/usr/share/go-1.6/src/math/j0.go is in golang-1.6-src 1.6.1-0ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 | // Copyright 2010 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package math
/*
Bessel function of the first and second kinds of order zero.
*/
// The original C code and the long comment below are
// from FreeBSD's /usr/src/lib/msun/src/e_j0.c and
// came with this notice. The go code is a simplified
// version of the original C.
//
// ====================================================
// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
//
// Developed at SunPro, a Sun Microsystems, Inc. business.
// Permission to use, copy, modify, and distribute this
// software is freely granted, provided that this notice
// is preserved.
// ====================================================
//
// __ieee754_j0(x), __ieee754_y0(x)
// Bessel function of the first and second kinds of order zero.
// Method -- j0(x):
// 1. For tiny x, we use j0(x) = 1 - x**2/4 + x**4/64 - ...
// 2. Reduce x to |x| since j0(x)=j0(-x), and
// for x in (0,2)
// j0(x) = 1-z/4+ z**2*R0/S0, where z = x*x;
// (precision: |j0-1+z/4-z**2R0/S0 |<2**-63.67 )
// for x in (2,inf)
// j0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)-q0(x)*sin(x0))
// where x0 = x-pi/4. It is better to compute sin(x0),cos(x0)
// as follow:
// cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4)
// = 1/sqrt(2) * (cos(x) + sin(x))
// sin(x0) = sin(x)cos(pi/4)-cos(x)sin(pi/4)
// = 1/sqrt(2) * (sin(x) - cos(x))
// (To avoid cancelation, use
// sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
// to compute the worse one.)
//
// 3 Special cases
// j0(nan)= nan
// j0(0) = 1
// j0(inf) = 0
//
// Method -- y0(x):
// 1. For x<2.
// Since
// y0(x) = 2/pi*(j0(x)*(ln(x/2)+Euler) + x**2/4 - ...)
// therefore y0(x)-2/pi*j0(x)*ln(x) is an even function.
// We use the following function to approximate y0,
// y0(x) = U(z)/V(z) + (2/pi)*(j0(x)*ln(x)), z= x**2
// where
// U(z) = u00 + u01*z + ... + u06*z**6
// V(z) = 1 + v01*z + ... + v04*z**4
// with absolute approximation error bounded by 2**-72.
// Note: For tiny x, U/V = u0 and j0(x)~1, hence
// y0(tiny) = u0 + (2/pi)*ln(tiny), (choose tiny<2**-27)
// 2. For x>=2.
// y0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)+q0(x)*sin(x0))
// where x0 = x-pi/4. It is better to compute sin(x0),cos(x0)
// by the method mentioned above.
// 3. Special cases: y0(0)=-inf, y0(x<0)=NaN, y0(inf)=0.
//
// J0 returns the order-zero Bessel function of the first kind.
//
// Special cases are:
// J0(±Inf) = 0
// J0(0) = 1
// J0(NaN) = NaN
func J0(x float64) float64 {
const (
Huge = 1e300
TwoM27 = 1.0 / (1 << 27) // 2**-27 0x3e40000000000000
TwoM13 = 1.0 / (1 << 13) // 2**-13 0x3f20000000000000
Two129 = 1 << 129 // 2**129 0x4800000000000000
// R0/S0 on [0, 2]
R02 = 1.56249999999999947958e-02 // 0x3F8FFFFFFFFFFFFD
R03 = -1.89979294238854721751e-04 // 0xBF28E6A5B61AC6E9
R04 = 1.82954049532700665670e-06 // 0x3EBEB1D10C503919
R05 = -4.61832688532103189199e-09 // 0xBE33D5E773D63FCE
S01 = 1.56191029464890010492e-02 // 0x3F8FFCE882C8C2A4
S02 = 1.16926784663337450260e-04 // 0x3F1EA6D2DD57DBF4
S03 = 5.13546550207318111446e-07 // 0x3EA13B54CE84D5A9
S04 = 1.16614003333790000205e-09 // 0x3E1408BCF4745D8F
)
// special cases
switch {
case IsNaN(x):
return x
case IsInf(x, 0):
return 0
case x == 0:
return 1
}
if x < 0 {
x = -x
}
if x >= 2 {
s, c := Sincos(x)
ss := s - c
cc := s + c
// make sure x+x does not overflow
if x < MaxFloat64/2 {
z := -Cos(x + x)
if s*c < 0 {
cc = z / ss
} else {
ss = z / cc
}
}
// j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
// y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
var z float64
if x > Two129 { // |x| > ~6.8056e+38
z = (1 / SqrtPi) * cc / Sqrt(x)
} else {
u := pzero(x)
v := qzero(x)
z = (1 / SqrtPi) * (u*cc - v*ss) / Sqrt(x)
}
return z // |x| >= 2.0
}
if x < TwoM13 { // |x| < ~1.2207e-4
if x < TwoM27 {
return 1 // |x| < ~7.4506e-9
}
return 1 - 0.25*x*x // ~7.4506e-9 < |x| < ~1.2207e-4
}
z := x * x
r := z * (R02 + z*(R03+z*(R04+z*R05)))
s := 1 + z*(S01+z*(S02+z*(S03+z*S04)))
if x < 1 {
return 1 + z*(-0.25+(r/s)) // |x| < 1.00
}
u := 0.5 * x
return (1+u)*(1-u) + z*(r/s) // 1.0 < |x| < 2.0
}
// Y0 returns the order-zero Bessel function of the second kind.
//
// Special cases are:
// Y0(+Inf) = 0
// Y0(0) = -Inf
// Y0(x < 0) = NaN
// Y0(NaN) = NaN
func Y0(x float64) float64 {
const (
TwoM27 = 1.0 / (1 << 27) // 2**-27 0x3e40000000000000
Two129 = 1 << 129 // 2**129 0x4800000000000000
U00 = -7.38042951086872317523e-02 // 0xBFB2E4D699CBD01F
U01 = 1.76666452509181115538e-01 // 0x3FC69D019DE9E3FC
U02 = -1.38185671945596898896e-02 // 0xBF8C4CE8B16CFA97
U03 = 3.47453432093683650238e-04 // 0x3F36C54D20B29B6B
U04 = -3.81407053724364161125e-06 // 0xBECFFEA773D25CAD
U05 = 1.95590137035022920206e-08 // 0x3E5500573B4EABD4
U06 = -3.98205194132103398453e-11 // 0xBDC5E43D693FB3C8
V01 = 1.27304834834123699328e-02 // 0x3F8A127091C9C71A
V02 = 7.60068627350353253702e-05 // 0x3F13ECBBF578C6C1
V03 = 2.59150851840457805467e-07 // 0x3E91642D7FF202FD
V04 = 4.41110311332675467403e-10 // 0x3DFE50183BD6D9EF
)
// special cases
switch {
case x < 0 || IsNaN(x):
return NaN()
case IsInf(x, 1):
return 0
case x == 0:
return Inf(-1)
}
if x >= 2 { // |x| >= 2.0
// y0(x) = sqrt(2/(pi*x))*(p0(x)*sin(x0)+q0(x)*cos(x0))
// where x0 = x-pi/4
// Better formula:
// cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4)
// = 1/sqrt(2) * (sin(x) + cos(x))
// sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
// = 1/sqrt(2) * (sin(x) - cos(x))
// To avoid cancelation, use
// sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
// to compute the worse one.
s, c := Sincos(x)
ss := s - c
cc := s + c
// j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
// y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
// make sure x+x does not overflow
if x < MaxFloat64/2 {
z := -Cos(x + x)
if s*c < 0 {
cc = z / ss
} else {
ss = z / cc
}
}
var z float64
if x > Two129 { // |x| > ~6.8056e+38
z = (1 / SqrtPi) * ss / Sqrt(x)
} else {
u := pzero(x)
v := qzero(x)
z = (1 / SqrtPi) * (u*ss + v*cc) / Sqrt(x)
}
return z // |x| >= 2.0
}
if x <= TwoM27 {
return U00 + (2/Pi)*Log(x) // |x| < ~7.4506e-9
}
z := x * x
u := U00 + z*(U01+z*(U02+z*(U03+z*(U04+z*(U05+z*U06)))))
v := 1 + z*(V01+z*(V02+z*(V03+z*V04)))
return u/v + (2/Pi)*J0(x)*Log(x) // ~7.4506e-9 < |x| < 2.0
}
// The asymptotic expansions of pzero is
// 1 - 9/128 s**2 + 11025/98304 s**4 - ..., where s = 1/x.
// For x >= 2, We approximate pzero by
// pzero(x) = 1 + (R/S)
// where R = pR0 + pR1*s**2 + pR2*s**4 + ... + pR5*s**10
// S = 1 + pS0*s**2 + ... + pS4*s**10
// and
// | pzero(x)-1-R/S | <= 2 ** ( -60.26)
// for x in [inf, 8]=1/[0,0.125]
var p0R8 = [6]float64{
0.00000000000000000000e+00, // 0x0000000000000000
-7.03124999999900357484e-02, // 0xBFB1FFFFFFFFFD32
-8.08167041275349795626e+00, // 0xC02029D0B44FA779
-2.57063105679704847262e+02, // 0xC07011027B19E863
-2.48521641009428822144e+03, // 0xC0A36A6ECD4DCAFC
-5.25304380490729545272e+03, // 0xC0B4850B36CC643D
}
var p0S8 = [5]float64{
1.16534364619668181717e+02, // 0x405D223307A96751
3.83374475364121826715e+03, // 0x40ADF37D50596938
4.05978572648472545552e+04, // 0x40E3D2BB6EB6B05F
1.16752972564375915681e+05, // 0x40FC810F8F9FA9BD
4.76277284146730962675e+04, // 0x40E741774F2C49DC
}
// for x in [8,4.5454]=1/[0.125,0.22001]
var p0R5 = [6]float64{
-1.14125464691894502584e-11, // 0xBDA918B147E495CC
-7.03124940873599280078e-02, // 0xBFB1FFFFE69AFBC6
-4.15961064470587782438e+00, // 0xC010A370F90C6BBF
-6.76747652265167261021e+01, // 0xC050EB2F5A7D1783
-3.31231299649172967747e+02, // 0xC074B3B36742CC63
-3.46433388365604912451e+02, // 0xC075A6EF28A38BD7
}
var p0S5 = [5]float64{
6.07539382692300335975e+01, // 0x404E60810C98C5DE
1.05125230595704579173e+03, // 0x40906D025C7E2864
5.97897094333855784498e+03, // 0x40B75AF88FBE1D60
9.62544514357774460223e+03, // 0x40C2CCB8FA76FA38
2.40605815922939109441e+03, // 0x40A2CC1DC70BE864
}
// for x in [4.547,2.8571]=1/[0.2199,0.35001]
var p0R3 = [6]float64{
-2.54704601771951915620e-09, // 0xBE25E1036FE1AA86
-7.03119616381481654654e-02, // 0xBFB1FFF6F7C0E24B
-2.40903221549529611423e+00, // 0xC00345B2AEA48074
-2.19659774734883086467e+01, // 0xC035F74A4CB94E14
-5.80791704701737572236e+01, // 0xC04D0A22420A1A45
-3.14479470594888503854e+01, // 0xC03F72ACA892D80F
}
var p0S3 = [5]float64{
3.58560338055209726349e+01, // 0x4041ED9284077DD3
3.61513983050303863820e+02, // 0x40769839464A7C0E
1.19360783792111533330e+03, // 0x4092A66E6D1061D6
1.12799679856907414432e+03, // 0x40919FFCB8C39B7E
1.73580930813335754692e+02, // 0x4065B296FC379081
}
// for x in [2.8570,2]=1/[0.3499,0.5]
var p0R2 = [6]float64{
-8.87534333032526411254e-08, // 0xBE77D316E927026D
-7.03030995483624743247e-02, // 0xBFB1FF62495E1E42
-1.45073846780952986357e+00, // 0xBFF736398A24A843
-7.63569613823527770791e+00, // 0xC01E8AF3EDAFA7F3
-1.11931668860356747786e+01, // 0xC02662E6C5246303
-3.23364579351335335033e+00, // 0xC009DE81AF8FE70F
}
var p0S2 = [5]float64{
2.22202997532088808441e+01, // 0x40363865908B5959
1.36206794218215208048e+02, // 0x4061069E0EE8878F
2.70470278658083486789e+02, // 0x4070E78642EA079B
1.53875394208320329881e+02, // 0x40633C033AB6FAFF
1.46576176948256193810e+01, // 0x402D50B344391809
}
func pzero(x float64) float64 {
var p [6]float64
var q [5]float64
if x >= 8 {
p = p0R8
q = p0S8
} else if x >= 4.5454 {
p = p0R5
q = p0S5
} else if x >= 2.8571 {
p = p0R3
q = p0S3
} else if x >= 2 {
p = p0R2
q = p0S2
}
z := 1 / (x * x)
r := p[0] + z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))))
s := 1 + z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))))
return 1 + r/s
}
// For x >= 8, the asymptotic expansions of qzero is
// -1/8 s + 75/1024 s**3 - ..., where s = 1/x.
// We approximate pzero by
// qzero(x) = s*(-1.25 + (R/S))
// where R = qR0 + qR1*s**2 + qR2*s**4 + ... + qR5*s**10
// S = 1 + qS0*s**2 + ... + qS5*s**12
// and
// | qzero(x)/s +1.25-R/S | <= 2**(-61.22)
// for x in [inf, 8]=1/[0,0.125]
var q0R8 = [6]float64{
0.00000000000000000000e+00, // 0x0000000000000000
7.32421874999935051953e-02, // 0x3FB2BFFFFFFFFE2C
1.17682064682252693899e+01, // 0x402789525BB334D6
5.57673380256401856059e+02, // 0x40816D6315301825
8.85919720756468632317e+03, // 0x40C14D993E18F46D
3.70146267776887834771e+04, // 0x40E212D40E901566
}
var q0S8 = [6]float64{
1.63776026895689824414e+02, // 0x406478D5365B39BC
8.09834494656449805916e+03, // 0x40BFA2584E6B0563
1.42538291419120476348e+05, // 0x4101665254D38C3F
8.03309257119514397345e+05, // 0x412883DA83A52B43
8.40501579819060512818e+05, // 0x4129A66B28DE0B3D
-3.43899293537866615225e+05, // 0xC114FD6D2C9530C5
}
// for x in [8,4.5454]=1/[0.125,0.22001]
var q0R5 = [6]float64{
1.84085963594515531381e-11, // 0x3DB43D8F29CC8CD9
7.32421766612684765896e-02, // 0x3FB2BFFFD172B04C
5.83563508962056953777e+00, // 0x401757B0B9953DD3
1.35111577286449829671e+02, // 0x4060E3920A8788E9
1.02724376596164097464e+03, // 0x40900CF99DC8C481
1.98997785864605384631e+03, // 0x409F17E953C6E3A6
}
var q0S5 = [6]float64{
8.27766102236537761883e+01, // 0x4054B1B3FB5E1543
2.07781416421392987104e+03, // 0x40A03BA0DA21C0CE
1.88472887785718085070e+04, // 0x40D267D27B591E6D
5.67511122894947329769e+04, // 0x40EBB5E397E02372
3.59767538425114471465e+04, // 0x40E191181F7A54A0
-5.35434275601944773371e+03, // 0xC0B4EA57BEDBC609
}
// for x in [4.547,2.8571]=1/[0.2199,0.35001]
var q0R3 = [6]float64{
4.37741014089738620906e-09, // 0x3E32CD036ADECB82
7.32411180042911447163e-02, // 0x3FB2BFEE0E8D0842
3.34423137516170720929e+00, // 0x400AC0FC61149CF5
4.26218440745412650017e+01, // 0x40454F98962DAEDD
1.70808091340565596283e+02, // 0x406559DBE25EFD1F
1.66733948696651168575e+02, // 0x4064D77C81FA21E0
}
var q0S3 = [6]float64{
4.87588729724587182091e+01, // 0x40486122BFE343A6
7.09689221056606015736e+02, // 0x40862D8386544EB3
3.70414822620111362994e+03, // 0x40ACF04BE44DFC63
6.46042516752568917582e+03, // 0x40B93C6CD7C76A28
2.51633368920368957333e+03, // 0x40A3A8AAD94FB1C0
-1.49247451836156386662e+02, // 0xC062A7EB201CF40F
}
// for x in [2.8570,2]=1/[0.3499,0.5]
var q0R2 = [6]float64{
1.50444444886983272379e-07, // 0x3E84313B54F76BDB
7.32234265963079278272e-02, // 0x3FB2BEC53E883E34
1.99819174093815998816e+00, // 0x3FFFF897E727779C
1.44956029347885735348e+01, // 0x402CFDBFAAF96FE5
3.16662317504781540833e+01, // 0x403FAA8E29FBDC4A
1.62527075710929267416e+01, // 0x403040B171814BB4
}
var q0S2 = [6]float64{
3.03655848355219184498e+01, // 0x403E5D96F7C07AED
2.69348118608049844624e+02, // 0x4070D591E4D14B40
8.44783757595320139444e+02, // 0x408A664522B3BF22
8.82935845112488550512e+02, // 0x408B977C9C5CC214
2.12666388511798828631e+02, // 0x406A95530E001365
-5.31095493882666946917e+00, // 0xC0153E6AF8B32931
}
func qzero(x float64) float64 {
var p, q [6]float64
if x >= 8 {
p = q0R8
q = q0S8
} else if x >= 4.5454 {
p = q0R5
q = q0S5
} else if x >= 2.8571 {
p = q0R3
q = q0S3
} else if x >= 2 {
p = q0R2
q = q0S2
}
z := 1 / (x * x)
r := p[0] + z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))))
s := 1 + z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5])))))
return (-0.125 + r/s) / x
}
|