This file is indexed.

/usr/bin/sa-learn is in spamassassin 3.4.1-3.

This file is owned by root:root, with mode 0o755.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
#!/usr/bin/perl -T -w

eval 'exec /usr/bin/perl -T -w -S $0 ${1+"$@"}'
    if 0; # not running under some shell
# <@LICENSE>
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements.  See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to you under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License.  You may obtain a copy of the License at:
# 
#     http://www.apache.org/licenses/LICENSE-2.0
# 
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# </@LICENSE>

use strict;
use warnings;
use bytes;

use Errno qw(EBADF);
use Getopt::Long;
use Pod::Usage;
use File::Spec;

use vars qw(
  $spamtest %opt $isspam $forget
  $messagecount $learnedcount $messagelimit
  $progress $total_messages $init_results $start_time
  $synconly $learnprob @targets $bayes_override_path
);

my $PREFIX = '/usr';  # substituted at 'make' time
my $DEF_RULES_DIR = '/usr/share/spamassassin';  # substituted at 'make' time
my $LOCAL_RULES_DIR = '/etc/spamassassin';  # substituted at 'make' time

use lib '/usr/share/perl5';                # substituted at 'make' time

BEGIN {                          # see comments in "spamassassin.raw" for doco
  my @bin = File::Spec->splitpath($0);
  my $bin = ($bin[0] ? File::Spec->catpath(@bin[0..1]) : $bin[1])
            || File::Spec->curdir;

  if (-e $bin.'/lib/Mail/SpamAssassin.pm'
        || !-e '/usr/share/perl5/Mail/SpamAssassin.pm' )
  {
    my $searchrelative;
    if ($searchrelative && $bin eq '../' && -e '../blib/lib/Mail/SpamAssassin.pm')
    {
      unshift ( @INC, '../blib/lib' );
    } else {
      foreach ( qw(lib ../lib/site_perl
                ../lib/spamassassin ../share/spamassassin/lib))
      {
        my $dir = File::Spec->catdir( $bin, split ( '/', $_ ) );
        if ( -f File::Spec->catfile( $dir, "Mail", "SpamAssassin.pm" ) )
        { unshift ( @INC, $dir ); last; }
      }
    }
  }
}

use Mail::SpamAssassin;
use Mail::SpamAssassin::ArchiveIterator;
use Mail::SpamAssassin::Message;
use Mail::SpamAssassin::PerMsgLearner;
use Mail::SpamAssassin::Util::Progress;
use Mail::SpamAssassin::Logger;

###########################################################################

$SIG{PIPE} = 'IGNORE';

# used to be CmdLearn::cmd_run() ...

%opt = (
  'force-expire' => 0,
  'use-ignores'  => 0,
  'nosync'       => 0,
  'quiet'        => 0,
  'cf'           => []
);

Getopt::Long::Configure(
  qw(bundling no_getopt_compat
    permute no_auto_abbrev no_ignore_case)
);

GetOptions(
  'forget'      => \$forget,
  'ham|nonspam' => sub { $isspam = 0; },
  'spam'        => sub { $isspam = 1; },
  'sync'        => \$synconly,
  'rebuild'     => sub { $synconly = 1; warn "The --rebuild option has been deprecated.  Please use --sync instead.\n" },

  'q|quiet'     => \$opt{'quiet'},
  'username|u=s'    => \$opt{'username'},
  'configpath|config-file|config-dir|c|C=s' => \$opt{'configpath'},
  'prefspath|prefs-file|p=s'                => \$opt{'prefspath'},
  'siteconfigpath=s'                        => \$opt{'siteconfigpath'},
  'cf=s'                                    => \@{$opt{'cf'}},

  'folders|f=s'          => \$opt{'folders'},
  'force-expire|expire'  => \$opt{'force-expire'},
  'local|L'              => \$opt{'local'},
  'no-sync|nosync'       => \$opt{'nosync'},
  'showdots'             => \$opt{'showdots'},
  'progress'             => \$opt{'progress'},
  'use-ignores'          => \$opt{'use-ignores'},
  'no-rebuild|norebuild' => sub { $opt{'nosync'} = 1; warn "The --no-rebuild option has been deprecated.  Please use --no-sync instead.\n" },

  'learnprob=f' => \$opt{'learnprob'},
  'randseed=i'  => \$opt{'randseed'},
  'stopafter=i' => \$opt{'stopafter'},
  'max-size=i'  => \$opt{'max-size'},

  'debug|debug-level|D:s' => \$opt{'debug'},
  'help|h|?'        => \$opt{'help'},
  'version|V'       => \$opt{'version'},

  'dump:s' => \$opt{'dump'},
  'import' => \$opt{'import'},

  'backup'    => \$opt{'backup'},
  'clear'     => \$opt{'clear'},
  'restore=s' => \$opt{'restore'},

  'dir'    => sub { $opt{'old_format'} = 'dir'; },
  'file'   => sub { $opt{'old_format'} = 'file'; },
  'mbox'   => sub { $opt{'format'}     = 'mbox'; },
  'mbx'    => sub { $opt{'format'}     = 'mbx'; },
  'single' => sub { $opt{'old_format'} = 'single'; },

  'db|dbpath=s' => \$bayes_override_path,
  're|regexp=s' => \$opt{'regexp'},

  '<>' => \&target,
  )
  or usage( 0, "Unknown option!" );

if ( defined $opt{'help'} ) {
  usage( 0, "For more information read the manual page" );
}
if ( defined $opt{'version'} ) {
  print "SpamAssassin version " . Mail::SpamAssassin::Version() . "\n";
  exit 0;
}

# set debug areas, if any specified (only useful for command-line tools)
if (defined $opt{'debug'}) {
  $opt{'debug'} ||= 'all';
}

if ( $opt{'force-expire'} ) {
  $synconly = 1;
}

if ($opt{'showdots'} && $opt{'progress'}) {
  print "--showdots and --progress may not be used together, please select just one\n";
  exit 0;
}

if ( !defined $isspam
  && !defined $synconly
  && !defined $forget
  && !defined $opt{'dump'}
  && !defined $opt{'import'}
  && !defined $opt{'clear'}
  && !defined $opt{'backup'}
  && !defined $opt{'restore'}
  && !defined $opt{'folders'} )
{
  usage( 0,
"Please select either --spam, --ham, --folders, --forget, --sync, --import,\n--dump, --clear, --backup or --restore"
  );
}

# We need to make sure the journal syncs pre-forget...
if ( defined $forget && $opt{'nosync'} ) {
  $opt{'nosync'} = 0;
  warn
"sa-learn warning: --forget requires read/write access to the database, and is incompatible with --no-sync\n";
}

if ( defined $opt{'old_format'} ) {

  #Format specified in the 2.5x form of --dir, --file, --mbox, --mbx or --single.
  #Convert it to the new behavior:
  if ( $opt{'old_format'} eq 'single' ) {
    push ( @ARGV, '-' );
  }
}

my $post_config = '';

# kluge to support old check_bayes_db operation
# bug 3799: init() will go r/o with the configured DB, and then dbpath needs
# to override.  Just access the dbpath version via post_config_text.
if ( defined $bayes_override_path ) {
  # Add a default prefix if the path is a directory
  if ( -d $bayes_override_path ) {
    $bayes_override_path = File::Spec->catfile( $bayes_override_path, 'bayes' );
  }

  $post_config .= "bayes_path $bayes_override_path\n";
}

# These options require bayes_scanner, which requires "use_bayes 1", but
# that's not necessary for these commands.
if (defined $opt{'dump'} || defined $opt{'import'} || defined $opt{'clear'} ||
    defined $opt{'backup'} || defined $opt{'restore'}) {
  $post_config .= "use_bayes 1\n";
}

$post_config .= join("\n", @{$opt{'cf'}})."\n";

# create the tester factory
$spamtest = new Mail::SpamAssassin(
  {
    rules_filename      => $opt{'configpath'},
    site_rules_filename => $opt{'siteconfigpath'},
    userprefs_filename  => $opt{'prefspath'},
    username            => $opt{'username'},
    debug               => $opt{'debug'},
    local_tests_only    => $opt{'local'},
    dont_copy_prefs     => 1,
    PREFIX              => $PREFIX,
    DEF_RULES_DIR       => $DEF_RULES_DIR,
    LOCAL_RULES_DIR     => $LOCAL_RULES_DIR,
    post_config_text	=> $post_config,
  }
);

$spamtest->init(1);
dbg("sa-learn: spamtest initialized");

# Bug 6228 hack: bridge the transition gap of moving Bayes.pm into a plugin;
# To be resolved more cleanly!!!
if ($spamtest->{bayes_scanner}) {
  foreach my $plugin ( @{ $spamtest->{plugins}->{plugins} } ) {
    if ($plugin->isa('Mail::SpamAssassin::Plugin::Bayes')) {
      # copy plugin's "store" object ref one level up!
      $spamtest->{bayes_scanner}->{store} = $plugin->{store};
    }
  }
}

if (Mail::SpamAssassin::Util::am_running_on_windows()) {
  binmode(STDIN)  or die "cannot set binmode on STDIN: $!";  # bug 4363
  binmode(STDOUT) or die "cannot set binmode on STDOUT: $!";
}

if ( defined $opt{'dump'} ) {
  my ( $magic, $toks );

  if ( $opt{'dump'} eq 'all' || $opt{'dump'} eq '' ) {    # show us all tokens!
    ( $magic, $toks ) = ( 1, 1 );
  }
  elsif ( $opt{'dump'} eq 'magic' ) {    # show us magic tokens only
    ( $magic, $toks ) = ( 1, 0 );
  }
  elsif ( $opt{'dump'} eq 'data' ) {     # show us data tokens only
    ( $magic, $toks ) = ( 0, 1 );
  }
  else {                                 # unknown option
    warn "Unknown dump option '" . $opt{'dump'} . "'\n";
    $spamtest->finish_learner();
    exit 1;
  }

  if (!$spamtest->dump_bayes_db( $magic, $toks, $opt{'regexp'}) ) {
    $spamtest->finish_learner();
    die "ERROR: Bayes dump returned an error, please re-run with -D for more information\n";
  }

  $spamtest->finish_learner();
  # make sure we notice any write errors while flushing output buffer
  close STDOUT  or die "error closing STDOUT: $!";
  close STDIN   or die "error closing STDIN: $!";
  exit 0;
}

if ( defined $opt{'import'} ) {
  my $ret = $spamtest->{bayes_scanner}->{store}->perform_upgrade();
  $spamtest->finish_learner();
  # make sure we notice any write errors while flushing output buffer
  close STDOUT  or die "error closing STDOUT: $!";
  close STDIN   or die "error closing STDIN: $!";
  exit( !$ret );
}

if (defined $opt{'clear'}) {
  unless ($spamtest->{bayes_scanner}->{store}->clear_database()) {
    $spamtest->finish_learner();
    die "ERROR: Bayes clear returned an error, please re-run with -D for more information\n";
  }

  $spamtest->finish_learner();
  # make sure we notice any write errors while flushing output buffer
  close STDOUT  or die "error closing STDOUT: $!";
  close STDIN   or die "error closing STDIN: $!";
  exit 0;
}

if (defined $opt{'backup'}) {
  unless ($spamtest->{bayes_scanner}->{store}->backup_database()) {
    $spamtest->finish_learner();
    die "ERROR: Bayes backup returned an error, please re-run with -D for more information\n";
  }

  $spamtest->finish_learner();
  # make sure we notice any write errors while flushing output buffer
  close STDOUT  or die "error closing STDOUT: $!";
  close STDIN   or die "error closing STDIN: $!";
  exit 0;
}

if (defined $opt{'restore'}) {

  my $filename = $opt{'restore'};

  unless ($filename) {
    $spamtest->finish_learner();
    die "ERROR: You must specify a filename to restore.\n";
  }

  unless ($spamtest->{bayes_scanner}->{store}->restore_database($filename, $opt{'showdots'})) {
    $spamtest->finish_learner();
    die "ERROR: Bayes restore returned an error, please re-run with -D for more information\n";
  }

  $spamtest->finish_learner();
  # make sure we notice any write errors while flushing output buffer
  close STDOUT  or die "error closing STDOUT: $!";
  close STDIN   or die "error closing STDIN: $!";
  exit 0;
}

if ( !$spamtest->{conf}->{use_bayes} ) {
  warn "ERROR: configuration specifies 'use_bayes 0', sa-learn disabled\n";
  exit 1;
}

$spamtest->init_learner(
  {
    force_expire      => $opt{'force-expire'},
    learn_to_journal  => $opt{'nosync'},
    wait_for_lock     => 1,
    caller_will_untie => 1
  }
);

$spamtest->{bayes_scanner}{use_ignores} = $opt{'use-ignores'};

if ($synconly) {
  $spamtest->rebuild_learner_caches(
    {
      verbose  => !$opt{'quiet'},
      showdots => $opt{'showdots'}
    }
  );
  $spamtest->finish_learner();
  # make sure we notice any write errors while flushing output buffer
  close STDOUT  or die "error closing STDOUT: $!";
  close STDIN   or die "error closing STDIN: $!";
  exit 0;
}

$messagelimit = $opt{'stopafter'};
$learnprob    = $opt{'learnprob'};

if ( defined $opt{'randseed'} ) {
  srand( $opt{'randseed'} );
}

# sync the journal first if we're going to go r/w so we make sure to
# learn everything before doing anything else.
#
if ( !$opt{nosync} ) {
  $spamtest->rebuild_learner_caches();
}

# what is the result of the run?  will end up being the exit code.
my $exit_status = 0;

# run this lot in an eval block, so we can catch die's and clear
# up the dbs.
eval {
  $SIG{HUP}  = \&killed;
  $SIG{INT}  = \&killed;
  $SIG{TERM} = \&killed;

  if ( $opt{folders} ) {
    open( F, $opt{folders} )  or die "cannot open $opt{folders}: $!";
    for ($!=0; <F>; $!=0) {
      chomp;
      next if /^\s*$/;
      if (/^(?:ham|spam):\w*:/) {
        push ( @targets, $_ );
      }
      else {
        target($_);
      }
    }
    defined $_ || $!==0  or
      $!==EBADF ? dbg("error reading from $opt{folders}: $!")
                : die "error reading from $opt{folders}: $!";
    close(F)  or die "error closing $opt{folders}: $!";
  }

  ###########################################################################
  # Deal with the target listing, and STDIN -> tempfile

  my $tempfile; # will be defined if stdin -> tempfile
  push(@targets, @ARGV);
  @targets = ('-') unless @targets || $opt{folders};

  for(my $elem = 0; $elem <= $#targets; $elem++) {
    # ArchiveIterator doesn't really like STDIN, so if "-" is specified
    # as a target, make it a temp file instead.
    if ( $targets[$elem] =~ /(?:^|:)-$/ ) {
      if (defined $tempfile) {
        # uh-oh, stdin specified multiple times?
        warn "skipping extra stdin target (".$targets[$elem].")\n";
        splice @targets, $elem, 1;
        $elem--; # go back to this element again
        next;
      }
      else {
        my $handle;
        ( $tempfile, $handle ) = Mail::SpamAssassin::Util::secure_tmpfile();
        binmode $handle  or die "cannot set binmode on file $tempfile: $!";

        # avoid slurping the whole file into memory, copy chunk by chunk
        my($inbuf,$nread);
        while ( $nread=sysread(STDIN,$inbuf,16384) )
          { print {$handle} $inbuf  or die "error writing to $tempfile: $!" }
        defined $nread  or die "error reading from STDIN: $!";
          close $handle  or die "error closing $tempfile: $!";

        # re-aim the targets at the tempfile instead of STDIN
        $targets[$elem] =~ s/-$/$tempfile/;
      }
    }

    # make sure the target list is in the normal AI format
    if ($targets[$elem] !~ /^[^:]*:[a-z]+:/) {
      my $item = splice @targets, $elem, 1;
      target($item); # add back to the list
      $elem--; # go back to this element again
      next;
    }
  }

  ###########################################################################

  my $iter = new Mail::SpamAssassin::ArchiveIterator(
    {
        # skip messages larger than max-size bytes,
        # 0 for no limit, undef defaults to 256 KB
      'opt_max_size' => $opt{'max-size'},
      'opt_want_date' => 0,
      'opt_from_regex' => $spamtest->{conf}->{mbox_format_from_regex},
    }
  );

  $iter->set_functions(\&wanted, \&result);
  $messagecount = 0;
  $learnedcount = 0;

  $init_results = 0;
  $start_time = time;

  # if exit_status isn't already set to non-zero, set it to the reverse of the
  # run result (0 is bad, 1+ is good -- the opposite of exit status codes)
  my $run_ok = eval { $exit_status ||= ! $iter->run(@targets); 1 };

  print STDERR "\n" if ($opt{showdots});
  $progress->final() if ($opt{progress} && $progress);

  my $phrase = defined $forget ? "Forgot" : "Learned";
  print "$phrase tokens from $learnedcount message(s) ($messagecount message(s) examined)\n"
    if !$opt{'quiet'};

  # If we needed to make a tempfile, go delete it.
  if (defined $tempfile) {
    unlink $tempfile  or die "cannot unlink temporary file $tempfile: $!";
    undef $tempfile;
  }

  if (!$run_ok && $@ !~ /HITLIMIT/) { die $@ }
  1;
} or do {
  my $eval_stat = $@ ne '' ? $@ : "errno=$!";  chomp $eval_stat;
  $spamtest->finish_learner();
  die $eval_stat;
};

$spamtest->finish_learner();
# make sure we notice any write errors while flushing output buffer
close STDOUT  or die "error closing STDOUT: $!";
close STDIN   or die "error closing STDIN: $!";
exit $exit_status;

###########################################################################

sub killed {
  $spamtest->finish_learner();
  die "interrupted";
}

sub target {
  my ($target) = @_;

  my $class = ( $isspam ? "spam" : "ham" );
  my $format = ( defined( $opt{'format'} ) ? $opt{'format'} : "detect" );

  push ( @targets, "$class:$format:$target" );
}

###########################################################################

sub init_results {
  $init_results = 1;

  return unless $opt{'progress'};

  $total_messages = $Mail::SpamAssassin::ArchiveIterator::MESSAGES;

  $progress = Mail::SpamAssassin::Util::Progress->new({total => $total_messages,});
}

###########################################################################

sub result {
  my ($class, $result, $time) = @_;

  # don't open results files until we get here to avoid overwriting files
  &init_results if !$init_results;

  $progress->update($messagecount) if ($opt{progress} && $progress);
}

###########################################################################

sub wanted {
  my ( $class, $id, $time, $dataref ) = @_;

  my $spam = $class eq "s" ? 1 : 0;

  if ( defined($learnprob) ) {
    if ( int( rand( 1 / $learnprob ) ) != 0 ) {
      print STDERR '_' if ( $opt{showdots} );
      return 1;
    }
  }

  if ( defined($messagelimit) && $learnedcount > $messagelimit ) {
    $progress->final() if ($opt{progress} && $progress);
    die 'HITLIMIT';
  }

  $messagecount++;
  my $ma = $spamtest->parse($dataref);

  if ( $ma->get_header("X-Spam-Checker-Version") ) {
    my $new_ma = $spamtest->parse($spamtest->remove_spamassassin_markup($ma), 1);
    $ma->finish();
    $ma = $new_ma;
  }

  my $status = $spamtest->learn( $ma, undef, $spam, $forget );
  my $learned = $status->did_learn();

  if ( !defined $learned ) {    # undef=learning unavailable
    die "ERROR: the Bayes learn function returned an error, please re-run with -D for more information\n";
  }
  elsif ( $learned == 1 ) {   # 1=message was learned.  0=message wasn't learned
    $learnedcount++;
  }

  # Do cleanup ...
  $status->finish();
  undef $status;

  $ma->finish();
  undef $ma;

  print STDERR '.' if ( $opt{showdots} );
  return 1;
}

###########################################################################

sub usage {
  my ( $verbose, $message ) = @_;
  my $ver = Mail::SpamAssassin::Version();
  print "SpamAssassin version $ver\n";
  pod2usage( -verbose => $verbose, -message => $message, -exitval => 64 );
}

# ---------------------------------------------------------------------------

=head1 NAME

sa-learn - train SpamAssassin's Bayesian classifier

=head1 SYNOPSIS

B<sa-learn> [options] [file]...

B<sa-learn> [options] --dump [ all | data | magic ]

Options:

 --ham                 Learn messages as ham (non-spam)
 --spam                Learn messages as spam
 --forget              Forget a message
 --use-ignores         Use bayes_ignore_from and bayes_ignore_to
 --sync                Synchronize the database and the journal if needed
 --force-expire        Force a database sync and expiry run
 --dbpath <path>       Allows commandline override (in bayes_path form)
                       for where to read the Bayes DB from
 --dump [all|data|magic]  Display the contents of the Bayes database
                       Takes optional argument for what to display
  --regexp <re>        For dump only, specifies which tokens to
                       dump based on a regular expression.
 -f file, --folders=file  Read list of files/directories from file
 --dir                 Ignored; historical compatibility
 --file                Ignored; historical compatibility
 --mbox                Input sources are in mbox format
 --mbx                 Input sources are in mbx format
 --max-size <b>        Skip messages larger than b bytes;
                       defaults to 256 KB, 0 implies no limit
 --showdots            Show progress using dots
 --progress            Show progress using progress bar
 --no-sync             Skip synchronizing the database and journal
                       after learning
 -L, --local           Operate locally, no network accesses
 --import              Migrate data from older version/non DB_File
                       based databases
 --clear               Wipe out existing database
 --backup              Backup, to STDOUT, existing database
 --restore <filename>  Restore a database from filename
 -u username, --username=username
                       Override username taken from the runtime
                       environment, used with SQL
 -C path, --configpath=path, --config-file=path
                       Path to standard configuration dir
 -p prefs, --prefspath=file, --prefs-file=file
                       Set user preferences file
 --siteconfigpath=path Path for site configs
                       (default: /etc/spamassassin)
 --cf='config line'    Additional line of configuration
 -D, --debug [area=n,...]  Print debugging messages
 -V, --version         Print version
 -h, --help            Print usage message

=head1 DESCRIPTION

Given a typical selection of your incoming mail classified as spam or ham
(non-spam), this tool will feed each mail to SpamAssassin, allowing it
to 'learn' what signs are likely to mean spam, and which are likely to
mean ham.

Simply run this command once for each of your mail folders, and it will
''learn'' from the mail therein.

Note that csh-style I<globbing> in the mail folder names is supported;
in other words, listing a folder name as C<*> will scan every folder
that matches.  See C<Mail::SpamAssassin::ArchiveIterator> for more details.

SpamAssassin remembers which mail messages it has learnt already, and will not
re-learn those messages again, unless you use the B<--forget> option. Messages
learnt as spam will have SpamAssassin markup removed, on the fly.

If you make a mistake and scan a mail as ham when it is spam, or vice
versa, simply rerun this command with the correct classification, and the
mistake will be corrected.  SpamAssassin will automatically 'forget' the
previous indications.

Users of C<spamd> who wish to perform training remotely, over a network,
should investigate the C<spamc -L> switch.

=head1 OPTIONS

=over 4

=item B<--ham>

Learn the input message(s) as ham.   If you have previously learnt any of the
messages as spam, SpamAssassin will forget them first, then re-learn them as
ham.  Alternatively, if you have previously learnt them as ham, it'll skip them
this time around.  If the messages have already been filtered through
SpamAssassin, the learner will ignore any modifications SpamAssassin may have
made.

=item B<--spam>

Learn the input message(s) as spam.   If you have previously learnt any of the
messages as ham, SpamAssassin will forget them first, then re-learn them as
spam.  Alternatively, if you have previously learnt them as spam, it'll skip
them this time around.  If the messages have already been filtered through
SpamAssassin, the learner will ignore any modifications SpamAssassin may have
made.

=item B<--folders>=I<filename>, B<-f> I<filename>

sa-learn will read in the list of folders from the specified file, one folder
per line in the file.  If the folder is prefixed with C<ham:type:> or C<spam:type:>,
sa-learn will learn that folder appropriately, otherwise the folders will be
assumed to be of the type specified by B<--ham> or B<--spam>.

C<type> above is optional, but is the same as the standard for
ArchiveIterator: mbox, mbx, dir, file, or detect (the default if not
specified).

=item B<--mbox>

sa-learn will read in the file(s) containing the emails to be learned, 
and will process them in mbox format (one or more emails per file). 

=item B<--mbx>

sa-learn will read in the file(s) containing the emails to be learned, 
and will process them in mbx format (one or more emails per file). 

=item B<--use-ignores>

Don't learn the message if a from address matches configuration file
item C<bayes_ignore_from> or a to address matches C<bayes_ignore_to>.
The option might be used when learning from a large file of messages
from which the hammy spam messages or spammy ham messages have not
been removed.

=item B<--sync>

Synchronize the journal and databases.  Upon successfully syncing the
database with the entries in the journal, the journal file is removed.

=item B<--force-expire>

Forces an expiry attempt, regardless of whether it may be necessary
or not.  Note: This doesn't mean any tokens will actually expire.
Please see the EXPIRATION section below.

Note: C<--force-expire> also causes the journal data to be synchronized
into the Bayes databases.

=item B<--forget>

Forget a given message previously learnt.

=item B<--dbpath>

Allows a commandline override of the I<bayes_path> configuration option.

=item B<--dump> I<option>

Display the contents of the Bayes database.  Without an option or with
the I<all> option, all magic tokens and data tokens will be displayed.
I<magic> will only display magic tokens, and I<data> will only display
the data tokens.

Can also use the B<--regexp> I<RE> option to specify which tokens to
display based on a regular expression.

=item B<--clear>

Clear an existing Bayes database by removing all traces of the database.

WARNING: This is destructive and should be used with care.

=item B<--backup>

Performs a dump of the Bayes database in machine/human readable format.

The dump will include token and seen data.  It is suitable for input back
into the --restore command.

=item B<--restore>=I<filename>

Performs a restore of the Bayes database defined by I<filename>.

WARNING: This is a destructive operation, previous Bayes data will be wiped out.

=item B<-h>, B<--help>

Print help message and exit.

=item B<-u> I<username>, B<--username>=I<username>

If specified this username will override the username taken from the runtime
environment.  You can use this option to specify users in a virtual user
configuration when using SQL as the Bayes backend.

NOTE: This option will not change to the given I<username>, it will only attempt
to act on behalf of that user.  Because of this you will need to have proper
permissions to be able to change files owned by I<username>.  In the case of SQL
this generally is not a problem.

=item B<-C> I<path>, B<--configpath>=I<path>, B<--config-file>=I<path>

Use the specified path for locating the distributed configuration files.
Ignore the default directories (usually C</usr/share/spamassassin> or similar).

=item B<--siteconfigpath>=I<path>

Use the specified path for locating site-specific configuration files.  Ignore
the default directories (usually C</etc/spamassassin> or similar).

=item B<--cf='config line'>

Add additional lines of configuration directly from the command-line, parsed
after the configuration files are read.   Multiple B<--cf> arguments can be
used, and each will be considered a separate line of configuration.

=item B<-p> I<prefs>, B<--prefspath>=I<prefs>, B<--prefs-file>=I<prefs>

Read user score preferences from I<prefs> (usually C<$HOME/.spamassassin/user_prefs>).

=item B<--progress>

Prints a progress bar (to STDERR) showing the current progress.  In the case
where no valid terminal is found this option will behave very much like the
--showdots option.

=item B<-D> [I<area,...>], B<--debug> [I<area,...>]

Produce debugging output. If no areas are listed, all debugging information is
printed. Diagnostic output can also be enabled for each area individually;
I<area> is the area of the code to instrument. For example, to produce
diagnostic output on bayes, learn, and dns, use:

        spamassassin -D bayes,learn,dns

For more information about which areas (also known as channels) are available,
please see the documentation at:

        C<http://wiki.apache.org/spamassassin/DebugChannels>

Higher priority informational messages that are suitable for logging in normal
circumstances are available with an area of "info".

=item B<--no-sync>

Skip the slow synchronization step which normally takes place after
changing database entries.  If you plan to learn from many folders in
a batch, or to learn many individual messages one-by-one, it is faster
to use this switch and run C<sa-learn --sync> once all the folders have
been scanned.

Clarification: The state of I<--no-sync> overrides the
I<bayes_learn_to_journal> configuration option.  If not specified,
sa-learn will learn to the database directly.  If specified, sa-learn
will learn to the journal file.

Note: I<--sync> and I<--no-sync> can be specified on the same commandline,
which is slightly confusing.  In this case, the I<--no-sync> option is
ignored since there is no learn operation.

=item B<-L>, B<--local>

Do not perform any network accesses while learning details about the mail
messages.  This will speed up the learning process, but may result in a
slightly lower accuracy.

Note that this is currently ignored, as current versions of SpamAssassin will
not perform network access while learning; but future versions may.

=item B<--import>

If you previously used SpamAssassin's Bayesian learner without the C<DB_File>
module installed, it will have created files in other formats, such as
C<GDBM_File>, C<NDBM_File>, or C<SDBM_File>.  This switch allows you to migrate
that old data into the C<DB_File> format.  It will overwrite any data currently
in the C<DB_File>.

Can also be used with the B<--dbpath> I<path> option to specify the location of
the Bayes files to use.

=back

=head1 MIGRATION

There are now multiple backend storage modules available for storing
user's bayesian data. As such you might want to migrate from one
backend to another. Here is a simple procedure for migrating from one
backend to another.

Note that if you have individual user databases you will have to
perform a similar procedure for each one of them.

=over 4

=item sa-learn --sync

This will sync any outstanding journal entries

=item sa-learn --backup > backup.txt

This will save all your Bayes data to a plain text file.

=item sa-learn --clear

This is optional, but good to do to clear out the old database.

=item Repeat!

At this point, if you have multiple databases, you should perform the
procedure above for each of them. (i.e. each user's database needs to
be backed up before continuing.)

=item Switch backends

Once you have backed up all databases you can update your
configuration for the new database backend. This will involve at least
the bayes_store_module config option and may involve some additional
config options depending on what is required by the module. (For
example, you may need to configure an SQL database.)

=item sa-learn --restore backup.txt

Again, you need to do this for every database.

=back

If you are migrating to SQL you can make use of the -u <username>
option in sa-learn to populate each user's database. Otherwise, you
must run sa-learn as the user who database you are restoring.


=head1 INTRODUCTION TO BAYESIAN FILTERING

(Thanks to Michael Bell for this section!)

For a more lengthy description of how this works, go to
http://www.paulgraham.com/ and see "A Plan for Spam". It's reasonably
readable, even if statistics make me break out in hives.

The short semi-inaccurate version: Given training, a spam heuristics engine
can take the most "spammy" and "hammy" words and apply probabilistic
analysis. Furthermore, once given a basis for the analysis, the engine can
continue to learn iteratively by applying both the non-Bayesian and Bayesian
rulesets together to create evolving "intelligence".

SpamAssassin 2.50 and later supports Bayesian spam analysis, in
the form of the BAYES rules. This is a new feature, quite powerful,
and is disabled until enough messages have been learnt.

The pros of Bayesian spam analysis:

=over 4

=item Can greatly reduce false positives and false negatives.

It learns from your mail, so it is tailored to your unique e-mail flow.

=item Once it starts learning, it can continue to learn from SpamAssassin
and improve over time.

=back

And the cons:

=over 4

=item A decent number of messages are required before results are useful
for ham/spam determination.

=item It's hard to explain why a message is or isn't marked as spam.

i.e.: a straightforward rule, that matches, say, "VIAGRA" is
easy to understand. If it generates a false positive or false negative,
it is fairly easy to understand why.

With Bayesian analysis, it's all probabilities - "because the past says
it is likely as this falls into a probabilistic distribution common to past
spam in your systems". Tell that to your users!  Tell that to the client
when he asks "what can I do to change this". (By the way, the answer in
this case is "use whitelisting".)

=item It will take disk space and memory.

The databases it maintains take quite a lot of resources to store and use.

=back

=head1 GETTING STARTED

Still interested? Ok, here's the guidelines for getting this working.

First a high-level overview:

=over 4

=item Build a significant sample of both ham and spam.

I suggest several thousand of each, placed in SPAM and HAM directories or
mailboxes.  Yes, you MUST hand-sort this - otherwise the results won't be much
better than SpamAssassin on its own. Verify the spamminess/haminess of EVERY
message.  You're urged to avoid using a publicly available corpus (sample) -
this must be taken from YOUR mail server, if it is to be statistically useful.
Otherwise, the results may be pretty skewed.

=item Use this tool to teach SpamAssassin about these samples, like so:

	sa-learn --spam /path/to/spam/folder
	sa-learn --ham /path/to/ham/folder
	...

Let SpamAssassin proceed, learning stuff. When it finds ham and spam
it will add the "interesting tokens" to the database.

=item If you need SpamAssassin to forget about specific messages, use
the B<--forget> option.

This can be applied to either ham or spam that has run through the
B<sa-learn> processes. It's a bit of a hammer, really, lowering the
weighting of the specific tokens in that message (only if that message has
been processed before).

=item Learning from single messages uses a command like this:

	sa-learn --ham --no-sync mailmessage

This is handy for binding to a key in your mail user agent.  It's very fast, as
all the time-consuming stuff is deferred until you run with the C<--sync>
option.

=item Autolearning is enabled by default

If you don't have a corpus of mail saved to learn, you can let
SpamAssassin automatically learn the mail that you receive.  If you are
autolearning from scratch, the amount of mail you receive will determine
how long until the BAYES_* rules are activated.

=back

=head1 EFFECTIVE TRAINING

Learning filters require training to be effective.  If you don't train
them, they won't work.  In addition, you need to train them with new
messages regularly to keep them up-to-date, or their data will become
stale and impact accuracy.

You need to train with both spam I<and> ham mails.  One type of mail
alone will not have any effect.

Note that if your mail folders contain things like forwarded spam,
discussions of spam-catching rules, etc., this will cause trouble.  You
should avoid scanning those messages if possible.  (An easy way to do this
is to move them aside, into a folder which is not scanned.)

If the messages you are learning from have already been filtered through
SpamAssassin, the learner will compensate for this.  In effect, it learns what
each message would look like if you had run C<spamassassin -d> over it in
advance.

Another thing to be aware of, is that typically you should aim to train
with at least 1000 messages of spam, and 1000 ham messages, if
possible.  More is better, but anything over about 5000 messages does not
improve accuracy significantly in our tests.

Be careful that you train from the same source -- for example, if you train
on old spam, but new ham mail, then the classifier will think that
a mail with an old date stamp is likely to be spam.

It's also worth noting that training with a very small quantity of
ham, will produce atrocious results.  You should aim to train with at
least the same amount (or more if possible!) of ham data than spam.

On an on-going basis, it is best to keep training the filter to make
sure it has fresh data to work from.  There are various ways to do
this:

=over 4

=item 1. Supervised learning

This means keeping a copy of all or most of your mail, separated into spam
and ham piles, and periodically re-training using those.  It produces
the best results, but requires more work from you, the user.

(An easy way to do this, by the way, is to create a new folder for
'deleted' messages, and instead of deleting them from other folders,
simply move them in there instead.  Then keep all spam in a separate
folder and never delete it.  As long as you remember to move misclassified
mails into the correct folder set, it is easy enough to keep up to date.)

=item 2. Unsupervised learning from Bayesian classification

Another way to train is to chain the results of the Bayesian classifier
back into the training, so it reinforces its own decisions.  This is only
safe if you then retrain it based on any errors you discover.

SpamAssassin does not support this method, due to experimental results
which strongly indicate that it does not work well, and since Bayes is
only one part of the resulting score presented to the user (while Bayes
may have made the wrong decision about a mail, it may have been overridden
by another system).

=item 3. Unsupervised learning from SpamAssassin rules

Also called 'auto-learning' in SpamAssassin.  Based on statistical
analysis of the SpamAssassin success rates, we can automatically train the
Bayesian database with a certain degree of confidence that our training
data is accurate.

It should be supplemented with some supervised training in addition, if
possible.

This is the default, but can be turned off by setting the SpamAssassin
configuration parameter C<bayes_auto_learn> to 0.

=item 4. Mistake-based training

This means training on a small number of mails, then only training on
messages that SpamAssassin classifies incorrectly.  This works, but it
takes longer to get it right than a full training session would.

=back

=head1 FILES

B<sa-learn> and the other parts of SpamAssassin's Bayesian learner,
use a set of persistent database files to store the learnt tokens, as follows.

=over 4

=item bayes_toks

The database of tokens, containing the tokens learnt, their count of
occurrences in ham and spam, and the timestamp when the token was last
seen in a message.

This database also contains some 'magic' tokens, as follows: the version
number of the database, the number of ham and spam messages learnt, the
number of tokens in the database, and timestamps of: the last journal
sync, the last expiry run, the last expiry token reduction count, the
last expiry timestamp delta, the oldest token timestamp in the database,
and the newest token timestamp in the database.

This is a database file, using C<DB_File>.  The database 'version
number' is 0 for databases from 2.5x, 1 for databases from certain 2.6x
development releases, 2 for 2.6x, and 3 for 3.0 and later releases.

=item bayes_seen

A map of Message-Id and some data from headers and body to what that
message was learnt as. This is used so that SpamAssassin can avoid
re-learning a message it has already seen, and so it can reverse the
training if you later decide that message was learnt incorrectly.

This is a database file, using C<DB_File>.

=item bayes_journal

While SpamAssassin is scanning mails, it needs to track which tokens
it uses in its calculations.  To avoid the contention of having each
SpamAssassin process attempting to gain write access to the Bayes DB,
the token timestamps are written to a 'journal' file which will later
(either automatically or via C<sa-learn --sync>) be used to synchronize
the Bayes DB.

Also, through the use of C<bayes_learn_to_journal>, or when using the
C<--no-sync> option with sa-learn, the actual learning data will take
be placed into the journal for later synchronization.  This is typically
useful for high-traffic sites to avoid the same contention as stated
above.

=back

=head1 EXPIRATION

Since SpamAssassin can auto-learn messages, the Bayes database files
could increase perpetually until they fill your disk.  To control this,
SpamAssassin performs journal synchronization and bayes expiration
periodically when certain criteria (listed below) are met.

SpamAssassin can sync the journal and expire the DB tokens either
manually or opportunistically.  A journal sync is due if I<--sync>
is passed to sa-learn (manual), or if the following is true
(opportunistic):

=over 4

=item - bayes_journal_max_size does not equal 0 (means don't sync)

=item - the journal file exists

=back

and either:

=over 4

=item - the journal file has a size greater than bayes_journal_max_size

=back

or

=over 4

=item - a journal sync has previously occurred, and at least 1 day has
passed since that sync

=back

Expiry is due if I<--force-expire> is passed to sa-learn (manual),
or if all of the following are true (opportunistic):

=over 4

=item - the last expire was attempted at least 12hrs ago

=item - bayes_auto_expire does not equal 0

=item - the number of tokens in the DB is > 100,000

=item - the number of tokens in the DB is > bayes_expiry_max_db_size

=item - there is at least a 12 hr difference between the oldest and newest token atimes

=back

=head2 EXPIRE LOGIC

If either the manual or opportunistic method causes an expire run
to start, here is the logic that is used:

=over 4

=item - figure out how many tokens to keep.  take the larger of
either bayes_expiry_max_db_size * 75% or 100,000 tokens.  therefore, the goal
reduction is number of tokens - number of tokens to keep.

=item - if the reduction number is < 1000 tokens, abort (not worth the effort).

=item - if an expire has been done before, guesstimate the new
atime delta based on the old atime delta.  (new_atime_delta =
old_atime_delta * old_reduction_count / goal)

=item - if no expire has been done before, or the last expire looks
"weird", do an estimation pass.  The definition of "weird" is:

=over 8

=item - last expire over 30 days ago

=item - last atime delta was < 12 hrs

=item - last reduction count was < 1000 tokens

=item - estimated new atime delta is < 12 hrs

=item - the difference between the last reduction count and the goal reduction count is > 50%

=back

=back

=head2 ESTIMATION PASS LOGIC

Go through each of the DB's tokens.  Starting at 12hrs, calculate
whether or not the token would be expired (based on the difference
between the token's atime and the db's newest token atime) and keep
the count.  Work out from 12hrs exponentially by powers of 2.  ie:
12hrs * 1, 12hrs * 2, 12hrs * 4, 12hrs * 8, and so on, up to 12hrs
* 512 (6144hrs, or 256 days).

The larger the delta, the smaller the number of tokens that will
be expired.  Conversely, the number of tokens goes up as the delta
gets smaller.  So starting at the largest atime delta, figure out
which delta will expire the most tokens without going above the
goal expiration count.  Use this to choose the atime delta to use,
unless one of the following occurs:

=over 8

=item - the largest atime (smallest reduction count) would expire
too many tokens.  this means the learned tokens are mostly old and
there needs to be new tokens learned before an expire can
occur.

=item - all of the atime choices result in 0 tokens being removed.
this means the tokens are all newer than 12 hours and there needs
to be new tokens learned before an expire can occur.

=item - the number of tokens that would be removed is < 1000.  the
benefit isn't worth the effort.  more tokens need to be learned.

=back

If the expire run gets past this point, it will continue to the end.
A new DB is created since the majority of DB libraries don't shrink the
DB file when tokens are removed.  So we do the "create new, migrate old
to new, remove old, rename new" shuffle.

=head2 EXPIRY RELATED CONFIGURATION SETTINGS

=over 4

=item C<bayes_auto_expire> is used to specify whether or not SpamAssassin
ought to opportunistically attempt to expire the Bayes database.
The default is 1 (yes).

=item C<bayes_expiry_max_db_size> specifies both the auto-expire token
count point, as well as the resulting number of tokens after expiry
as described above.  The default value is 150,000, which is roughly
equivalent to a 6Mb database file if you're using DB_File.

=item C<bayes_journal_max_size> specifies how large the Bayes
journal will grow before it is opportunistically synced.  The
default value is 102400.

=back

=head1 INSTALLATION

The B<sa-learn> command is part of the B<Mail::SpamAssassin> Perl module.
Install this as a normal Perl module, using C<perl -MCPAN -e shell>,
or by hand.

=head1 SEE ALSO

spamassassin(1)
spamc(1)
Mail::SpamAssassin(3)
Mail::SpamAssassin::ArchiveIterator(3)

E<lt>http://www.paulgraham.com/E<gt>
Paul Graham's "A Plan For Spam" paper

E<lt>http://www.linuxjournal.com/article/6467E<gt>
Gary Robinson's f(x) and combining algorithms, as used in SpamAssassin

E<lt>http://www.bgl.nu/~glouis/bogofilter/E<gt>
'Training on error' page.  A discussion of various Bayes training regimes,
including 'train on error' and unsupervised training.

=head1 PREREQUISITES

C<Mail::SpamAssassin>

=head1 AUTHORS

The SpamAssassin(tm) Project E<lt>http://spamassassin.apache.org/E<gt>

=cut