited[n/visitedBits] |= 1 << (n & (visitedBits - 1))
return true
}
// push pushes (pc, pos, arg) onto the job stack if it should be
// visited.
func (b *bitState) push(pc uint32, pos int, arg int) {
if b.prog.Inst[pc].Op == syntax.InstFail {
return
}
// Only check shouldVisit when arg == 0.
// When arg > 0, we are continuing a previous visit.
if arg == 0 && !b.shouldVisit(pc, pos) {
return
}
b.jobs = append(b.jobs, job{pc: pc, arg: arg, pos: pos})
}
// tryBacktrack runs a backtracking search starting at pos.
func (m *machine) tryBacktrack(b *bitState, i input, pc uint32, pos int) bool {
longest := m.re.longest
m.matched = false
b.push(pc, pos, 0)
for len(b.jobs) > 0 {
l := len(b.jobs) - 1
// Pop job off the stack.
pc := b.jobs[l].pc
pos := b.jobs[l].pos
arg := b.jobs[l].arg
b.jobs = b.jobs[:l]
// Optimization: rather than push and pop,
// code that is going to Push and continue
// the loop simply updates ip, p, and arg
// and jumps to CheckAndLoop. We have to
// do the ShouldVisit check that Push
// would have, but we avoid the stack
// manipulation.
goto Skip
CheckAndLoop:
if !b.shouldVisit(pc, pos) {
continue
}
Skip:
inst := b.prog.Inst[pc]
switch inst.Op {
default:
panic("bad inst")
case syntax.InstFail:
panic("unexpected InstFail")
case syntax.InstAlt:
// Cannot just
// b.push(inst.Out, pos, 0)
// b.push(inst.Arg, pos, 0)
// If during the processing of inst.Out, we encounter
// inst.Arg via another path, we want to process it then.
// Pushing it here will inhibit that. Instead, re-push
// inst with arg==1 as a reminder to push inst.Arg out
// later.
switch arg {
case 0:
b.push(pc, pos, 1)
pc = inst.Out
goto CheckAndLoop
case 1:
// Finished inst.Out; try inst.Arg.
arg = 0
pc = inst.Arg
goto CheckAndLoop
}
panic("bad arg in InstAlt")
case syntax.InstAltMatch:
// One opcode consumes runes; the other leads to match.
switch b.prog.Inst[inst.Out].Op {
case syntax.InstRune, syntax.InstRune1, syntax.InstRuneAny, syntax.InstRuneAnyNotNL:
// inst.Arg is the match.
b.push(inst.Arg, pos, 0)
pc = inst.Arg
pos = b.end
goto CheckAndLoop
}
// inst.Out is the match - non-greedy
b.push(inst.Out, b.end, 0)
pc = inst.Out
goto CheckAndLoop
case syntax.InstRune:
r, width := i.step(pos)
if !inst.MatchRune(r) {
continue
}
pos += width
pc = inst.Out
goto CheckAndLoop
case syntax.InstRune1:
r, width := i.step(pos)
if r != inst.Rune[0] {
continue
}
pos += width
pc = inst.Out
goto CheckAndLoop
case syntax.InstRuneAnyNotNL:
r, width := i.step(pos)
if r == '\n' || r == endOfText {
continue
}
pos += width
pc = inst.Out
goto CheckAndLoop
case syntax.InstRuneAny:
r, width := i.step(pos)
if r == endOfText {
continue
}
pos += width
pc = inst.Out
goto CheckAndLoop
case syntax.InstCapture:
switch arg {
case 0:
if 0 <= inst.Arg && inst.Arg < uint32(len(b.cap)) {
// Capture pos to register, but save old value.
b.push(pc, b.cap[inst.Arg], 1) // come back when we're done.
b.cap[inst.Arg] = pos
}
pc = inst.Out
goto CheckAndLoop
case 1:
// Finished inst.Out; restore the old value.
b.cap[inst.Arg] = pos
continue
}
panic("bad arg in InstCapture")
continue
case syntax.InstEmptyWidth:
if syntax.EmptyOp(inst.Arg)&^i.context(pos) != 0 {
continue
}
pc = inst.Out
goto CheckAndLoop
case syntax.InstNop:
pc = inst.Out
goto CheckAndLoop
case syntax.InstMatch:
// We found a match. If the caller doesn't care
// where the match is, no point going further.
if len(b.cap) == 0 {
m.matched = true
return m.matched
}
// Record best match so far.
// Only need to check end point, because this entire
// call is only considering one start position.
if len(b.cap) > 1 {
b.cap[1] = pos
}
if !m.matched || (longest && pos > 0 && pos > m.matchcap[1]) {
copy(m.matchcap, b.cap)
}
m.matched = true
// If going for first match, we're done.
if !longest {
return m.matched
}
// If we used the entire text, no longer match is possible.
if pos == b.end {
return m.matched
}
// Otherwise, continue on in hope of a longer match.
continue
}
panic("unreachable")
}
return m.matched
}
// backtrack runs a backtracking search of prog on the input starting at pos.
func (m *machine) backtrack(i input, pos int, end int, ncap int) bool {
if !i.canCheckPrefix() {
panic("backtrack called for a RuneReader")
}
startCond := m.re.cond
if startCond == ^syntax.EmptyOp(0) { // impossible
return false
}
if startCond&syntax.EmptyBeginText != 0 && pos != 0 {
// Anchored match, past beginning of text.
return false
}
b := m.b
b.reset(end, ncap)
m.matchcap = m.matchcap[:ncap]
for i := range m.matchcap {
m.matchcap[i] = -1
}
// Anchored search must start at the beginning of the input
if startCond&syntax.EmptyBeginText != 0 {
if len(b.cap) > 0 {
b.cap[0] = pos
}
return m.tryBacktrack(b, i, uint32(m.p.Start), pos)
}
// Unanchored search, starting from each possible text position.
// Notice that we have to try the empty string at the end of
// the text, so the loop condition is pos <= end, not pos < end.
// This looks like it's quadratic in the size of the text,
// but we are not clearing visited between calls to TrySearch,
// so no work is duplicated and it ends up still being linear.
width := -1
for ; pos <= end && width != 0; pos += width {
if len(m.re.prefix) > 0 {
// Match requires literal prefix; fast search for it.
advance := i.index(m.re, pos)
if advance < 0 {
return false
}
pos += advance
}
if len(b.cap) > 0 {
b.cap[0] = pos
}
if m.tryBacktrack(b, i, uint32(m.p.Start), pos) {
// Match must be leftmost; done.
return true
}
_, width = i.step(pos)
}
return false
}
|